Exercises for the Lecture
 Differential Geometry

Summer Term 2020
Sheet 2
Submission:

Resources: §1-§2; Sections 1-1 - 1-6 in $\mid \overline{\operatorname{Car} 16]}$

Exercise 1.

Let $\alpha, \beta: I \rightarrow \mathbb{R}^{3}$ be differentiable functions on an interval $I \subset \mathbb{R}$. Show:
(i) The function $\alpha \times \beta: I \rightarrow \mathbb{R}^{3}$ is differentiable with

$$
(\alpha \times \beta)^{\prime}=\alpha^{\prime} \times \beta+\alpha \times \beta^{\prime}
$$

(ii) For constants $a, b, c \in \mathbb{R}$, if the relations

$$
\alpha^{\prime}=a \alpha+b \beta \quad \text { and } \quad \beta^{\prime}=c \alpha-a \beta
$$

hold, then $\alpha \times \beta$ is constant.
(iii) For $u, v, w \in \mathbb{R}^{3}$, the identity

$$
(u \times v) \times w=(u \cdot w) v-(v \cdot w) u
$$

holds.

Exercise 2.

Let $a, b, c \in \mathbb{R}$ with $a^{2}+b^{2}=c^{2}$ and $a \neq 0$. Consider the following parameterized curve

$$
\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}, s \mapsto\left(a \cos \left(\frac{s}{c}\right), a \sin \left(\frac{s}{c}\right), b \frac{s}{c}\right)
$$

(i) Is γ parameterized by arc length?
(ii) Calculate the curvature and torsion of γ.
(iii) Show that the angle under which the line containing $n_{\gamma}(s)$ and passing through $\gamma(s)$ meets the z axis is independent of $s \in \mathbb{R}$. Calculate this angle.
(iv) Plot the curve of γ.

Exercise 3.

Let $I \subset \mathbb{R}$ be an interval and let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a (not necessarily parameterized by arc length) regular curve with nowhere vanishing curvature. Show that the Frenet trihedron $\left(t_{\alpha}, n_{\alpha}, b_{\alpha}\right)$ is given by

$$
t_{\alpha}=\frac{\alpha^{\prime}}{\left|\alpha^{\prime}\right|}, n_{\alpha}=\frac{\alpha^{\prime} \times \alpha^{\prime \prime}}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|} \times \frac{\alpha^{\prime}}{\left|\alpha^{\prime}\right|}, \quad b_{\alpha}=\frac{\alpha^{\prime} \times \alpha^{\prime \prime}}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|} .
$$

(Hint: Reparameterize the curve by arc length and use Exercise 1. Without a proof, you can use Exercise 12 a-c in Section 1-5 in (Car16])

Exercise 4.

(i) Show that the signed curvature of a regular plane curve $\alpha: I \rightarrow \mathbb{R}^{2}, t \mapsto(x(t), y(t))(I \subset \mathbb{R}$ an interval) is given by

$$
\kappa_{\alpha}: I \rightarrow \mathbb{R}, t \mapsto \frac{x^{\prime}(t) y^{\prime \prime}(t)-x^{\prime \prime}(t) y^{\prime}(t)}{\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{3 / 2}} .
$$

(ii) Show that a change of orientation changes the sign of the signed curvature of a regular plane curve.

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves $\& \mathcal{B}$ surfaces. Revised \& updated second edition. Dover Publications, Inc., Mineola, NY, 2016.

