Exercises for the Lecture
 Differential Geometry

Summer Term 2020
Sheet 2, Solution
Submission:

Resources: $\S 1-\S 2$; Sections 1-1 - 1-6 in (Car16

Exercise 1.

Let $\alpha, \beta: I \rightarrow \mathbb{R}^{3}$ be differentiable functions on an interval $I \subset \mathbb{R}$. Show:
(i) The function $\alpha \times \beta: I \rightarrow \mathbb{R}^{3}$ is differentiable with

$$
(\alpha \times \beta)^{\prime}=\alpha^{\prime} \times \beta+\alpha \times \beta^{\prime}
$$

(ii) For constants $a, b, c \in \mathbb{R}$, if the relations

$$
\alpha^{\prime}=a \alpha+b \beta \quad \text { and } \quad \beta^{\prime}=c \alpha-a \beta
$$

hold, then $\alpha \times \beta$ is constant.
(iii) For $u, v, w \in \mathbb{R}^{3}$, the identity

$$
(u \times v) \times w=(u \cdot w) v-(v \cdot w) u
$$

holds.

Solution 1.

Simple calculations.

Exercise 2.

Let $a, b, c \in \mathbb{R}$ with $a^{2}+b^{2}=c^{2}$ and $a \neq 0$. Consider the following parameterized curve

$$
\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}, s \mapsto\left(a \cos \left(\frac{s}{c}\right), a \sin \left(\frac{s}{c}\right), b \frac{s}{c}\right)
$$

(i) Is γ parameterized by arc length?
(ii) Calculate the curvature and torsion of γ.
(iii) Show that the angle under which the line containing $n_{\gamma}(s)$ and passing through $\gamma(s)$ meets the z axis is independent of $s \in \mathbb{R}$. Calculate this angle.
(iv) Plot the curve of γ.

Solution 2.

(i) Let $s \in \mathbb{R}$. We have

$$
\gamma^{\prime}(s)=\left(-\frac{a}{c} \sin \left(\frac{s}{c}\right), \frac{a}{c} \cos \left(\frac{s}{c}\right), \frac{b}{c}\right)=\frac{1}{c}\left(-a \sin \left(\frac{s}{c}\right), a \cos \left(\frac{s}{c}\right), b\right),
$$

and hence

$$
\left|\gamma^{\prime}(s)\right|^{2}=\left(\frac{a}{c} \sin \left(\frac{s}{c}\right)\right)^{2}+\left(\frac{a}{c} \cos \left(\frac{s}{c}\right)\right)^{2}+\left(\frac{b}{c}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}}=1 .
$$

Therefore, γ is parameterized by arc length.
(ii) Let $s \in \mathbb{R}$. We have

$$
\gamma^{\prime \prime}(s)=\left(-\frac{a}{c^{2}} \cos \left(\frac{s}{c}\right),-\frac{a}{c^{2}} \sin \left(\frac{s}{c}\right), 0\right)=-\frac{a}{c^{2}}\left(\cos \left(\frac{s}{c}\right), \sin \left(\frac{s}{c}\right), 0\right),
$$

and hence

$$
\kappa_{\gamma}(s)=\left|\gamma^{\prime \prime}(s)\right|=\frac{|a|}{c^{2}} .
$$

Furthermore, we have

$$
n_{\gamma}(s)=\frac{\gamma^{\prime \prime}(s)}{\kappa_{\gamma}(s)}=-\frac{a}{|a|}\left(\cos \left(\frac{s}{c}\right), \sin \left(\frac{s}{c}\right), 0\right)=-\operatorname{sgn}(a)\left(\cos \left(\frac{s}{c}\right), \sin \left(\frac{s}{c}\right), 0\right)
$$

and

$$
n_{\gamma}^{\prime}(s)=-\frac{\operatorname{sgn}(a)}{c}\left(-\sin \left(\frac{s}{c}\right), \cos \left(\frac{s}{c}\right), 0\right)
$$

as well as (see the calculation on p. 19 in Car16])

$$
\begin{aligned}
b_{\gamma}^{\prime}(s) & =\gamma^{\prime}(s) \times n_{\gamma}^{\prime}(s) \\
& =-\frac{\operatorname{sgn}(a)}{c^{2}}\left(-a \sin \left(\frac{s}{c}\right), a \cos \left(\frac{s}{c}\right), b\right) \times\left(-\sin \left(\frac{s}{c}\right), \cos \left(\frac{s}{c}\right), 0\right) \\
& =-\frac{\operatorname{sgn}(a)}{c^{2}}\left(-b \cos \left(\frac{s}{c}\right),-b \sin \left(\frac{s}{c}\right), 0\right) \\
& =-\frac{b}{c^{2}} n_{\gamma}(s),
\end{aligned}
$$

thus

$$
\tau_{\gamma}(s)=-\frac{b}{c^{2}}
$$

(iii) Let $s \in \mathbb{R}$ and define

$$
\alpha: \mathbb{R} \rightarrow \mathbb{R}^{3}, t \mapsto \gamma(s)+t n_{\gamma}(s)=\left(a \cos \left(\frac{s}{c}\right)\left(1-t \frac{1}{|a|}\right), a \sin \left(\frac{s}{c}\right)\left(1-t \frac{1}{|a|}\right), b \frac{s}{c}\right) .
$$

The line α meets the z axis at $t=|a|$. Since

$$
n_{\gamma}(s) \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=0
$$

the desired angle equals $\pi / 2$.
(iv) Cf. Figure 1-1 on p. 3 in Car16 (Helix).

Exercise 3.

Let $I \subset \mathbb{R}$ be an interval and let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a (not necessarily parameterized by arc length) regular curve with nowhere vanishing curvature. Show that the Frenet trihedron $\left(t_{\alpha}, n_{\alpha}, b_{\alpha}\right)$ is given by

$$
t_{\alpha}=\frac{\alpha^{\prime}}{\left|\alpha^{\prime}\right|}, n_{\alpha}=\frac{\alpha^{\prime} \times \alpha^{\prime \prime}}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|} \times \frac{\alpha^{\prime}}{\left|\alpha^{\prime}\right|}, \quad b_{\alpha}=\frac{\alpha^{\prime} \times \alpha^{\prime \prime}}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|} .
$$

(Hint: Reparameterize the curve by arc length and use Exercise 1. Without a proof, you can use Exercise 12 (a)-(c) in Section 1-5 in Car16)

Solution 3.

Let s_{α} be the arc length of α and let $\varphi: J=\operatorname{Im}\left(s_{\alpha}\right) \rightarrow I$ be the inverse function of s_{α} (restricted to its image). Consider now the reparameterized regular curve

$$
\tilde{\alpha}: J \rightarrow \mathbb{R}^{3}, \tau \mapsto(\alpha \circ \varphi)(\tau)=\alpha(\varphi(\tau))
$$

By definition, we have

$$
t_{\alpha}=t_{\tilde{\alpha}} \circ \varphi^{-1}, n_{\alpha}=n_{\tilde{\alpha}} \circ \varphi^{-1} \text { and } b_{\alpha}=b_{\tilde{\alpha}} \circ \varphi^{-1}
$$

By Exercise 12 (a) in Section 1-5 in Car16, we have

$$
\varphi^{\prime}=\left(\left|\alpha^{\prime}\right|^{-1}\right) \circ \varphi
$$

and

$$
\varphi^{\prime \prime}=\left(-\left|\alpha^{\prime}\right|^{-4}\left(\alpha^{\prime \prime} \cdot \alpha^{\prime}\right)\right) \circ \varphi
$$

Thus

$$
t_{\tilde{\alpha}}=\tilde{\alpha}^{\prime}=\left(\alpha^{\prime} \circ \varphi\right) \varphi^{\prime}=\left(\alpha^{\prime} \circ \varphi\right)\left|\left(\alpha^{\prime} \circ \varphi\right)\right|^{-1}=\left(\frac{\alpha^{\prime}}{\left|\alpha^{\prime}\right|}\right) \circ \varphi
$$

and, using Exercise 1 (iii), we obtain

$$
\begin{aligned}
\tilde{\alpha}^{\prime \prime} & =\left(\alpha^{\prime} \circ \varphi\right)^{\prime} \varphi^{\prime}+\left(\alpha^{\prime} \circ \varphi\right) \varphi^{\prime \prime} \\
& =\left(\alpha^{\prime \prime} \circ \varphi\right)\left(\varphi^{\prime}\right)^{2}+\left(\alpha^{\prime} \circ \varphi\right) \varphi^{\prime \prime} \\
& =\left(\frac{\alpha^{\prime \prime}}{\left|\alpha^{\prime}\right|^{2}}-\frac{\alpha^{\prime} \alpha^{\prime \prime} \cdot \alpha^{\prime}}{\left|\alpha^{\prime}\right|^{4}}\right) \circ \varphi \\
& =\left(\frac{\alpha^{\prime \prime}\left|\alpha^{\prime}\right|^{2}-\alpha^{\prime} \alpha^{\prime \prime} \cdot \alpha^{\prime}}{\left|\alpha^{\prime}\right|^{4}}\right) \circ \varphi \\
& =\left(\frac{\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \times \alpha^{\prime}}{\left|\alpha^{\prime}\right|^{4}}\right) \circ \varphi
\end{aligned}
$$

By Exercise 12 (b) in Section 1-5 in Car16, we conclude that

$$
n_{\tilde{\alpha}}=\frac{\tilde{\alpha}^{\prime \prime}}{\kappa_{\tilde{\alpha}}}=\left(\frac{\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \times \alpha^{\prime}}{\left|\alpha^{\prime}\right|^{4}} \frac{\left|\alpha^{\prime}\right|^{3}}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|}\right) \circ \varphi=\left(\frac{\alpha^{\prime} \times \alpha^{\prime \prime}}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|} \times \frac{\alpha^{\prime}}{\left|\alpha^{\prime}\right|}\right) \circ \varphi
$$

Finally, we obtain with Exercise 1 (iii) that

$$
\begin{aligned}
b_{\tilde{\alpha}}=t_{\tilde{\alpha}} \times n_{\tilde{\alpha}} & =\left(\frac{\alpha^{\prime}}{\left|\alpha^{\prime}\right|} \times\left(\frac{\alpha^{\prime} \times \alpha^{\prime \prime}}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|} \times \frac{\alpha^{\prime}}{\left|\alpha^{\prime}\right|}\right)\right) \circ \varphi \\
& =\left(-\frac{1}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|\left|\alpha^{\prime}\right|^{2}}\left(\alpha^{\prime} \times\left(\alpha^{\prime \prime} \times \alpha^{\prime}\right)\right) \times \alpha^{\prime}\right) \circ \varphi \\
& =\left(-\frac{1}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|\left|\alpha^{\prime}\right|^{2}}\left(\left(\alpha^{\prime} \cdot \alpha^{\prime}\right)\left(\alpha^{\prime \prime} \times \alpha^{\prime}\right)-\left(\left(\alpha^{\prime \prime} \times \alpha^{\prime}\right) \cdot \alpha^{\prime}\right) \alpha^{\prime}\right)\right) \circ \varphi \\
& =\frac{\alpha^{\prime} \times \alpha^{\prime \prime}}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|} \circ \varphi
\end{aligned}
$$

since $\left(\alpha^{\prime \prime} \times \alpha^{\prime}\right) \cdot \alpha^{\prime}=0$.

Exercise 4.

(i) Show that the signed curvature of a regular plane curve $\alpha: I \rightarrow \mathbb{R}^{2}, t \mapsto(x(t), y(t))(I \subset \mathbb{R}$ an interval) is given by

$$
\kappa_{\alpha}: I \rightarrow \mathbb{R}, t \mapsto \frac{x^{\prime}(t) y^{\prime \prime}(t)-x^{\prime \prime}(t) y^{\prime}(t)}{\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{3 / 2}} .
$$

(ii) Show that a change of orientation changes the sign of the signed curvature of a regular plane curve.

Solution 4.

Let $I \subset \mathbb{R}$ be an interval and let $\alpha: I \rightarrow \mathbb{R}^{2}, t \mapsto(x(t), y(t))$ be a regular plane curve.
(i) Let s_{α} be the arc length of α and let $\varphi: J=\operatorname{Im}\left(s_{\alpha}\right) \rightarrow I$ be the inverse function of s_{α} (restricted to its image). Consider now the reparameterized regular curve

$$
\tilde{\alpha}: J \rightarrow \mathbb{R}^{2}, \tau \mapsto(\alpha \circ \varphi)(\tau)=\alpha(\varphi(\tau)) .
$$

With $t_{\tilde{\alpha}}=\tilde{\alpha}^{\prime}$ and

$$
\tilde{n}_{\tilde{\alpha}}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) t_{\tilde{\alpha}}=\left(\frac{1}{\left|\alpha^{\prime}\right|}\binom{-y^{\prime}}{x^{\prime}}\right) \circ \varphi,
$$

$\left(t_{\tilde{\alpha}}, \tilde{n}_{\tilde{\alpha}}\right)$ is pointwise a positive oriented orthonormal basis. We have (cf. the solution of Exercise 3)

$$
\begin{aligned}
t_{\tilde{\alpha}}^{\prime}=\tilde{\alpha}^{\prime \prime} & =\left(\frac{\alpha^{\prime \prime}\left|\alpha^{\prime}\right|^{2}-\alpha^{\prime} \alpha^{\prime \prime} \cdot \alpha^{\prime}}{\left|\alpha^{\prime}\right|^{4}}\right) \circ \varphi \\
& =\left(\frac{1}{\left|\alpha^{\prime}\right|^{4}}\left(\left(x^{\prime 2}+y^{\prime 2}\right)\binom{x^{\prime \prime}}{y^{\prime \prime}}-\left(x^{\prime \prime} x^{\prime}+y^{\prime \prime} y\right)\binom{x^{\prime}}{y^{\prime}}\right)\right) \circ \varphi \\
& =\left(\frac{1}{\left|\alpha^{\prime}\right|^{4}}\binom{x^{\prime \prime} y^{\prime 2}-y^{\prime \prime} y^{\prime} x^{\prime}}{y^{\prime \prime} x^{\prime 2}-y^{\prime} x^{\prime \prime} x^{\prime}}\right) \circ \varphi \\
& =\left(\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left|\alpha^{\prime}\right|^{3}}\left(\frac{1}{\left|\alpha^{\prime}\right|}\binom{-y^{\prime}}{x^{\prime}}\right)\right) \circ \varphi \\
& =\left(\left(\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left|\alpha^{\prime}\right|^{3}}\right) \circ \varphi\right) \tilde{n}_{\tilde{\alpha}},
\end{aligned}
$$

and hence

$$
\kappa_{\alpha}=\kappa_{\tilde{\alpha}} \circ \varphi^{-1}=\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left|\alpha^{\prime}\right|^{3}} .
$$

(ii) Let Ψ be the change of orientation of $\alpha\left(\Psi^{\prime}=-1\right)$ and let $\alpha_{\Psi}=\left(x_{\Psi}, y_{\Psi}\right)$ be the reoriented curve with respect to α. By part (i), we have

$$
\kappa_{\alpha_{\Psi}}=\frac{x_{\Psi}^{\prime} y_{\Psi}^{\prime \prime}-x_{\Psi}^{\prime \prime} y_{\Psi}^{\prime}}{\left|\alpha_{\Psi}^{\prime}\right|^{3}}=\left(-\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left|\alpha^{\prime}\right|^{3}}\right) \circ \Psi=\left(-\kappa_{\alpha}\right) \circ \Psi .
$$

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves \& surfaces. Revised \& updated second edition. Dover Publications, Inc., Mineola, NY, 2016.

