Exercises for the Lecture
 Differential Geometry

Summer Term 2020
Sheet 3, Solution
Submission:

Resources: Lessons $1-7 ; \S 1-\S 2$ in Fuc08]; Sections 1-1 - 1-6 in Car16]

Exercise 1.

By the Picard-Lindelöf theorem we have the following: Is $J \subset \mathbb{R}$ a compact interval and $F: J \times$ $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ Lipschitz continuous with respect to the second component, i.e. there exists a constant $L>0$ such that, for all $t \in J, y_{1}, y_{2} \in \mathbb{R}^{n}$, we have

$$
\left|F\left(t, y_{1}\right)-F\left(t, y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right|
$$

then there exists a unique solution $y: J \rightarrow \mathbb{R}^{n}$ to the following system of ordinary differential equations

$$
\dot{y}=F(\cdot, y)
$$

Show: The above statement still holds under the assumptions that $I \subset \mathbb{R}$ is an arbitrary interval and $F: I \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is continuous and linear in the second component.
(Hint: Use an exhaustion by compact sets of the interval I.)

Solution 1.

Let $I \subset \mathbb{R}$ be an arbitrary interval and let $F: I \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuous and linear in the second component. Then we have

$$
F(t, y)=F(t, 1) y
$$

for all $(t, y) \in I \times \mathbb{R}^{n}$. Since $F(\cdot, 1)$ is continuous, there exists $\|F(\cdot, 1)\|_{K}$ for each compact interval $K \subset I$, hence F is Lipschitz continuous on $K \times \mathbb{R}^{n}$. Choose an increasing sequence $\left(K_{n}\right)_{n \in \mathbb{N}}$ of compact intervals with $\cup_{n \in \mathbb{N}} K_{n}=I$. For all n, there exists a unique solution y_{n} to the initial value problem on K_{n}. By

$$
y(x)=y_{n}(x)
$$

for $x \in K_{n}$, we can define a function $y: I \rightarrow \mathbb{R}^{n}$ which is the unique global solution to the initial value problem.

Exercise 2.

Let $I \subset \mathbb{R}$ be an interval and let $\alpha \in C^{2}\left(I, \mathbb{R}^{3}\right)$ be a regular parametrized curve. Show:
(i) If all normals of the curve intersect in one point, then the trace is part of a circle.
(ii) If all tangents of the curve intersect in one poirnt, then the trace is part of a straight line. Does this still hold without the regularity assumption on α ?

Solution 2.

Without loss of generality, let α be parameterized by arc length.
(i) By assumption, there exists a differentiable function

$$
\lambda: I \rightarrow \mathbb{R}
$$

such that $\alpha(s)+\lambda(s) n_{\alpha}(s)$ is constant for all $s \in I$. With the Frenet formulas we obtain

$$
0=\alpha^{\prime}+\lambda^{\prime} n_{\alpha}+\lambda n_{\alpha}^{\prime}=\left(1-\lambda \kappa_{\alpha}\right) t_{\alpha}+\lambda^{\prime} n_{\alpha}+\left(-1 \lambda \tau_{\alpha}\right) b_{\alpha}
$$

Since t, n, b is linear independent, we conclude that

$$
\left(1-\lambda \kappa_{\alpha}\right)=0, \quad \lambda^{\prime}=0 \quad \text { und } \quad \lambda \tau_{\alpha}=0 .
$$

Hence λ is constant and therefore $\kappa_{\alpha}=1 / \lambda$ as well as $\tau_{\alpha}=0$. Thus we see that α is planar with constant curvature, i.e. the trace of α is part of a circle.
(ii) By assumption, there exists a differentiable function

$$
\lambda: I \rightarrow \mathbb{R},
$$

such that $\alpha(s)+\lambda(s) t_{\alpha}(s)$ is constant for all $s \in I$. With the Frenet formulas we obtain

$$
0=\alpha^{\prime}+\lambda^{\prime} t_{\alpha}+\lambda t_{\alpha}^{\prime}=\left(1+\lambda^{\prime}\right) t_{\alpha}+\left(\lambda \kappa_{\alpha}\right) n_{\alpha} .
$$

Since t and n are linear independent, it follows that

$$
\left(1+\lambda^{\prime}\right)=0 \quad \text { und } \quad \lambda \kappa_{\alpha}=0 .
$$

Hence $\lambda(s)=-s+a$ for all $s \in I$ with a constant $a \in \mathbb{R}$ and therefore $\kappa_{\alpha}(s)=0$ for all $s \neq a$. Since κ_{α} is continuous, we conclude that $\kappa_{\alpha}=0$ and thus $\alpha^{\prime \prime}=0$. Therefore the trace of α is part of a straight line.
Consider

$$
\alpha:(-1,1) \rightarrow \mathbb{R}^{3}, t \mapsto \begin{cases}(t,-t, 0), & \text { if } t<0 \\ (t, t, 0), & \text { if } t \geq 0\end{cases}
$$

Then all tangents intersect in the origin but the trace of the curve is not a part of a straight line.

Exercise 3.

For $r>0$, conside the function

$$
\gamma:(-\pi, \pi) \rightarrow \mathbb{R}^{3}, t \mapsto r\left(1+\cos (t), \sin (t), 2 \sin \left(\frac{t}{2}\right)\right)
$$

Show:
(i) The curve γ lies in the intersection of the cylinder $\left\{(x, y, z) \in \mathbb{R}^{3} ;(x-r)^{2}+y^{2}=r^{2}\right\}$ and the sphere around the origin with radius $2 r$.
(ii) Calculate the Frenet trihedron of γ.
(iii) Calculate the curvature and the torsion of γ.
(Hint: Trigonometric identites can be useful.)

Solution 3.

(i) This follows immediately from the following two identites:

$$
\sin (t)^{2}+\cos (t)^{2}=1
$$

and

$$
2 \sin \left(\frac{t}{2}\right)^{2}=1-\cos (t)
$$

for all $t \in(-\pi, \pi)$.
(ii) Let $t \in(-\pi, \pi)$. Then we have

$$
\gamma^{\prime}(t)=r\left(\begin{array}{c}
-\sin (t) \\
\cos (t) \\
\cos \left(\frac{t}{2}\right)
\end{array}\right)
$$

and

$$
\gamma^{\prime \prime}(t)=-r\left(\begin{array}{c}
\cos (t) \\
\sin (t) \\
\frac{1}{2} \sin \left(\frac{t}{2}\right)
\end{array}\right)
$$

Hence

$$
\begin{aligned}
\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t) & =-r^{2}\left(\begin{array}{c}
\left(\cos (t) \frac{1}{2} \sin \left(\frac{t}{2}\right)\right)-\left(\cos \left(\frac{t}{2}\right) \sin (t)\right) \\
\left(\cos \left(\frac{t}{2}\right) \cos (t)\right)-\left(-\sin (t) \frac{1}{2} \sin \left(\frac{t}{2}\right)\right) \\
(-\sin (t) \sin (t))-(\cos (t) \cos (t))
\end{array}\right) \\
& =-r^{2}\left(\begin{array}{c}
\cos (t) \frac{1}{2} \sin \left(\frac{t}{2}\right)-\cos \left(\frac{t}{2}\right) \sin (t) \\
\left.\cos \left(\frac{t}{2}\right) \cos (t)+\sin (t) \frac{1}{2} \sin \left(\frac{t}{2}\right)\right) \\
-1
\end{array}\right) \\
& =r^{2}\left(\begin{array}{c}
\frac{1}{2} \sin \left(\frac{t}{2}\right)(\cos (t)+2) \\
-\cos \left(\frac{t}{2}\right)^{3} \\
1
\end{array}\right) .
\end{aligned}
$$

With

$$
\left|\gamma^{\prime}(t)\right|^{2}=r^{2}\left(1+\cos \left(\frac{t}{2}\right)^{2}\right)=r^{2} \frac{1}{2}(\cos (t)+3)
$$

it follows that

$$
t_{\gamma}(t)=\sqrt{\frac{2}{\cos (t)+3}}\left(\begin{array}{c}
-\sin (t) \\
\cos (t) \\
\cos \left(\frac{t}{2}\right)
\end{array}\right)
$$

and with

$$
\left|\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)\right|^{2}=\frac{r^{4}}{8}(3 \cos (t)+13)
$$

it follows that

$$
b_{\gamma}(t)=\sqrt{\frac{8}{3 \cos (t)+13}}\left(\begin{array}{c}
\frac{1}{2} \sin \left(\frac{t}{2}\right)(\cos (t)+2) \\
-\cos \left(\frac{t}{2}\right)^{3} \\
1
\end{array}\right)
$$

Hence we obtain

$$
\begin{aligned}
n_{\gamma}(t) & =b_{\gamma}(t) \times t_{\gamma}(t) \\
& =\frac{4}{\sqrt{(3 \cos (t)+13)(\cos (t)+3)}}\left(\begin{array}{c}
-\cos \left(\frac{t}{2}\right)^{4}-\cos (t) \\
-\frac{1}{4} \sin (t)(\cos (t)+6) \\
\frac{1}{4} \sin (t)\left(-4 \cos \left(\frac{t}{2}\right)^{3}+\cos (t)^{2}+2 \cos (t)\right)
\end{array}\right) .
\end{aligned}
$$

(iii) Let $t \in(-\pi, \pi)$. Then we have

$$
\kappa_{\gamma}(t)=\frac{1}{\left|\gamma^{\prime}(t)\right|^{3}}\left|\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)\right|=\frac{1}{r} \sqrt{\frac{3 \cos (t)+13}{(\cos (t)+3)^{3}}} .
$$

Furthermore, we obtain

$$
\gamma^{\prime \prime \prime}(t)=-r\left(\begin{array}{c}
-\sin (t) \\
\cos (t) \\
\frac{1}{4} \cos \left(\frac{t}{2}\right)
\end{array}\right)
$$

thus

$$
\tau_{\gamma}(t)=-\frac{\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)}{\left|\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)\right|^{2}} \cdot \gamma^{\prime \prime \prime}(t)=-\frac{6}{r} \frac{\cos \left(\frac{t}{2}\right)}{3 \cos (t)+13}
$$

Exercise 4.

(i) Let $I \subset \mathbb{R}$ be an interbval, let $s_{0} \in I$ and let $\kappa: I \rightarrow \mathbb{R}$ be a differentiable function. Show that

$$
\alpha: I \rightarrow \mathbb{R}^{2}, s \mapsto\left(\int_{s_{0}}^{s} \cos (\theta(t)) \mathrm{d} t+a, \int_{s_{0}}^{s} \sin (\theta(t)) \mathrm{d} t+b\right)
$$

with

$$
\theta: I \rightarrow \mathbb{R}, s \mapsto \int_{s_{0}}^{s} \kappa(t) \mathrm{d} t+\varphi
$$

is a regular curve which is paramterized by arc length and such that κ is the oriented curvature. Furthermore, show that this curve is unique up to a translation of the vector $(a, b) \in \mathbb{R}^{2}$ and a rotation of the angle φ.
(ii) A so-called clothoid is a planar curve which is determined by the fact that the curvature in each point is proportional to its arc length up to this point. Determine the regular paramterization $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$ of a clothoid with $\alpha(0)=(0,0)$ and $\alpha^{\prime}(0)=(1,0)$.

Solution 4.

(i) Let $s \in I$. We have

$$
\alpha^{\prime}(s)=(\cos (\theta(s)), \sin (\theta(s)))=(\cos (\theta(s)), \sin (\theta(s)))
$$

hence

$$
\left|\alpha^{\prime}(s)\right|^{2}=\cos (\theta(s))^{2}+\sin (\theta(s))^{2}=1
$$

Furthermore, we obtain

$$
\alpha^{\prime \prime}(s)=\left(-\sin (\theta(s)) \theta^{\prime}(s), \cos (\theta(s)) \theta^{\prime}(s)\right)=\kappa(s)(-\sin (\theta(s)), \cos (\theta(s)))
$$

and with Exercise 4, Sheet 2

$$
\tilde{\kappa}(s)=\kappa(s)(\cos (\theta(s)) \cos (\theta(s))-(-\sin (\theta(s))) \sin (\theta(s)))=\kappa(s) .
$$

The uniqueness is clear by integration and the independence of $\left|\alpha^{\prime}\right|$ and $\tilde{\kappa}$ from θ
(ii) Choose $s_{0}=0$. By assumptoon, there exists $c \in \mathbb{R}$ such that

$$
\kappa(s)=c \cdot s
$$

for all $s \in I$. Thus

$$
\theta(s)=\frac{1}{2} c s^{2}+\varphi
$$

for all $s \in I$. The condition $\alpha(0)=(0,0)$ implies $(a, b)=(0,0)$. Since

$$
\alpha^{\prime}(0)=(\cos (\varphi), \sin (\varphi)),
$$

the condtion $\alpha^{\prime}(0)=(1,0)$ implies that $\varphi=0$. Finally, we obtain that

$$
\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}, s \mapsto\left(\int_{0}^{s} \cos \left(\frac{1}{2} c t^{2}\right) \mathrm{d} t, \int_{0}^{s} \sin \left(\frac{1}{2} c t^{2}\right) \mathrm{d} t\right)
$$

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves \& surfaces. Revised \& updated second edition. Dover Publications, Inc., Mineola, NY, 2016.
[Fuc08] Martin Fuchs. Vorlesungsskript zur Differentialgeometrie. 2008.

