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Exercise 1.

By the Picard-Lindelof theorem we have the following: Is J C R a compact interval and F': J X
R"™ — R™ Lipschitz continuous with respect to the second component, i.e. there exists a constant
L > 0 such that, for all t € J,y1,y2 € R™, we have

|F(t,y1) — F(t,y2)| < Lly1 — vl

then there exists a unique solution y: J — R" to the following system of ordinary differential
equations

Show: The above statement still holds under the assumptions that I C R is an arbitrary interval
and F': I x R™ — R"™ is continuous and linear in the second component.

(Hint: Use an ezhaustion by compact sets of the interval I.)

Solution 1.
Let I C R be an arbitrary interval and let F': I x R™ — R™ be continuous and linear in the
second component. Then we have

F(t7y) = F(ta 1)y

for all (t,y) € I x R™. Since F(-,1) is continuous, there exists ||F(:,1)|, for each compact
interval K C I, hence F is Lipschitz continuous on K x R"™. Choose an increasing sequence
(K )nen of compact intervals with U,enK,, = I. For all n, there exists a unique solution y, to
the initial value problem on K,,. By

y(r) = yn(z)

for x € K,,, we can define a function y: I — R"™ which is the unique global solution to the initial
value problem.

Exercise 2.
Let I C R be an interval and let o € C?(I,IR?) be a regular parametrized curve. Show:

(i) If all normals of the curve intersect in one point, then the trace is part of a circle.

(ii) If all tangents of the curve intersect in one poirnt, then the trace is part of a straight line.
Does this still hold without the regularity assumption on «?
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Solution 2.
Without loss of generality, let o be parameterized by arc length.

(i) By assumption, there exists a differentiable function
AT —=R
such that a(s) + A(s)na(s) is constant for all s € I. With the Frenet formulas we obtain
0=a" 4+ Nng+ A, = (1 — Xea)ta + Nng + (1274 )ba.-
Since t,n, b is linear independent, we conclude that
(1—=Xkg)=0, XN=0 und M7, =0.

Hence A is constant and therefore ko, = 1/A as well as 7, = 0. Thus we see that « is planar
with constant curvature, i.e. the trace of « is part of a circle.

(ii) By assumption, there exists a differentiable function
AT — R,
such that a(s) + A(s)ta(s) is constant for all s € I. With the Frenet formulas we obtain
0=a'+ Nto+ M, = (1 +N)ta + (Asa)na.
Since t and n are linear independent, it follows that
(1+XN)=0 und kg =0.

Hence A(s) = —s + a for all s € I with a constant a € R and therefore k(s) = 0 for all
s # a. Since k. is continuous, we conclude that x, = 0 and thus o’/ = 0. Therefore the
trace of «v is part of a straight line.

Consider
(t,—t,0), ift<0,

a: (=1,1) = R3, t— _
(t,t,0), ift>0.

Then all tangents intersect in the origin but the trace of the curve is not a part of a straight
line.

Exercise 3.
For » > 0, conside the function

yi (—m ) 5 RS, sy <1 + cos(t), sin(t), 2sin <;)> .

Show:

(i) The curve 7 lies in the intersection of the cylinder {(z,y,2) € R?; (z —7)?+y* = r?} and
the sphere around the origin with radius 2r.

(ii) Calculate the Frenet trihedron of ~.

(iii) Calculate the curvature and the torsion of ~.

(Hint: Trigonometric identites can be useful.)
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Solution 3.
(i) This follows immediately from the following two identites:

sin(t)? + cos(t)? = 1

N\ 2
2sin <2> =1—cos(t)

and

for all t € (—m,m).

(ii) Let t € (—m, ). Then we have

and

Hence

cos(L) cos(t) + sin(t)3 sin

-1

(% sin(%)(cos(t —|—2))
= r? —cos(%)3 .
2

—
DO+

S—

N—

1 £
. (cos(t)2 sm( ) — cos(z) si

With

it follows that

and with

it follows that

3 (5 sin(§)(cos(t) + 2))

Hence we obtain

s )
= —z sin(t)(cos(t) + .
v/ (3 cos(t) + 13)(cos(t) +3) 1 sin(t)(—4 cos (%)3 + cos(t)? + 2 cos(t))
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(iii) Let t € (—m, 7). Then we have

! . w1 [3cos(t) +13
Ry (1) = W(t)‘g!v (1) x (O] = (cos(t) + 37"

Furthermore, we obtain

thus .
AW XA . 6 cos(h)
T’Y (t) - / 1 2 - (t) - .
[y (t) x v"(¢)] r 3cos(t) + 13
Exercise 4.

(i) Let I C R be an interbval, let so € I and let x: I — R be a differentiable function. Show
that

0 TSR 5 </ cos(0(1)) dt + a, / sin(6(t)) dt + b>

S0 S0
with s
0: 1 —R, 3.—>/ k(t)dt + ¢
50
is a regular curve which is paramterized by arc length and such that x is the oriented

curvature. Furthermore, show that this curve is unique up to a translation of the vector
(a,b) € R? and a rotation of the angle ¢.

(ii) A so-called clothoid is a planar curve which is determined by the fact that the curvature
in each point is proportional to its arc length up to this point. Determine the regular
paramterization a: R — R? of a clothoid with a(0) = (0,0) and «’(0) = (1,0).

Solution 4.
(i) Let s € I. We have
o/(5) = (cos(6(s)), sin(6(s))) = (cos(8(s)), sin(8()))

hence
|o/(5)|? = cos(B(s))? + sin(6(s))? = 1.

Furthermore, we obtain
a’'(s) = (—sin(6(s))0'(s), cos(6(s))0'(s)) = r(s)(—sin(6(s)), cos(6(s)))
and with Exercise 4, Sheet 2

k(s) = k(s)(cos(6(s)) cos(B(s)) — (—sin(0(s))) sin(f(s))) = K(s).

The uniqueness is clear by integration and the independence of |o/| and & from 6

(ii) Choose sy = 0. By assumptoon, there exists ¢ € R such that
Kk(s)=c-s

for all s € I. Thus )
0(s) = 5052 + ¢

for all s € I. The condition «(0) = (0,0) implies (a,b) = (0,0). Since

o/ (0) = (cos(i), sin(p)),
the condtiona’(0) = (1,0) implies that ¢ = 0. Finally, we obtain that

s 1 s 1
a:R—-R? s— </ cos (ct2> dt,/ sin <ct2> dt> .
0 2 0 2
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