Exercises for the Lecture
Differential Geometry
Summer Term 2020
Sheet 4
Submission:

Materialien: up to Lesson 8; up to p. 39 in Fuc08; up to Section 1-7 B in Car16

Exercise 1.

(i) Let $\gamma:[a, b] \rightarrow \mathbb{R}^{2}, t \mapsto(x(t), y(t))$ be a regular parameterized (not necessarily by arc length) planar curve. Show: The rotation index I_{γ} of γ satisfies

$$
I_{\gamma}=\frac{1}{2 \pi} \int_{a}^{b} \frac{x^{\prime}(t) y^{\prime \prime}(t)-x^{\prime \prime}(t) y^{\prime}(t)}{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} \mathrm{~d} t .
$$

(ii) Plot the trace of the following planar curves and calculate the rotation indeces:
(a) $\alpha_{n}:[0,2 \pi] \rightarrow \mathbb{R}^{2}, t \mapsto(\cos (n t), \sin (n t))(n \in \mathbb{N})$,
(b) $\beta_{a, b}:[0,4 \pi] \rightarrow \mathbb{R}^{2}, t \mapsto(a \cos (t), b \sin (t))(a, b>0)$,
(c) $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}, t \mapsto(\cos (t)-\cos (2 t), \sin (t)-\sin (2 t))$.

Exercise 2.

Let $I \subset \mathbb{R}$ be an interval and let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a regular paramterized curve with nowhere vanishing curvature κ and nowhere vanishing torsion τ. Show the equivalence of the following statements:
(i) There exists a vector $v \in \mathbb{R}^{3} \backslash\{0\}$ such that $t \cdot v$ is constant.
(ii) There exists a vector $v \in \mathbb{R}^{3} \backslash\{0\}$ with $n \cdot v \equiv 0$.
(iii) There exists a vector $v \in \mathbb{R}^{3} \backslash\{0\}$ such that $b \cdot v$ is constant.
(iv) The ratio of the torsion τ and the curvature κ is constant.

A curve satisfying one of these equivalent conditions is called a generalized helix.

Exercise 3.

Consider the function

$$
c: \mathbb{R} \rightarrow \mathbb{R}^{3}, t \mapsto \begin{cases}\left(t, e^{-1 / t^{2}}, 0\right), & \text { falls } t<0 \\ (0,0,0), & \text { falls } t=0 \\ \left(t, 0, e^{-1 / t^{2}}\right), & \text { falls } t>0\end{cases}
$$

(i) Show that c is a regular, two times continuously differentiable $\left(c \in C^{2}\left(\mathbb{R}, \mathbb{R}^{3}\right)\right)$ curve.
(ii) Show that the curvature κ of c only vanishes on $\left\{0, \pm \sqrt{\frac{2}{3}}\right\}$. What does $\kappa(0)=0$ means graphically?
(iii) Show that the limit of the osculating plane of c at $t \downarrow 0$ is the plane $\{(x, y, z) ; y=0\}$, whereas at $t \uparrow 0$ the plane $\{(x, y, z) ; z=0\}$ is approximated. What does that mean for the torsion?

Exercise 4.

Let $L>0$ and let $\alpha:[0, L] \rightarrow \mathbb{R}^{2}$ be a planar, paramterized by arc length, simple closed curve. The curvature κ satisfies $0<\kappa(s) \leq c$ for all $s \in[0, L]$ with a constant c. Show: The length L of the curve satisfies

$$
L \geq \frac{2 \pi}{c} .
$$

What does that mean graphically?

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves \& surfaces. Revised \& updated second edition. Dover Publications, Inc., Mineola, NY, 2016.
[Fuc08] Martin Fuchs. Vorlesungsskript zur Differentialgeometrie. 2008.

