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Exercise 1.
(i) Let γ : [a, b] → R2, t 7→ (x(t), y(t)) be a regular parameterized (not necessarily by arc

length) planar curve. Show: The rotation index Iγ of γ satisfies

Iγ =
1

2π

∫ b

a

x′(t)y′′(t)− x′′(t)y′(t)
x′(t)2 + y′(t)2

dt.

(ii) Plot the trace of the following planar curves and calculate the rotation indeces:

(a) αn : [0, 2π]→ R2, t 7→ (cos(nt), sin(nt)) (n ∈ N),
(b) βa,b : [0, 4π]→ R2, t 7→ (a cos(t), b sin(t)) (a, b > 0),

(c) γ : [0, 2π]→ R2, t 7→ (cos(t)− cos(2t), sin(t)− sin(2t)).

Solution 1.
(i) Let ϕ : [0, L]→ [a, b] be the reparameterisation of γ by arc length and consider γ̃ = γ ◦ ϕ.

By Exercise 4 (ii), Sheet 2 and integration by substitution, we have

Iγ̃ =
1

2π

∫ L

0
κγ̃(s) ds

=
1

2π

∫ L

0

((
x′y′′ − x′′y′

|γ′|3

)
◦ ϕ
)
(s) ds

=
1

2π

∫ L

0

((
x′y′′ − x′′y′

|γ′|2

)
◦ ϕ
)
(s)

(
1

|γ′|
◦ ϕ
)
(s) ds

=
1

2π

∫ L

0

((
x′y′′ − x′′y′

|γ′|2

)
◦ ϕ
)
(s)ϕ′(s) ds

=
1

2π

∫ b

a

(
x′y′′ − x′′y′

|γ′|2

)
(t) dt.

(ii) (a) Let n ∈ N. Then we have

Iαn =
1

2π

∫ 2π

0

n3 sin(nt)2 + n3 cos(nt)2

n2
dt =

n

2π

∫ 2π

0
1 dt = n.

Plot (n = 3):
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(b) Let a, b > 0. Then we have

Iβa,b =
1

2π

∫ 4π

0

ab(sin(t)2 + cos(t)2)

a2 sin(t)2 + b2 cos(t)2
dt

=
ab

2π

∫ 4π

0

1

a2 sin(t)2 + b2 cos(t)2
dt

=
4ab

π

∫ π
2

0

1

a2 sin(t)2 + b2 cos(t)2
dt

=
4

π

∫ π
2

0

1

(ab tan(t))
2 + 1

a
b

cos(t)2
dt

=
4

π

[
arctan

(a
b
tan(t)

)]π
2

0

=
4

π

(π
2
− 0
)

= 2.

Plot (a = 2, b = 3):
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(c) We have

Iγ =
1

2π

∫ 2π

0

(− sin(t) + 2 sin(2t))(− sin(t) + 4 sin(2t))− (− cos(t) + 4 cos(2t))(cos(t)− 2 cos(2t))

(− sin(t) + 2 sin(2t))2 + (cos(t)− 2 cos(2t))2
dt

=
1

2π

∫ 2π

0

9− 6 cos(t)

5− 4 cos(t)
dt

=
1

2π

∫ π

−π

9− 6 cos(t+ π)

5− 4 cos(t+ π)
dt

=
1

2π

∫ π

−π

9 + 6 cos(t)

5 + 4 cos(t)
dt

=
1

π

∫ π

0

9 + 6 cos(t)

5 + 4 cos(t)
dt

= ...

=
1

π

[
3

2
t− arctan

(
3 cot

(
t

2

))]π
0

=
1

π

((
3

2
π − 0

)
−
(
0− 1

2
π

))
= 2.

Plot:
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Exercise 2.
Let I ⊂ R be an interval and let α : I → R3 be a regular paramterized curve with nowhere
vanishing curvature κ and nowhere vanishing torsion τ . Show the equivalence of the following
statements:

(i) There exists a vector v ∈ R3 \ {0} such that t · v is constant.

(ii) There exists a vector v ∈ R3 \ {0} with n · v ≡ 0.

(iii) There exists a vector v ∈ R3 \ {0} such that b · v is constant.

(iv) The ratio of the torsion τ and the curvature κ is constant.

A curve satisfying one of these equivalent conditions is called a generalized helix.

(please turn the page)



Solution 2.
Without loss of generality, α is parameterized by arc length.

Let v ∈ R3 \ {0}. Then we have

1

κ
(t · v)′ = 1

κ
(t′ · v + t · v′) = 1

κ
(α′′ · v) = n · v

and hence
τ

κ
(t · v)′ = τ

κ
(t′ · v + t · v′) = τ

κ
(α′′ · v) = τ(n · v) = (b′ · v) = (b · v)′.

The implications (i) ⇐⇒ (ii) ⇐⇒ (iii) are now clear.

(i) =⇒ (iv): Let λ = t · v. By the second identity, there exists µ ∈ R with µ = b · v and, by the
first identity, we have n · v = 0. Since (t, n, b) is an orthonormal basis, we conclude that

v = (t · v) t+ (n · v) n+ (b · v) b = λt+ µb.

Hence, with the Frenet formulas, we obtain

0 = λt′ + µb′ = λκn+ µτn = κ
(
λ+ µ

τ

κ

)
n,

and therefore
λ+ µ

τ

κ
= 0.

Assume that µ = 0. Then v = λt 6= 0 and therefore t = 1/λv. But this contradicts κ 6= 0.
Hence, we condlude that

τ

κ
= −λ

µ
= const,

i.e. (iv) holds.

(iv) =⇒ (ii): Set v = τ
κ t− b. Then v 6= 0, since t and b are linear independent. With the Frenet

formulas we obtain
v′ =

τ

κ
t′ − b′ = τ

κ
κn− τn = 0,

hence v is constant. Therefore it follows that

n · v = n ·
(τ
κ
t− b

)
=
τ

κ
n · t− n · b = 0,

since (t, n, b) (pointwise) is an orthonormal basis.

Exercise 3.
Consider the function

c : R→ R3, t 7→


(t, e−1/t

2
, 0), falls t < 0,

(0, 0, 0), falls t = 0,

(t, 0, e−1/t
2
), falls t > 0.

(i) Show that c is a regular, two times continuously differentiable (c ∈ C2(R,R3)) curve.

(ii) Show that the curvature κ of c only vanishes on
{
0,±

√
2
3

}
. What does κ(0) = 0 means

graphically?

(iii) Show that the limit of the osculating plane of c at t ↓ 0 is the plane {(x, y, z) ; y = 0},
whereas at t ↑ 0 the plane {(x, y, z) ; z = 0} is approximated. What does that mean for
the torsion?
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Solution 3.
(i) At first we observe that

lim
h→0

1

hk
e−1/h

2
= 0 (1)

for all k ∈ N. Hence
c′(0) = lim

h→0

c(h)− c(0)
h

= (1, 0, 0).

Furthermore, we obtain

c′(t) =

(
1,

2

t3
e−1/t

2
, 0

)
for t < 0 and

c′(t) =

(
1, 0,

2

t3
e−1/t

2

)
for t > 0. Hence, with Eq. (1) it follows that c ∈ C1(R,R3). Again with Eq. (1), we
conclude that

c′′(0) = (0, 0, 0)

and

c′′(t) =

(
0,

4− 6t2

t6
e−1/t

2
, 0

)
for all t < 0 as well as

c′′(t) =

(
0, 0,

4− 6t2

t6
e−1/t

2

)
for all t > 0. Overall, again with Eq. (1) we obtain c ∈ C2(R,R2).

(ii) With (i) it is immediately clear that the curvature vanishes at 0 and, since 4 − 6t2 = 0 if

and only if t ∈
{
±
√

2
3

}
, the assertion follows.

The graphs around 0 looks locally like a straight line. If we reparametrize c by arc length,
then κ(0) = c′′(0) = 0. Hence, there exists no normal vector in 0 and therefore also no
osculating plane in 0.

(iii) Since |c′| > 0, it is enough to consider c′ × c′′. We have

c′(0)× c′′(0) = (0, 0, 0)

and

c′(t)× c′′(t) =
(
0, 0,

4− 6t2

t6
e−1/t

2

)
=

4− 6t2

t6
e−1/t

2
(0, 0, 1)

for all t < 0 as well as

c′(t)× c′′(t) =
(
0,−4− 6t2

t6
e−1/t

2
, 0

)
=

4− 6t2

t6
e−1/t

2
(0,−1, 0)

for all t > 0.

Let −
√

2
3 6= t < 0. The the osculating plane St is given by

St =


xy
z

 ∈ R3 ;

0
0
1

xy
z

−
 t

e−1/t
2

0

 = 0

 =


xy
z

 ∈ R3 ; z = 0

 ,

and hence

S↑0 =


xy
z

 ∈ R3 ; z = 0

 .
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Now let
√

2
3 6= t > 0. Then the osculating plane St is given by

St =


xy
z

 ∈ R3 ;

 0
−1
0

xy
z

−
 t

0

e−1/t
2

 = 0

 =


xy
z

 ∈ R3 ; y = 0

 ,

and hence

S↓0 =


xy
z

 ∈ R3 ; y = 0

 .

It is not possible to extend the curve in 0 continuously. Since the curves c|−∞,0) and c|(0,∞)

are planar, we have τ = 0 there. If τ = 0 everywhere, then c would be a planar curve
(contradiction).

Exercise 4.
Let L > 0 and let α : [0, L] → R2 be a planar, paramterized by arc length, simple closed curve.
The curvature κ satisfies 0 < κ(s) ≤ c for all s ∈ [0, L] with a constant c. Show: The length L
of the curve satisfies

L ≥ 2π

c
.

What does that mean graphically?

Solution 4.
Since κ > 0, by the theorem of turning tangents we have

1 =
1

2π

∫ L

0
κ(s) ds ≤ c

2π

∫ L

0
1 ds =

Lc

2π
.

The shortest possible curve is a circle with radius 1/c.
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