Prof. Dr. Martin Fuchs
Dr. Dominik Schillo

Exercises for the Lecture
Differential Geometry
Summer Term 2020

Materialien: up to Lesson 8; up to p. 39 in Fuc08; up to Section 1-7 B in Car16

Exercise 1.

(i) Let $\gamma:[a, b] \rightarrow \mathbb{R}^{2}, t \mapsto(x(t), y(t))$ be a regular parameterized (not necessarily by arc length) planar curve. Show: The rotation index I_{γ} of γ satisfies

$$
I_{\gamma}=\frac{1}{2 \pi} \int_{a}^{b} \frac{x^{\prime}(t) y^{\prime \prime}(t)-x^{\prime \prime}(t) y^{\prime}(t)}{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} \mathrm{~d} t .
$$

(ii) Plot the trace of the following planar curves and calculate the rotation indeces:
(a) $\alpha_{n}:[0,2 \pi] \rightarrow \mathbb{R}^{2}, t \mapsto(\cos (n t), \sin (n t))(n \in \mathbb{N})$,
(b) $\beta_{a, b}:[0,4 \pi] \rightarrow \mathbb{R}^{2}, t \mapsto(a \cos (t), b \sin (t))(a, b>0)$,
(c) $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}, t \mapsto(\cos (t)-\cos (2 t), \sin (t)-\sin (2 t))$.

Solution 1.

(i) Let $\varphi:[0, L] \rightarrow[a, b]$ be the reparameterisation of γ by arc length and consider $\tilde{\gamma}=\gamma \circ \varphi$. By Exercise 4 (ii), Sheet 2 and integration by substitution, we have

$$
\begin{aligned}
I_{\tilde{\gamma}} & =\frac{1}{2 \pi} \int_{0}^{L} \kappa \tilde{\gamma}(s) \mathrm{d} s \\
& =\frac{1}{2 \pi} \int_{0}^{L}\left(\left(\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left|\gamma^{\prime}\right|^{3}}\right) \circ \varphi\right)(s) \mathrm{d} s \\
& =\frac{1}{2 \pi} \int_{0}^{L}\left(\left(\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left|\gamma^{\prime}\right|^{2}}\right) \circ \varphi\right)(s)\left(\frac{1}{\left|\gamma^{\prime}\right|} \circ \varphi\right)(s) \mathrm{d} s \\
& =\frac{1}{2 \pi} \int_{0}^{L}\left(\left(\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left|\gamma^{\prime}\right|^{2}}\right) \circ \varphi\right)(s) \varphi^{\prime}(s) \mathrm{d} s \\
& =\frac{1}{2 \pi} \int_{a}^{b}\left(\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left|\gamma^{\prime}\right|^{2}}\right)(t) \mathrm{d} t .
\end{aligned}
$$

(ii) (a) Let $n \in \mathbb{N}$. Then we have

$$
I_{\alpha_{n}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{n^{3} \sin (n t)^{2}+n^{3} \cos (n t)^{2}}{n^{2}} \mathrm{~d} t=\frac{n}{2 \pi} \int_{0}^{2 \pi} 1 \mathrm{~d} t=n .
$$

Plot $(n=3)$:

(b) Let $a, b>0$. Then we have

$$
\begin{aligned}
I_{\beta_{a, b}} & =\frac{1}{2 \pi} \int_{0}^{4 \pi} \frac{a b\left(\sin (t)^{2}+\cos (t)^{2}\right)}{a^{2} \sin (t)^{2}+b^{2} \cos (t)^{2}} \mathrm{~d} t \\
& =\frac{a b}{2 \pi} \int_{0}^{4 \pi} \frac{1}{a^{2} \sin (t)^{2}+b^{2} \cos (t)^{2}} \mathrm{~d} t \\
& =\frac{4 a b}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{1}{a^{2} \sin (t)^{2}+b^{2} \cos (t)^{2}} \mathrm{~d} t \\
& =\frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{1}{\left(\frac{a}{b} \tan (t)\right)^{2}+1} \frac{\frac{a}{b}}{\cos (t)^{2}} \mathrm{~d} t \\
& =\frac{4}{\pi}\left[\arctan \left(\frac{a}{b} \tan (t)\right)\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{4}{\pi}\left(\frac{\pi}{2}-0\right) \\
& =2
\end{aligned}
$$

Plot $(a=2, b=3)$:

(c) We have

$$
\begin{aligned}
I_{\gamma} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{(-\sin (t)+2 \sin (2 t))(-\sin (t)+4 \sin (2 t))-(-\cos (t)+4 \cos (2 t))(\cos (t)-2 \cos (2 t))}{(-\sin (t)+2 \sin (2 t))^{2}+(\cos (t)-2 \cos (2 t))^{2}} \mathrm{~d} t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{9-6 \cos (t)}{5-4 \cos (t)} \mathrm{d} t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{9-6 \cos (t+\pi)}{5-4 \cos (t+\pi)} \mathrm{d} t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{9+6 \cos (t)}{5+4 \cos (t)} \mathrm{d} t \\
& =\frac{1}{\pi} \int_{0}^{\pi} \frac{9+6 \cos (t)}{5+4 \cos (t)} \mathrm{d} t \\
& =\ldots \\
& =\frac{1}{\pi}\left[\frac{3}{2} t-\arctan \left(3 \cot \left(\frac{t}{2}\right)\right)\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left(\left(\frac{3}{2} \pi-0\right)-\left(0-\frac{1}{2} \pi\right)\right) \\
& =2 .
\end{aligned}
$$

Plot:

Exercise 2.

Let $I \subset \mathbb{R}$ be an interval and let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a regular paramterized curve with nowhere vanishing curvature κ and nowhere vanishing torsion τ. Show the equivalence of the following statements:
(i) There exists a vector $v \in \mathbb{R}^{3} \backslash\{0\}$ such that $t \cdot v$ is constant.
(ii) There exists a vector $v \in \mathbb{R}^{3} \backslash\{0\}$ with $n \cdot v \equiv 0$.
(iii) There exists a vector $v \in \mathbb{R}^{3} \backslash\{0\}$ such that $b \cdot v$ is constant.
(iv) The ratio of the torsion τ and the curvature κ is constant.

A curve satisfying one of these equivalent conditions is called a generalized helix.

Solution 2.

Without loss of generality, α is parameterized by arc length.
Let $v \in \mathbb{R}^{3} \backslash\{0\}$. Then we have

$$
\frac{1}{\kappa}(t \cdot v)^{\prime}=\frac{1}{\kappa}\left(t^{\prime} \cdot v+t \cdot v^{\prime}\right)=\frac{1}{\kappa}\left(\alpha^{\prime \prime} \cdot v\right)=n \cdot v
$$

and hence

$$
\frac{\tau}{\kappa}(t \cdot v)^{\prime}=\frac{\tau}{\kappa}\left(t^{\prime} \cdot v+t \cdot v^{\prime}\right)=\frac{\tau}{\kappa}\left(\alpha^{\prime \prime} \cdot v\right)=\tau(n \cdot v)=\left(b^{\prime} \cdot v\right)=(b \cdot v)^{\prime}
$$

The implications (i) \Longleftrightarrow (ii) \Longleftrightarrow (iii) are now clear.
(i) \Longrightarrow (iv): Let $\lambda=t \cdot v$. By the second identity, there exists $\mu \in \mathbb{R}$ with $\mu=b \cdot v$ and, by the first identity, we have $n \cdot v=0$. Since (t, n, b) is an orthonormal basis, we conclude that

$$
v=(t \cdot v) t+(n \cdot v) n+(b \cdot v) b=\lambda t+\mu b
$$

Hence, with the Frenet formulas, we obtain

$$
0=\lambda t^{\prime}+\mu b^{\prime}=\lambda \kappa n+\mu \tau n=\kappa\left(\lambda+\mu \frac{\tau}{\kappa}\right) n
$$

and therefore

$$
\lambda+\mu \frac{\tau}{\kappa}=0
$$

Assume that $\mu=0$. Then $v=\lambda t \neq 0$ and therefore $t=1 / \lambda v$. But this contradicts $\kappa \neq 0$. Hence, we condlude that

$$
\frac{\tau}{\kappa}=-\frac{\lambda}{\mu}=\text { const }
$$

i.e. (iv) holds.
(iv) \Longrightarrow (ii): Set $v=\frac{\tau}{\kappa} t-b$. Then $v \neq 0$, since t and b are linear independent. With the Frenet formulas we obtain

$$
v^{\prime}=\frac{\tau}{\kappa} t^{\prime}-b^{\prime}=\frac{\tau}{\kappa} \kappa n-\tau n=0
$$

hence v is constant. Therefore it follows that

$$
n \cdot v=n \cdot\left(\frac{\tau}{\kappa} t-b\right)=\frac{\tau}{\kappa} n \cdot t-n \cdot b=0
$$

since (t, n, b) (pointwise) is an orthonormal basis.

Exercise 3.

Consider the function

$$
c: \mathbb{R} \rightarrow \mathbb{R}^{3}, t \mapsto \begin{cases}\left(t, e^{-1 / t^{2}}, 0\right), & \text { falls } t<0 \\ (0,0,0), & \text { falls } t=0 \\ \left(t, 0, e^{-1 / t^{2}}\right), & \text { falls } t>0\end{cases}
$$

(i) Show that c is a regular, two times continuously differentiable $\left(c \in C^{2}\left(\mathbb{R}, \mathbb{R}^{3}\right)\right)$ curve.
(ii) Show that the curvature κ of c only vanishes on $\left\{0, \pm \sqrt{\frac{2}{3}}\right\}$. What does $\kappa(0)=0$ means graphically?
(iii) Show that the limit of the osculating plane of c at $t \downarrow 0$ is the plane $\{(x, y, z) ; y=0\}$, whereas at $t \uparrow 0$ the plane $\{(x, y, z) ; z=0\}$ is approximated. What does that mean for the torsion?

Solution 3.

(i) At first we observe that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{1}{h^{k}} e^{-1 / h^{2}}=0 \tag{1}
\end{equation*}
$$

for all $k \in \mathbb{N}$. Hence

$$
c^{\prime}(0)=\lim _{h \rightarrow 0} \frac{c(h)-c(0)}{h}=(1,0,0) .
$$

Furthermore, we obtain

$$
c^{\prime}(t)=\left(1, \frac{2}{t^{3}} e^{-1 / t^{2}}, 0\right)
$$

for $t<0$ and

$$
c^{\prime}(t)=\left(1,0, \frac{2}{t^{3}} e^{-1 / t^{2}}\right)
$$

for $t>0$. Hence, with Eq. (1) it follows that $c \in C^{1}\left(\mathbb{R}, \mathbb{R}^{3}\right)$. Again with Eq. (1], we conclude that

$$
c^{\prime \prime}(0)=(0,0,0)
$$

and

$$
c^{\prime \prime}(t)=\left(0, \frac{4-6 t^{2}}{t^{6}} e^{-1 / t^{2}}, 0\right)
$$

for all $t<0$ as well as

$$
c^{\prime \prime}(t)=\left(0,0, \frac{4-6 t^{2}}{t^{6}} e^{-1 / t^{2}}\right)
$$

for all $t>0$. Overall, again with Eq. (1]) we obtain $c \in C^{2}\left(\mathbb{R}, \mathbb{R}^{2}\right)$.
(ii) With (i) it is immediately clear that the curvature vanishes at 0 and, since $4-6 t^{2}=0$ if and only if $t \in\left\{ \pm \sqrt{\frac{2}{3}}\right\}$, the assertion follows.
The graphs around 0 looks locally like a straight line. If we reparametrize c by arc length, then $\kappa(0)=c^{\prime \prime}(0)=0$. Hence, there exists no normal vector in 0 and therefore also no osculating plane in 0 .
(iii) Since $\left|c^{\prime}\right|>0$, it is enough to consider $c^{\prime} \times c^{\prime \prime}$. We have

$$
c^{\prime}(0) \times c^{\prime \prime}(0)=(0,0,0)
$$

and

$$
c^{\prime}(t) \times c^{\prime \prime}(t)=\left(0,0, \frac{4-6 t^{2}}{t^{6}} e^{-1 / t^{2}}\right)=\frac{4-6 t^{2}}{t^{6}} e^{-1 / t^{2}}(0,0,1)
$$

for all $t<0$ as well as

$$
c^{\prime}(t) \times c^{\prime \prime}(t)=\left(0,-\frac{4-6 t^{2}}{t^{6}} e^{-1 / t^{2}}, 0\right)=\frac{4-6 t^{2}}{t^{6}} e^{-1 / t^{2}}(0,-1,0)
$$

for all $t>0$.
Let $-\sqrt{\frac{2}{3}} \neq t<0$. The the osculating plane S_{t} is given by

$$
S_{t}=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} ;\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-\left(\begin{array}{c}
t \\
e^{-1 / t^{2}} \\
0
\end{array}\right)\right)=0\right\}=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} ; z=0\right\},
$$

and hence

$$
S_{\uparrow 0}=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} ; z=0\right\} .
$$

Now let $\sqrt{\frac{2}{3}} \neq t>0$. Then the osculating plane S_{t} is given by

$$
S_{t}=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} ;\left(\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right)\left(\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)-\left(\begin{array}{c}
t \\
0 \\
e^{-1 / t^{2}}
\end{array}\right)\right)=0\right\}=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} ; y=0\right\},
$$

and hence

$$
S_{\downarrow 0}=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{R}^{3} ; y=0\right\} .
$$

It is not possible to extend the curve in 0 continuously. Since the curves $\left.c\right|_{-\infty, 0)}$ and $\left.c\right|_{(0, \infty)}$ are planar, we have $\tau=0$ there. If $\tau=0$ everywhere, then c would be a planar curve (contradiction).

Exercise 4.

Let $L>0$ and let $\alpha:[0, L] \rightarrow \mathbb{R}^{2}$ be a planar, paramterized by arc length, simple closed curve. The curvature κ satisfies $0<\kappa(s) \leq c$ for all $s \in[0, L]$ with a constant c. Show: The length L of the curve satisfies

$$
L \geq \frac{2 \pi}{c} .
$$

What does that mean graphically?

Solution 4.

Since $\kappa>0$, by the theorem of turning tangents we have

$$
1=\frac{1}{2 \pi} \int_{0}^{L} \kappa(s) \mathrm{d} s \leq \frac{c}{2 \pi} \int_{0}^{L} 1 \mathrm{~d} s=\frac{L c}{2 \pi} .
$$

The shortest possible curve is a circle with radius $1 / c$.

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves \mathcal{B} surfaces. Revised \& updated second edition. Dover Publications, Inc., Mineola, NY, 2016.
[Fuc08] Martin Fuchs. Vorlesungsskript zur Differentialgeometrie. 2008.

