UNIVERSITÄT DES SAARLANDES DEPARTMENT 6.1 – MATHEMATICS

Prof. Dr. Martin Fuchs Dr. Dominik Schillo

Exercises for the Lecture Differential Geometry

Summer Term 2020

Sheet 5 Submission: /

Resources: Up to Lektion 10; Up to p. 44 in [Fuc08]; Sections 1-1 – 1-7 B and Section 5-7 up to Proposition 1 in [Car16]

Exercise 1.

Let $I \subset \mathbb{R}$ be an interval, let $\alpha \colon I \to \mathbb{R}^2$ be a regular, planar curve which is parameterized by arc length and let, for r > 0,

$$\alpha_r \colon I \to \mathbb{R}^2, \ t \mapsto \alpha(t) \pm r n_{\alpha}(t),$$

where $n_{\alpha}: I \to \mathbb{R}^2$ is the normal of α . α_r is called *inner* (+) resp. outer (-) parallel curve to α with distance r.

- (i) When is α_r regular? When is α_r parameterized by arc length?
- (ii) In the case that α_r is regular, describe the oriented curvature κ_{α_r} of α_r with the oriented curvature κ_{α} of α .
- (iii) Let $I = \mathbb{R}$ and let α be periodic with period $l \in (0, \infty)$. Show that:

$$\frac{\mathrm{d}}{\mathrm{d}r} L(\alpha_r|_{[0,l]})|_{r=0} = \mp 2\pi I(\alpha|_{[0,l]}),$$

where $I(\alpha|_{[0,l]})$ is the rotation index of $\alpha|_{[0,l]}$ and L is the arc length.

Exercise 2.

Let $L \in \mathbb{R}$ and $I = [0, L] \subset \mathbb{R}$. Let α be an *oval*, i.e., a simple closed, regular, parametrized by arc length, and convex curve $\alpha \in C^2(I, \mathbb{R}^2)$ with nowhere vanishing curvature.

- (i) Show that for each unit vector e there exists a unique parameter $s \in I$ with $t_{\alpha}(s) = e$.
- (ii) Show that α can be reparametrized with respect to the oriented angle $\vartheta \colon I \to [0, 2\pi]$ between the tangent vector t_{α} and the x axis. These coordinates are called *tangential polar coordinates*.
- (iii) Let β be the reparametrization of the oval α in tangential polar coordinates. The curve β is called a *curve of constant width* if the function $h: [0, 2\pi] \to \mathbb{R}, \ \vartheta \mapsto -\beta(\vartheta) \cdot n_{\beta}(\vartheta)$ satisfies the following condition with a constant d > 0:

$$h(\vartheta) + h(\vartheta + \pi) = d$$

for all $\vartheta \in [0, \pi]$. Show that a curve with constant width d has a circumference of πd . (Hint: Describe β with respect to (n_{β}, n'_{β}) and with the help of h.)

Exercise 3.

Let L > 0, $\alpha: [0, L] \to \mathbb{R}^2$ be a simple closed, convex curve which is parameterized by arc length and is positive oriented, and let α_r be the outer parallel curve with distance r > 0 (see Exercise 1). Show that:

(i)
$$U(\alpha_r) = U(\alpha) + 2\pi r$$
,

(ii)
$$A(\alpha_r) = A(\alpha) + Lr + \pi r^2$$
.

Here, $U(\alpha)$ is the circumference and $A(\alpha)$ is the area enclosed by the curve α .

(Hint: You can use the following statement without a proof: Let $a, b \in \mathbb{R}$, a < b and let $\alpha \colon [a, b] \to \mathbb{R}^2$, $t \mapsto (x(t), y(t))$ be an injective, continuously differentiable curve with positive curvature. Let $A = \alpha(a)$ and $B = \alpha(b)$. Then the trace of α and the line segments \overline{OA} and \overline{BO} enclose a bounded domain $S \subset \mathbb{R}^2$ whose area can be calculated via the formula

$$A(S) = \frac{1}{2} \int_{a}^{b} x(t)y'(t) - x'(t)y(t) dt.$$

Exercise 4.

Let a > 0 and

$$r: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}, \ t \mapsto a \frac{\cos(2t)}{\cos(t)}.$$

Consider the following planar curve which is given in polar coordinates (a *strophoid*):

$$\alpha\colon \left(-\frac{\pi}{2},\frac{\pi}{2}\right) \to \mathbb{R}^2, \ t \mapsto (r(t)\cos(t),r(t)\sin(t)).$$

- (i) Calculate the intersection points of the curve with the axes and show that the straight line $\{(x,y) \in \mathbb{R}^2 ; x=-a\}$ is the asymptote of the curve.
- (ii) For the curve α , there exist $t_1 \neq t_2$ with $\alpha(t_1) = \alpha(t_2) = 0$, hence the curve has a loop there. Show that the area enclosed by this loop is given by $\left(2 \frac{\pi}{2}\right) a^2$ (Plot!).
- (iii) The curve and its asymptote encloses an area which extends into infinity. Show that the area is given by $(2 + \frac{\pi}{2}) a^2$.

(Hint: Consider the curve which is translated by the vector (a, 0) and use the formula from Exercise 3.)

References

- [Car16] Manfredo P. do Carmo. Differential geometry of curves & surfaces. Revised & updated second edition. Dover Publications, Inc., Mineola, NY, 2016.
- [Fuc08] Martin Fuchs. Vorlesungsskript zur Differentialgeometrie. 2008.