Exercises for the Lecture
Differential Geometry
Summer Term 2020
Sheet 5, Solution
Submission:
Resources: Up to Lektion 10; Up to p. 44 in Fuc08; Sections 1-1 - 1-7 B and Section 5-7 up to Proposition 1 in Car16

Exercise 1.

Let $I \subset \mathbb{R}$ be an interval, let $\alpha: I \rightarrow \mathbb{R}^{2}$ be a regular, planar curve which is parameterized by arc length and let, for $r>0$,

$$
\alpha_{r}: I \rightarrow \mathbb{R}^{2}, t \mapsto \alpha(t) \pm r n_{\alpha}(t)
$$

where $n_{\alpha}: I \rightarrow \mathbb{R}^{2}$ is the normal of $\alpha . \alpha_{r}$ is called inner $(+)$ resp. outer $(-)$ parallel curve to α with distance r.
(i) When is α_{r} regular? When is α_{r} parameterized by arc length?
(ii) In the case that α_{r} is regular, describe the oriented curvature $\kappa_{\alpha_{r}}$ of α_{r} with the oriented curvature κ_{α} of α.
(iii) Let $I=\mathbb{R}$ and let α be periodic with period $l \in(0, \infty)$. Show that:

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} r} L\left(\left.\alpha_{r}\right|_{[0, l]}\right)\right|_{r=0}=\mp 2 \pi I\left(\left.\alpha\right|_{[0, l]}\right)
$$

where $I\left(\left.\alpha\right|_{[0, l]}\right)$ is the rotation index of $\left.\alpha\right|_{[0, l]}$ and L is the arc length.

Solution 1.

(i) We have

$$
\alpha_{r}^{\prime}=\alpha^{\prime} \pm r n_{\alpha}^{\prime}=\alpha^{\prime} \mp r \kappa_{\alpha} t_{\alpha}=\alpha^{\prime} \mp r \kappa_{\alpha} \alpha^{\prime}=\left(1 \mp r \kappa_{\alpha}\right) \alpha^{\prime}
$$

hence

$$
\left|\alpha_{r}^{\prime}\right|^{2}=\left|1 \mp r \kappa_{\alpha}\right|^{2}\left|\alpha^{\prime}\right|^{2}=\left|1 \mp r \kappa_{\alpha}\right|^{2}
$$

Then α_{r} is regular if and only if $1 \mp r \kappa_{\alpha} \neq 0$ on I. Furthermore, α_{r} is parameterized by arc length if and only if

$$
\kappa_{\alpha}=0 \quad \text { or } \quad \kappa_{\alpha}= \pm \frac{2}{r}
$$

(ii) Let $\alpha: I \rightarrow \mathbb{R}^{2}, t \mapsto(x(t), y(t))$ and let $\alpha_{r}: I \rightarrow \mathbb{R}^{2}, t \mapsto\left(x_{r}(t), y_{r}(t)\right)$ be regular. With

$$
\alpha_{r}^{\prime \prime}=\left(\mp r \kappa_{\alpha}^{\prime}\right) \alpha^{\prime}+\left(1 \mp r \kappa_{\alpha}\right) \alpha^{\prime \prime}
$$

and Sheet 2, Exercise 4 (i) we conclude that

$$
\begin{aligned}
\kappa_{\alpha_{r}} & =\frac{x_{r}^{\prime} y_{r}^{\prime \prime}-x_{r}^{\prime \prime} y_{r}^{\prime}}{\left|\alpha_{r}^{\prime}\right|^{3}} \\
& =\frac{\left(1 \mp r \kappa_{\alpha}\right) x^{\prime}\left(\left(\mp r \kappa_{\alpha}^{\prime}\right) y^{\prime}+\left(1 \mp r \kappa_{\alpha}\right) y^{\prime \prime}\right)-\left(\left(\mp r \kappa_{\alpha}^{\prime}\right) x^{\prime}+\left(1 \mp r \kappa_{\alpha}\right) x^{\prime \prime}\right)\left(1 \mp r \kappa_{\alpha}\right) y^{\prime}}{\left|1 \mp r \kappa_{\alpha}\right|^{3}} \\
& =\frac{\left(1 \mp r \kappa_{\alpha}\right)^{2} x^{\prime} y^{\prime \prime}+\left(1 \mp r \kappa_{\alpha}\right)\left(\mp r \kappa_{\alpha}^{\prime}\right) x^{\prime} y^{\prime}-\left(1 \mp r \kappa_{\alpha}\right)^{2} x^{\prime \prime} y^{\prime}-\left(\mp r \kappa_{\alpha}^{\prime}\right)\left(1 \mp r \kappa_{\alpha}\right) x^{\prime} y^{\prime}}{\left|1 \mp r \kappa_{\alpha}\right|^{3}} \\
& =\frac{\kappa_{\alpha}}{\left|1 \mp r \kappa_{\alpha}\right|} .
\end{aligned}
$$

(iii) Since α is periodic, κ_{α} is bounded. Hence, for r small enough, we have $1 \mp r \kappa_{\alpha}>0$. With

$$
L\left(\left.\alpha_{r}\right|_{[0, l]}\right)=\int_{0}^{l}\left|\alpha_{r}^{\prime}(t)\right| \mathrm{d} t=\int_{0}^{l}\left|1 \mp r \kappa_{\alpha}(t)\right| \mathrm{d} t
$$

and

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} r}\right|_{r=0}\left|1 \mp r \kappa_{\alpha}\right|=\left.\left(\frac{\left(1 \mp r \kappa_{\alpha}\right)\left(\mp \kappa_{\alpha}\right)}{\left|1 \mp r \kappa_{\alpha}\right|}\right)\right|_{r=0}=\mp \kappa_{\alpha}
$$

we obtain

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} r}\right|_{r=0} L\left(\left.\alpha_{r}\right|_{[0, l]}\right)=\left.\int_{0}^{l} \frac{\mathrm{~d}}{\mathrm{~d} r}\right|_{r=0}\left|1 \mp r \kappa_{\alpha}(t)\right| \mathrm{d} t=\mp \int_{0}^{l} \kappa_{\alpha}(t) \mathrm{d} t=\mp 2 \pi I\left(\left.\alpha\right|_{[0, l]}\right) .
$$

Exercise 2.

Let $L \in \mathbb{R}$ and $I=[0, L] \subset \mathbb{R}$. Let α be an oval, i.e., a simple closed, regular, parametrized by arc length, and convex curve $\alpha \in C^{2}\left(I, \mathbb{R}^{2}\right)$ with nowhere vanishing curvature.
(i) Show that for each unit vector e there exists a unique parameter $s \in I$ with $t_{\alpha}(s)=e$.
(ii) Show that α can be reparametrized with respect to the oriented angle $\vartheta: I \rightarrow[0,2 \pi]$ between the tangent vector t_{α} and the x axis. These coordinates are called tangential polar coordinates.
(iii) Let β be the reparametrization of the oval α in tangential polar coordinates. The curve β is called a curve of constant width if the function $h:[0,2 \pi] \rightarrow \mathbb{R}, \vartheta \mapsto-\beta(\vartheta) \cdot n_{\beta}(\vartheta)$ satisfies the following condition with a constant $d>0$:

$$
h(\vartheta)+h(\vartheta+\pi)=d
$$

for all $\vartheta \in[0, \pi]$. Show that a curve with constant width d has a circumference of πd.
(Hint: Describe β with respect to $\left(n_{\beta}, n_{\beta}^{\prime}\right)$ and with the help of h.)

Solution 2.

(i) Without loss of generality, we assume that $\kappa>0$. Then $\kappa=\vartheta^{\prime}>0$, thus ϑ is strictly increasing. Without loss of generality, we can assume that $\vartheta(0)=0$ and, since $I_{\alpha}=1$ by the theorem of turning tangents, we obtain $\vartheta(L)=2 \pi$. Since $\vartheta([0, L])=[0,2 \pi]$, $\vartheta:[0, L] \rightarrow[0,2 \pi]$ is bijective. Since every unit vector is uniquely determined by its angle with the x axis, the result follows.
(ii) Since ϑ is bijective and $\vartheta^{\prime}=\kappa \neq 0$ on I, it follows that ϑ^{-1} is differentiable, hence ϑ is a diffeomorphism. Thus a reparametrization is possible.
(iii) Let $\beta:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ be the reparametrization of α with respect to ϑ and $h:[0,2 \pi] \rightarrow$ $\mathbb{R}, \vartheta \mapsto-\beta(\vartheta) \cdot n_{\beta}(\vartheta)$. Since

$$
t_{\beta}=(\cos , \sin)
$$

by construction, it follows that

$$
n_{\beta}=(-\sin , \cos), \quad n_{\beta}^{\prime}=(-\cos ,-\sin)=-t_{\beta} \quad \text { and } \quad n_{\beta}^{\prime \prime}=(\sin ,-\cos)=-n_{\beta}
$$

Hence $\left(n_{\beta}, n_{\beta}^{\prime}\right)$ is (pointwise) an orthonormal basis of \mathbb{R}^{2}. Furthermore, we have

$$
h^{\prime}=-\beta^{\prime} \cdot n_{\beta}-\beta \cdot n_{\beta}^{\prime}=-t_{\beta} \cdot n_{\beta}-\beta \cdot n_{\beta}^{\prime}=-\beta \cdot n_{\beta}^{\prime},
$$

thus

$$
\beta=\left(\beta \cdot n_{\beta}\right) n_{\beta}+\left(\beta \cdot n_{\beta}^{\prime}\right) n_{\beta}^{\prime}=-h n_{\beta}-h^{\prime} n_{\beta}^{\prime}
$$

and therefore

$$
\beta^{\prime}=-h^{\prime} n_{\beta}-h n_{\beta}^{\prime}-h^{\prime \prime} n_{\beta}^{\prime}-h^{\prime} n_{\beta}^{\prime \prime}=-h^{\prime} n_{\beta}-\left(h+h^{\prime \prime}\right) n_{\beta}^{\prime}+h^{\prime} n_{\beta}=-\left(h+h^{\prime \prime}\right) n_{\beta}^{\prime}=\left(h+h^{\prime \prime}\right) t_{\beta}
$$

Since

$$
h^{\prime}=-\beta \cdot n_{\beta}^{\prime} \quad \text { and } \quad h^{\prime \prime}=-\beta^{\prime} \cdot n_{\beta}^{\prime}-\beta \cdot n_{\beta}^{\prime \prime}=\beta \cdot n_{\beta}-\beta^{\prime} \cdot n_{\beta}^{\prime}
$$

we obtain

$$
h^{\prime \prime}+h=\beta \cdot n_{\beta}-\beta^{\prime} \cdot n_{\beta}^{\prime}-\beta \cdot n_{\beta}=-\beta^{\prime} \cdot n_{\beta}^{\prime}=-\left|\beta^{\prime}\right|\left(t_{\beta} \cdot n_{\beta}^{\prime}\right)=\left|\beta^{\prime}\right|
$$

Finally, from $h(\vartheta)+h(\vartheta+\pi)=d$ for all $\vartheta \in[0, \pi]$ we conlude that

$$
h^{\prime}(\vartheta)+h^{\prime}(\vartheta+\pi)=0
$$

for all $\vartheta \in[0, \pi]$ and hence

$$
h^{\prime}(0)+h^{\prime}(\pi)=0 \quad \text { as well as } \quad h^{\prime}(\pi)+h^{\prime}(2 \pi)=0
$$

Thus

$$
h^{\prime}(2 \pi)-h^{\prime}(0)=0
$$

The circumference is now given by

$$
\begin{aligned}
U(\beta) & =\int_{0}^{2 \pi}\left|\beta^{\prime}\right|=\int_{0}^{2 \pi} h+\int_{0}^{2 \pi} h^{\prime \prime} \\
& =\left(\int_{0}^{\pi} h+\int_{\pi}^{2 \pi} h\right)+\left(h^{\prime}(2 \pi)-h^{\prime}(0)\right) \\
& =\int_{0}^{\pi} h+\int_{0}^{\pi} h(\vartheta+\pi) \mathrm{d} \vartheta \\
& =\int_{0}^{\pi} h(\vartheta)+h(\vartheta+\pi) \mathrm{d} \vartheta \\
& =\int_{0}^{\pi} d \\
& =\pi d
\end{aligned}
$$

Exercise 3.

Let $L>0, \alpha:[0, L] \rightarrow \mathbb{R}^{2}$ be a simple closed, convex curve which is parameterized by arc length and is positive oriented, and let α_{r} be the outer parallel curve with distance $r>0$ (see Exercise 1). Show that:
(i) $U\left(\alpha_{r}\right)=U(\alpha)+2 \pi r$,
(ii) $A\left(\alpha_{r}\right)=A(\alpha)+L r+\pi r^{2}$.

Here, $U(\alpha)$ is the circumference and $A(\alpha)$ is the area enclosed by the curve α.
(Hint: You can use the following statement without a proof: Let $a, b \in \mathbb{R}, a<b$ and let $\alpha:[a, b] \rightarrow \mathbb{R}^{2}, t \mapsto$ $(x(t), y(t))$ be an injective, continuously differentiable curve with positive curvature. Let $A=\alpha(a)$ and $B=\alpha(b)$. Then the trace of α and the line segments $\overline{O A}$ and $\overline{B O}$ enclose a bounded domain $S \subset \mathbb{R}^{2}$ whose area can be calculated via the formula

$$
\left.A(S)=\frac{1}{2} \int_{a}^{b} x(t) y^{\prime}(t)-x^{\prime}(t) y(t) \mathrm{d} t .\right)
$$

Solution 3.

(i) We have

$$
U\left(\alpha_{r}\right)=\int_{0}^{L}\left|\alpha_{r}^{\prime}\right|=\int_{0}^{L}\left|1+r \kappa_{\alpha}\right|=\int_{0}^{L}\left(1+r \kappa_{\alpha}\right)=L+r \int_{0}^{L} \kappa_{\alpha}=L+2 \pi r
$$

(ii) We have

$$
\begin{aligned}
2 A\left(\alpha_{r}\right) & =\int_{0}^{L} x_{r} y_{r}^{\prime}-x_{r}^{\prime} y_{r} \\
& =\int_{0}^{L}\left(x-r\left(-y^{\prime}\right)\right)\left(1+r \kappa_{\alpha}\right) y^{\prime}-\left(1+r \kappa_{\alpha}\right) x^{\prime}\left(y-r x^{\prime}\right) \\
& =\int_{0}^{L} x y^{\prime}\left(1+r \kappa_{\alpha}\right)+r y^{\prime 2}\left(1+r \kappa_{\alpha}\right)-\left(1+r \kappa_{\alpha}\right) x^{\prime} y+r\left(1+r \kappa_{\alpha}\right) x^{\prime 2} \\
& =\int_{0}^{L}\left(1+r \kappa_{\alpha}\right)\left(x y^{\prime}-x^{\prime} y\right)+r\left(1+r \kappa_{\alpha}\right)\left(x^{\prime 2}+y^{\prime 2}\right) \\
& =\int_{0}^{L}\left(x y^{\prime}-x^{\prime} y\right)+r \int_{0}^{L} \kappa_{\alpha}\left(x y^{\prime}-x^{\prime} y\right)+r \int_{0}^{L} 1+r^{2} \int_{0}^{L} \kappa_{\alpha} \\
& =2 A(\alpha)+r L+2 \pi r^{2}+r \int_{0}^{L} \kappa_{\alpha}\left(x y^{\prime}-x^{\prime} y\right)
\end{aligned}
$$

Since

$$
x^{\prime 2}+y^{\prime 2}=1
$$

and therefore

$$
x^{\prime} x^{\prime \prime}+y^{\prime} y^{\prime \prime}=0
$$

we obtain that

$$
\begin{aligned}
\kappa_{\alpha}\left(x y^{\prime}-x^{\prime} y\right) & =\left(x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}\right)\left(x y^{\prime}-x^{\prime} y\right) \\
& =x^{\prime} x y^{\prime} y^{\prime \prime}-x^{\prime 2} y y^{\prime \prime}-x x^{\prime \prime} y^{\prime 2}+x^{\prime} x^{\prime \prime} y y^{\prime} \\
& =-x x^{\prime 2} x^{\prime \prime}-x^{\prime 2} y y^{\prime \prime}-x x^{\prime \prime} y^{\prime 2}-y y^{\prime 2} y^{\prime \prime} \\
& =-\left(x x^{\prime \prime}\left(x^{2}+y^{2}\right)+y y^{\prime \prime}\left(x^{2}+y^{\prime 2}\right)\right) \\
& =-\left(x x^{\prime \prime}+y y^{\prime \prime}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
-\int_{0}^{L}\left(x x^{\prime \prime}+y y^{\prime \prime}\right) & =-\left(\left[x x^{\prime}\right]_{0}^{L}-\int_{0}^{L} x^{\prime 2}+\left[y y^{\prime}\right]_{0}^{L}-\int_{0}^{L} y^{\prime 2}\right) \\
& =\int_{0}^{L} x^{\prime 2}+y^{\prime 2}-\left[\alpha \cdot \alpha^{\prime}\right]_{0}^{L} \\
& =L
\end{aligned}
$$

Since α is closed, the result follows.

Exercise 4.

Let $a>0$ and

$$
r:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}, t \mapsto a \frac{\cos (2 t)}{\cos (t)}
$$

Consider the following planar curve which is given in polar coordinates (a strophoid):

$$
\alpha:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}^{2}, t \mapsto(r(t) \cos (t), r(t) \sin (t))
$$

(i) Calculate the intersection points of the curve with the axes and show that the straight line $\left\{(x, y) \in \mathbb{R}^{2} ; x=-a\right\}$ is the asymptote of the curve.
(ii) For the curve α, there exist $t_{1} \neq t_{2}$ with $\alpha\left(t_{1}\right)=\alpha\left(t_{2}\right)=0$, hence the curve has a loop there. Show that the area enclosed by this loop is given by $\left(2-\frac{\pi}{2}\right) a^{2}$ (Plot!).
(iii) The curve and its asmyptote encloses an area which extends into infinity. Show that the area is given by $\left(2+\frac{\pi}{2}\right) a^{2}$.
(Hint: Consider the curve which is translated by the vector ($a, 0$) and use the formula from Exercise 3.)

Solution 4.

We have

$$
\alpha(t)=a(\cos (2 t), \cos (2 t) \tan (t))
$$

for all $t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
(i) We have

$$
\cos (2 t)=0 \quad \Longleftrightarrow \quad t= \pm \frac{\pi}{4}
$$

and

$$
\cos (2 t) \tan (t)=0 \Longleftrightarrow t= \pm \frac{\pi}{4} \text { or } t=0
$$

Hence α intersects the x axis in $-\frac{\pi}{4}$ and $\frac{\pi}{4}$ and the y axis in $-\frac{\pi}{4}, 0$ and $\frac{\pi}{4}$. Furthermore, we have

$$
\lim _{t \rightarrow-\frac{\pi}{2}} \cos (2 t)=-1 \quad \text { and } \quad \lim _{t \rightarrow-\frac{\pi}{2}} \cos (2 t) \tan (t)=\infty
$$

and

$$
\lim _{t \rightarrow \frac{\pi}{2}} \cos (2 t)=-1 \quad \text { and } \quad \lim _{t \rightarrow \frac{\pi}{2}} \cos (2 t) \tan (t)=-\infty
$$

Thus the straight line $\left\{(x, y) \in \mathbb{R}^{2} ; x=-a\right\}$ is the asymptote of α.
(ii) We first consider the lower half. Let $\frac{\pi}{4}>\varepsilon>0$ and $\alpha_{\varepsilon}:\left[-\frac{\pi}{4}+\varepsilon, 0\right] \rightarrow \mathbb{R}^{2}, t \mapsto \alpha(t)$. Then we obtain (see the hint of Exercise 3)

$$
\begin{aligned}
A\left(S_{\varepsilon}\right)= & \frac{1}{2} a^{2} \int_{-\frac{\pi}{4}+\varepsilon}^{0} \cos (2 t)\left(-2 \sin (2 t) \tan (t)+\cos (2 t) \frac{1}{\cos (t)^{2}}\right) \\
& -(-2 \sin (2 t)) \cos (2 t) \tan (t) \mathrm{d} t \\
= & \frac{1}{2} a^{2} \int_{-\frac{\pi}{4}+\varepsilon}^{0}\left(\frac{\cos (2 t)}{\cos (t)}\right)^{2} \mathrm{~d} t \\
= & \ldots \\
= & \frac{1}{2} a^{2}[-2 t+\sin (2 t)+\tan (t)]_{-\frac{\pi}{4}+\varepsilon}^{0} \\
= & \frac{1}{2} a^{2}\left(0-\left(\frac{\pi}{2}-2 \varepsilon+\sin \left(-\frac{\pi}{2}+2 \varepsilon\right)+\tan \left(-\frac{\pi}{4}+\varepsilon\right)\right)\right) \\
\rightarrow & \frac{1}{2} a^{2}\left(-\frac{\pi}{2}+2\right) .
\end{aligned}
$$

for $\varepsilon \rightarrow 0$. The result follows.
(iii) We first consider the upper half. Let $\frac{\pi}{4}>\varepsilon>0$ and $\alpha_{\varepsilon}:\left[-\frac{\pi}{2}+\varepsilon,-\frac{\pi}{4}\right] \rightarrow \mathbb{R}^{2}, t \mapsto$ $\alpha(t)+(a, 0)$. Then we obtain (see the hint of Exercise 3)

$$
\begin{aligned}
A\left(S_{\varepsilon}\right)= & \frac{1}{2} a^{2} \int_{-\frac{\pi}{2}+\varepsilon}^{-\frac{\pi}{4}}(\cos (2 t)+1)\left(-2 \sin (2 t) \tan (t)+\cos (2 t) \frac{1}{\cos (t)^{2}}\right) \\
& -(-2 \sin (2 t)) \cos (2 t) \tan (t) \mathrm{d} t \\
= & \frac{1}{2} a^{2} \int_{-\frac{\pi}{2}+\varepsilon}^{-\frac{\pi}{4}}\left(\frac{\cos (2 t)}{\cos (t)}\right)^{2}-2 \sin (2 t) \tan (t)+\frac{\cos (2 t)}{\cos (t)^{2}} \mathrm{~d} t \\
= & \ldots \\
= & \frac{1}{2} a^{2}[-2 t+2 \sin (2 t)]_{-\frac{\pi}{2}+\varepsilon}^{-\frac{\pi}{4}} \\
= & \frac{1}{2} a^{2}\left(\left(\frac{\pi}{2}-2\right)-(\pi-2 \varepsilon+2 \sin (-\pi+2 \varepsilon))\right) \\
= & \frac{1}{2} a^{2}\left(-\frac{\pi}{2}-2-2 \varepsilon-2 \sin (-\pi+2 \varepsilon)\right) \\
\rightarrow & -\frac{1}{2} a^{2}\left(\frac{\pi}{2}+2\right)
\end{aligned}
$$

for $\varepsilon \rightarrow 0$. The result follows.

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves \& surfaces. Revised \& updated second edition. Dover Publications, Inc., Mineola, NY, 2016.
[Fuc08] Martin Fuchs. Vorlesungsskript zur Differentialgeometrie. 2008.

