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Exercise 1.
Let I ⊂ R be an interval, let α : I → R2 be a regular, planar curve which is parameterized by
arc length and let, for r > 0,

αr : I → R2, t 7→ α(t)± rnα(t),

where nα : I → R2 is the normal of α. αr is called inner (+) resp. outer (−) parallel curve to α
with distance r.

(i) When is αr regular? When is αr parameterized by arc length?

(ii) In the case that αr is regular, describe the oriented curvature καr of αr with the oriented
curvature κα of α.

(iii) Let I = R and let α be periodic with period l ∈ (0,∞). Show that:

d

dr
L(αr|[0,l])|r=0 = ∓2πI(α|[0,l]),

where I(α|[0,l]) is the rotation index of α|[0,l] and L is the arc length.

Solution 1.
(i) We have

α′r = α′ ± rn′α = α′ ∓ rκαtα = α′ ∓ rκαα′ = (1∓ rκα)α′,
hence

|α′r|2 = |1∓ rκα|2|α′|2 = |1∓ rκα|2.
Then αr is regular if and only if 1 ∓ rκα 6= 0 on I. Furthermore, αr is parameterized by
arc length if and only if

κα = 0 or κα = ±2

r
.

(ii) Let α : I → R2, t 7→ (x(t), y(t)) and let αr : I → R2, t 7→ (xr(t), yr(t)) be regular. With

α′′r = (∓rκ′α)α′ + (1∓ rκα)α′′

and Sheet 2, Exercise 4 (i) we conclude that

καr =
x′ry
′′
r − x′′ry′r
|α′r|3

=
(1∓ rκα)x′((∓rκ′α)y′ + (1∓ rκα)y′′)− ((∓rκ′α)x′ + (1∓ rκα)x′′)(1∓ rκα)y′

|1∓ rκα|3

=
(1∓ rκα)2x′y′′ + (1∓ rκα)(∓rκ′α)x′y′ − (1∓ rκα)2x′′y′ − (∓rκ′α)(1∓ rκα)x′y′

|1∓ rκα|3

=
κα

|1∓ rκα|
.
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(iii) Since α is periodic, κα is bounded. Hence, for r small enough, we have 1∓ rκα > 0. With

L(αr|[0,l]) =
∫ l

0
|α′r(t)|dt =

∫ l

0
|1∓ rκα(t)|dt

and
d

dr
|r=0|1∓ rκα| =

(
(1∓ rκα)(∓κα)
|1∓ rκα|

)
|r=0 = ∓κα

we obtain

d

dr
|r=0L(αr|[0,l]) =

∫ l

0

d

dr
|r=0|1∓ rκα(t)|dt = ∓

∫ l

0
κα(t) dt = ∓2πI(α|[0,l]).

Exercise 2.
Let L ∈ R and I = [0, L] ⊂ R. Let α be an oval, i.e., a simple closed, regular, parametrized by
arc length, and convex curve α ∈ C2(I,R2) with nowhere vanishing curvature.

(i) Show that for each unit vector e there exists a unique parameter s ∈ I with tα(s) = e.

(ii) Show that α can be reparametrized with respect to the oriented angle ϑ : I → [0, 2π]
between the tangent vector tα and the x axis. These coordinates are called tangential polar
coordinates.

(iii) Let β be the reparametrization of the oval α in tangential polar coordinates. The curve
β is called a curve of constant width if the function h : [0, 2π] → R, ϑ 7→ −β(ϑ) · nβ(ϑ)
satisfies the following condition with a constant d > 0:

h(ϑ) + h(ϑ+ π) = d

for all ϑ ∈ [0, π]. Show that a curve with constant width d has a circumference of πd.

(Hint: Describe β with respect to (nβ , n
′
β) and with the help of h.)

Solution 2.
(i) Without loss of generality, we assume that κ > 0. Then κ = ϑ′ > 0, thus ϑ is strictly

increasing. Without loss of generality, we can assume that ϑ(0) = 0 and, since Iα = 1
by the theorem of turning tangents, we obtain ϑ(L) = 2π. Since ϑ([0, L]) = [0, 2π],
ϑ : [0, L]→ [0, 2π] is bijective. Since every unit vector is uniquely determined by its angle
with the x axis, the result follows.

(ii) Since ϑ is bijective and ϑ′ = κ 6= 0 on I, it follows that ϑ−1 is differentiable, hence ϑ is a
diffeomorphism. Thus a reparametrization is possible.

(iii) Let β : [0, 2π] → R2 be the reparametrization of α with respect to ϑ and h : [0, 2π] →
R, ϑ 7→ −β(ϑ) · nβ(ϑ). Since

tβ = (cos, sin)

by construction, it follows that

nβ = (− sin, cos), n′β = (− cos,− sin) = −tβ and n′′β = (sin,− cos) = −nβ.

Hence (nβ, n
′
β) is (pointwise) an orthonormal basis of R2. Furthermore, we have

h′ = −β′ · nβ − β · n′β = −tβ · nβ − β · n′β = −β · n′β,

thus
β = (β · nβ)nβ + (β · n′β)n′β = −hnβ − h′n′β
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and therefore

β′ = −h′nβ−hn′β−h′′n′β−h′n′′β = −h′nβ− (h+h′′)n′β+h
′nβ = −(h+h′′)n′β = (h+h′′)tβ.

Since
h′ = −β · n′β and h′′ = −β′ · n′β − β · n′′β = β · nβ − β′ · n′β,

we obtain

h′′ + h = β · nβ − β′ · n′β − β · nβ = −β′ · n′β = −|β′|(tβ · n′β) = |β′|.

Finally, from h(ϑ) + h(ϑ+ π) = d for all ϑ ∈ [0, π] we conlude that

h′(ϑ) + h′(ϑ+ π) = 0

for all ϑ ∈ [0, π] and hence

h′(0) + h′(π) = 0 as well as h′(π) + h′(2π) = 0.

Thus
h′(2π)− h′(0) = 0.

The circumference is now given by

U(β) =

∫ 2π

0
|β′| =

∫ 2π

0
h+

∫ 2π

0
h′′

=

(∫ π

0
h+

∫ 2π

π
h

)
+ (h′(2π)− h′(0))

=

∫ π

0
h+

∫ π

0
h(ϑ+ π) dϑ

=

∫ π

0
h(ϑ) + h(ϑ+ π) dϑ

=

∫ π

0
d

= πd.

Exercise 3.
Let L > 0, α : [0, L] → R2 be a simple closed, convex curve which is parameterized by arc
length and is positive oriented, and let αr be the outer parallel curve with distance r > 0 (see
Exercise 1). Show that:

(i) U(αr) = U(α) + 2πr,

(ii) A(αr) = A(α) + Lr + πr2.

Here, U(α) is the circumference and A(α) is the area enclosed by the curve α.

(Hint: You can use the following statement without a proof: Let a, b ∈ R, a < b and let α : [a, b] → R2, t 7→
(x(t), y(t)) be an injective, continuously differentiable curve with positive curvature. Let A = α(a) and B = α(b).
Then the trace of α and the line segments OA and BO enclose a bounded domain S ⊂ R2 whose area can be
calculated via the formula

A(S) =
1

2

∫ b

a

x(t)y′(t)− x′(t)y(t) dt.)
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Solution 3.
(i) We have

U(αr) =

∫ L

0
|α′r| =

∫ L

0
|1 + rκα| =

∫ L

0
(1 + rκα) = L+ r

∫ L

0
κα = L+ 2πr.

(ii) We have

2A(αr) =

∫ L

0
xry
′
r − x′ryr

=

∫ L

0
(x− r(−y′))(1 + rκα)y

′ − (1 + rκα)x
′(y − rx′)

=

∫ L

0
xy′(1 + rκα) + ry′2(1 + rκα)− (1 + rκα)x

′y + r(1 + rκα)x
′2

=

∫ L

0
(1 + rκα)(xy

′ − x′y) + r(1 + rκα)(x
′2 + y′2)

=

∫ L

0
(xy′ − x′y) + r

∫ L

0
κα(xy

′ − x′y) + r

∫ L

0
1 + r2

∫ L

0
κα

= 2A(α) + rL+ 2πr2 + r

∫ L

0
κα(xy

′ − x′y).

Since
x′2 + y′2 = 1

and therefore
x′x′′ + y′y′′ = 0,

we obtain that

κα(xy
′ − x′y) = (x′y′′ − x′′y′)(xy′ − x′y)

= x′xy′y′′ − x′2yy′′ − xx′′y′2 + x′x′′yy′

= −xx′2x′′ − x′2yy′′ − xx′′y′2 − yy′2y′′

= −(xx′′(x′2 + y′2) + yy′′(x′2 + y′2))

= −(xx′′ + yy′′)

and

−
∫ L

0
(xx′′ + yy′′) = −

(
[xx′]L0 −

∫ L

0
x′2 + [yy′]L0 −

∫ L

0
y′2
)

=

∫ L

0
x′2 + y′2 − [α · α′]L0

= L.

Since α is closed, the result follows.

Exercise 4.
Let a > 0 and

r :
(
−π
2
,
π

2

)
→ R, t 7→ a

cos(2t)

cos(t)
.

Consider the following planar curve which is given in polar coordinates (a strophoid):

α :
(
−π
2
,
π

2

)
→ R2, t 7→ (r(t) cos(t), r(t) sin(t)).
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(i) Calculate the intersection points of the curve with the axes and show that the straight line
{(x, y) ∈ R2 ; x = −a} is the asymptote of the curve.

(ii) For the curve α, there exist t1 6= t2 with α(t1) = α(t2) = 0, hence the curve has a loop
there. Show that the area enclosed by this loop is given by

(
2− π

2

)
a2 (Plot!).

(iii) The curve and its asmyptote encloses an area which extends into infinity. Show that the
area is given by

(
2 + π

2

)
a2.

(Hint: Consider the curve which is translated by the vector (a, 0) and use the formula from Exercise 3.)

Solution 4.
We have

α(t) = a(cos(2t), cos(2t) tan(t))

for all t ∈
(
−π

2 ,
π
2

)
.

(i) We have
cos(2t) = 0 ⇐⇒ t = ±π

4

and
cos(2t) tan(t) = 0 ⇐⇒ t = ±π

4
or t = 0.

Hence α intersects the x axis in −π
4 and π

4 and the y axis in −π
4 , 0 and π

4 . Furthermore,
we have

lim
t→−π

2

cos(2t) = −1 and lim
t→−π

2

cos(2t) tan(t) =∞

and
lim
t→π

2

cos(2t) = −1 and lim
t→π

2

cos(2t) tan(t) = −∞.

Thus the straight line {(x, y) ∈ R2 ; x = −a} is the asymptote of α.

(ii) We first consider the lower half. Let π
4 > ε > 0 and αε :

[
−π

4 + ε, 0
]
→ R2, t 7→ α(t).

Then we obtain (see the hint of Exercise 3)

A(Sε) =
1

2
a2
∫ 0

−π
4
+ε

cos(2t)

(
−2 sin(2t) tan(t) + cos(2t)

1

cos(t)2

)
− (−2 sin(2t)) cos(2t) tan(t) dt

=
1

2
a2
∫ 0

−π
4
+ε

(
cos(2t)

cos(t)

)2

dt

= ...

=
1

2
a2[−2t+ sin(2t) + tan(t)]0−π

4
+ε

=
1

2
a2
(
0−

(π
2
− 2ε+ sin

(
−π
2
+ 2ε

)
+ tan

(
−π
4
+ ε
)))

→ 1

2
a2
(
−π
2
+ 2
)
.

for ε→ 0. The result follows.
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(iii) We first consider the upper half. Let π
4 > ε > 0 and αε :

[
−π

2 + ε,−π
4

]
→ R2, t 7→

α(t) + (a, 0). Then we obtain (see the hint of Exercise 3)

A(Sε) =
1

2
a2
∫ −π

4

−π
2
+ε

(cos(2t) + 1)

(
−2 sin(2t) tan(t) + cos(2t)

1

cos(t)2

)
− (−2 sin(2t)) cos(2t) tan(t) dt

=
1

2
a2
∫ −π

4

−π
2
+ε

(
cos(2t)

cos(t)

)2

− 2 sin(2t) tan(t) +
cos(2t)

cos(t)2
dt

= ...

=
1

2
a2[−2t+ 2 sin(2t)]

−π
4

−π
2
+ε

=
1

2
a2
((π

2
− 2
)
− (π − 2ε+ 2 sin(−π + 2ε))

)
=

1

2
a2
(
−π
2
− 2− 2ε− 2 sin(−π + 2ε)

)
→ −1

2
a2
(π
2
+ 2
)

for ε→ 0. The result follows.
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