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Exercise 1.
(i) Let C be a planar curve, T the tangent of C in p ∈ C and let L be a straight line parallel

to the normal in p with distance d to p (see below). Let h be the length of segement of the
L which is determined by C and T (h is the "height" of C relative to T ). Show that

|κ(p)| = lim
d→0

2h

d

holds.
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(ii) Show: If a closed, planar curve C is contained in a circle with radius r, then there exists a
point p ∈ C such that the curvature κ of C in p satisfies

|κ| ≥ 1

r
.

Solution 1.
(i) Without loss of generality, we assume that p = (0, 0), T lies on the x axis (i.e. α′(0) =(

1, 0
)
) and the normal of C in p lies on the y axis. Furthermore, let α = (x, y) be

parameterized by arc length and p = α(0).

Consider the Taylor expansion at 0:

α(s) = α(0) + α′(0)s+
1

2
α′′(0)s2 +R

with R = (Rx, Ry) and lims→0
R
s2

= 0. Let κ be the curvature of α at s = 0. By the Frenet
formulas (and the choice of the coordinates), we have

α′′(0) = κ

(
0
1

)
and hence

x(s) = s+Rx, y(s) =
κ

2
s2 +Ry,

Thus
|κ(p)| = lim

s→0

2|y(s)|
s2

= lim
d→0

2h

d2
.
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Figure 1: Sketch for Exercise 1 (ii)

(ii) (See Figure 1) Let 0 be the center of the circle D. Reduce the boundary of D by a family
of concentric circles until it hits the curve C in a point p. Let T be the joint tangent on
D̃ and C in p. As in (i), let p = (0, 0) and T lies on the x axis, C is parameterized by
α = (x, y), α(0) = p, and D̃ is parameterized by α̃ = (x̃, ỹ), α̃(0) = p (without loss of
generality parameterized by arc length). Then, in a small neighborhood of 0, we have

ỹ(s) ≤ y(s)

and with (i) we conclude that

1

r
≤ 1

r̃
= lim

s→0

2|ỹ(s)|
s2

≤ lim
s→0

2|y(s)|
s2

= |κ(p)|.

Exercise 2.
Let α : R→ R2 be a simple closed, planar curve which is parameterized by arc length and denote
by κ : R → R the (oriented) curvature of this curve. Show that α is convex if κ(s) ≥ 0 for all
s ∈ R or κ(s) ≤ 0 for all s ∈ R.

Solution 2.
Without loss of generality, let κ ≥ 0. We assume that α is not convex. Then there exists s0 ∈ R
such that the function

ϕ : R→ R, s 7→ (α(s)− α(s0)) · n(s0)

produces negative as well as positive values. Since α is periodic, ϕ obtains its minimum in a
point s1 ∈ R and the maximum in a point s2 ∈ R. Therefore

ϕ(s1) < ϕ(s0) < ϕ(s2). (1)

Since there is an extremum in s1, we have ϕ′(s1) = 0. Thus α′(s1) · n(s0) = 0 and hence
α′(s1) = ±α′(s0). Similarly, there is an extremum in s2 and hence α′(s2) = ±α′(s0). Therefore,
two of the three unit vectors α′(s0), α

′(s1), α
′(s2) have to coincide. We choose s̃1, s̃2 ∈ {s0, s1, s2}

with s̃1 < s̃2 such that α′(s̃1) = α′(s̃2).

Now let ϑ be an arc function R→ R, where ϑ′ = κ. It follows that

ϑ(s̃2)− ϑ(s̃1) = 2πk (k ∈ Z).

(please turn the page)



Since ϑ′ = κ, ϑ is increasing and hence ϑ(s̃2) − ϑ(s̃1) ≥ 0. Thus k ∈ N0. In the same way we
obtain

ϑ(s̃1 + L)− ϑ(s̃2) = 2πl (l ∈ N0).

The rotation index Iα satisfies Iα = k+ l ≥ 0. The theorem of turning tangents provides Iα = 1,
thus k = 0 or l = 0. Without loss of generality, let k = 0. It follows that κ = ϑ′ = 0 on [s̃1, s̃2].
Thus α parameterizes a straight line on [s̃1, s̃2], i.e., for all s ∈ [s̃1, s̃2], we have

α(s) = α(s̃1) + (s− s̃1)α′(s̃1) = α(s̃1)± (s− s̃1)α′(s0).

We conclude that

ϕ(s) = (α(s)− α(s0)) · n(s0) = (α(s̃1)∓ (s− s̃1)α′(s0)− α(s0)) · n(s0)
= (α(s̃1)− α(s0)) · n(s0)∓ (s− s̃1)α′(s0) · n(s0)
= (α(s̃1)− α(s0)) · n(s0),

hence ϕ is constant. Since at least two of the three points s0, s1, s2 are contained in the interval
[s̃1, s̃2], we have a contradiction to Eq. (1).

Exercise 3.
(i) Does a simple closed, planar curve with a length of 6m and an enclosed area of 4m2 exist?

Justify your answer.

(ii) Let AB be a line segment in R2 and let l > |AB|. Proof that a curve with length l which
connects the points A and B and maximizes the area enclosed by the curve and the line
segment AB is an arc of a circle passing through A and B.

Solution 3.
(i) By the isoperimetric inequality, we have

3m2 ≤ (6m)2

4π
=

9

π
m2 < 3m2.

Hence, such a curve is not possible.

(ii) Consider Figure 2. Let L(β) = L(α) = l. Then we have

Uβ∪γ = L(β ∪γ) = L(β)+L(γ) = l+(2πr−L(α)) = l+2πr− l = 2πr = L(α∪γ) = Uα∪γ

and therefore, by the isoperimetric inequality,

Aβ∪γ ≤
U2
β∪γ
4π

=
U2
α∪γ
4π

= Aα∪γ .

Thus α is optimal.

Exercise 4.
Let I ⊂ R be an interval and let α : I → R3 be a curve which is parameterized by arc length and
has the curvature κ and the torsion τ . Let κ 6= 0, κ′ 6= 0 and τ 6= 0 on I. The functions κ and τ
satisfy the equation (

1

κ

)2

+

(
κ′

κ2τ

)
= r2

on I, where r > 0 is a constant. Show that α lies on a sphere with radius r.
(Hint: Consider the curve

β : I → R3, s 7→ α(s) +
1

κ(s)
n(s) +

κ′(s)

κ(s)2τ(s)
b(s)

where (t, n, b) is the Frenet trihedron of α.)
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Figure 2: Sketch for Exercise 3 (ii)

Solution 4.
Define K = 1

κ and T = 1
τ . Then

K ′ = − κ
′

κ2
,

and thus (
1

κ

)2

+

(
κ′

κ2τ

)
= r2 ⇐⇒ K2 + (K ′T )2 = r2.

Differentiating the equation on the right, we obtain

2KK ′ + 2(K ′T )(K ′T )′ =
2K ′

τ
(Kτ + (K ′T )′) = 0,

hence
Kτ + (K ′T )′ = 0

on I. Furthermore, by the Frenet formulas, we conclude that

β′ = α′ +K ′n+Kn′ + (K ′T )′b+ (K ′T )b′

= t+K ′n+K(τb− κt) + (K ′T )′b−K ′Tτn

= (1−Kκ)t+ (K ′ −K ′Tτ)n+ (Kτ + (K ′T )′)b

= 0,

thus β is constant. Since (t, n, b) is (pointwise) an orthonormal basis, we obtain with the definition
of β that

(α− β)2 =
(
−1

κ

)
·
(
−1

κ

)
+

(
− κ′

κ2τ

)
·
(
− κ′

κ2τ

)
=

(
1

κ

)2

+

(
κ′

κ2τ

)
= r2.
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