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Exercise 1.
Consider for a, b, c > 0 the subsets of R3:

(i)
{
(x, y, z) ∈ R3 ; x2

a2
+ y2

b2
+ z2

c2
= 1

}
(Ellipsoid),

(ii)
{
(x, y, z) ∈ R3 ; x2

a2
+ y2

b2
− z2

c2
= 1

}
(Hyperboloid of one sheet),

(iii)
{
(x, y, z) ∈ R3 ; x2

a2
+ y2

b2
− z2

c2
= −1

}
(Hyperboloid of two sheets),

(iv)
{
(x, y, z) ∈ R3 ; x2

a2
+ y2

b2
− z = 0

}
(Elliptic paraboloid),

(v)
{
(x, y, z) ∈ R3 ; x2

a2
− y2

b2
− z = 0

}
(Hyperbolic paraboloid).

Sketch these sets and describe subsets (as large as possible) via parameterized surfaces.

Exercise 2.
Let I ⊂ R be an interval, C the trace of an regular, parameterized by arc length, injective (planar)
α : I → R3 with Im(α) ⊂ {(x, y, z) ∈ R3 ; z = 0} and let P ∈ R3 \ {(x, y, z) ∈ R3 ; z = 0} be a
fixed point. Let K be the set which is formed by a straight line through P which moves along
the curve C.

(i) Find a parametrization X with trace K.

(ii) Calculate the Gauß mapping of X. When is X a regular surface?

(Hint: Here and for the upcoming exercises (and the upcoming sheets) you do not have to show the injectivity
and the continuity of the inverse! )

(iii) Let P = (0, 0, 1). Examine the situation if C is the trace of the circle α : [0, 2π)→ R3, t 7→
(cos(t), sin(t), 0) and provide a sketch.

Exercise 3.
Let

X : R2 → R3, (u, v) 7→ 1

u2 + v2 + 1
(2u, 2v, u2 + v2 − 1).

(i) Show that X is a parameterized surface.

(ii) Calculate the Gauß mapping N of X.

(please turn the page)



(iii) Describe the vector field V : R2 → R3, (u, v) 7→ (u, v, 1) along X in the form

V = V 1Xu + V 2Xv + V 3N

with functions V k : R2 → R (k ∈ {1, 2, 3}).

(iv) Calculate the fundamental matrix G of the first fundamental form of X.

Exercise 4.
Describe the part of the unit sphere in R3 which is covered by the image of the Gauß mapping
of the following surfaces and provide sketches:

(i) {(x, y, z) ∈ R3 ; x2 + y2 − z = 0} (Rotated paraboloid),

(ii) {(x, y, z) ∈ R3 ; x2 + y2 − z2 = 1} (Rotated hyperboloid),

(iii) {(x, y, z) ∈ R3 ; x2 + y2 − cosh2(z) = 0} (Catenoide).
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