Exercises for the Lecture
Differential Geometry
Summer Term 2020
Sheet 7, Solution
Submission:

Resources: Up to Lesson 13; Up to p. 56 in Fuc08]; Sections 2-1 - 2-5 and Section 3-1 - p. 143 in Car16|

Exercise 1.

Consider for $a, b, c>0$ the subsets of \mathbb{R}^{3} :
(i) $\left\{(x, y, z) \in \mathbb{R}^{3} ; \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1\right\}$ (Ellipsoid),
(ii) $\left\{(x, y, z) \in \mathbb{R}^{3} ; \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1\right\}$ (Hyperboloid of one sheet),
(iii) $\left\{(x, y, z) \in \mathbb{R}^{3} ; \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=-1\right\}$ (Hyperboloid of two sheets),
(iv) $\left\{(x, y, z) \in \mathbb{R}^{3} ; \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-z=0\right\}$ (Elliptic paraboloid),
(v) $\left\{(x, y, z) \in \mathbb{R}^{3} ; \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-z=0\right\}$ (Hyperbolic paraboloid).

Sketch these sets and describe subsets (as large as possible) via parameterized surfaces.

Exercise 2.

Let $I \subset \mathbb{R}$ be an interval, C the trace of an regular, parameterized by arc length, injective (planar) $\alpha: I \rightarrow \mathbb{R}^{3}$ with $\operatorname{Im}(\alpha) \subset\left\{(x, y, z) \in \mathbb{R}^{3} ; z=0\right\}$ and let $P \in \mathbb{R}^{3} \backslash\left\{(x, y, z) \in \mathbb{R}^{3} ; z=0\right\}$ be a fixed point. Let K be the set which is formed by a straight line through P which moves along the curve C.
(i) Find a parametrization X with trace K.
(ii) Calculate the Gauß mapping of X. When is X a regular surface?
(Hint: Here and for the upcoming exercises (and the upcoming sheets) you do not have to show the injectivity and the continuity of the inverse!)
(iii) Let $P=(0,0,1)$. Examine the situation if C is the trace of the circle $\alpha:[0,2 \pi) \rightarrow \mathbb{R}^{3}, t \mapsto$ $(\cos (t), \sin (t), 0)$ and provide a sketch.

Exercise 3.

Let

$$
X: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(u, v) \mapsto \frac{1}{u^{2}+v^{2}+1}\left(2 u, 2 v, u^{2}+v^{2}-1\right)
$$

(i) Show that X is a parameterized surface.
(ii) Calculate the Gauß mapping N of X.
(iii) Describe the vector field $V: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(u, v) \mapsto(u, v, 1)$ along X in the form

$$
V=V^{1} X_{u}+V^{2} X_{v}+V^{3} N
$$

with functions $V^{k}: \mathbb{R}^{2} \rightarrow \mathbb{R}(k \in\{1,2,3\})$.
(iv) Calculate the fundamental matrix G of the first fundamental form of X.

Exercise 4.

Describe the part of the unit sphere in \mathbb{R}^{3} which is covered by the image of the Gauß mapping of the following surfaces and provide sketches:
(i) $\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+y^{2}-z=0\right\}$ (Rotated paraboloid),
(ii) $\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+y^{2}-z^{2}=1\right\}$ (Rotated hyperboloid),
(iii) $\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+y^{2}-\cosh ^{2}(z)=0\right\}$ (Catenoide).

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves \mathcal{E} surfaces. Revised \& updated second edition. Dover Publications, Inc., Mineola, NY, 2016.
[Fuc08] Martin Fuchs. Vorlesungsskript zur Differentialgeometrie. 2008.

