UNIVERSITÄT DES SAARLANDES DEPARTMENT 6.1 – MATHEMATICS

Prof. Dr. Martin Fuchs Dr. Dominik Schillo

Exercises for the Lecture Differential Geometry

Summer Term 2020

Sheet 8 Submission: /

Resources: Up to Lesson 14; Up to p. 60 in [Fuc08]; Sections 2-1-2-5 and Section 3-1-p. 143 in [Car16]

Exercise 1.

Let $I \subset \mathbb{R}$ be an interval and let X be a surface of revolution with generating regular planar curve $\alpha \colon I \to \mathbb{R}^3$, $t \mapsto (x(t), y(t), 0)$ and with rotation around the x axis. Show that there always exists a parametrization $X \colon (0, 2\pi) \times I^{\circ} \to \mathbb{R}^3$ such that

$$G(u,v) = \begin{pmatrix} \mathcal{E}(v) & 0\\ 0 & 1 \end{pmatrix}$$

for all $(u, v) \in (0, 2\pi) \times I^{\circ}$.

Exercise 2.

Consider the map

$$X \colon \left(0, \frac{\pi}{2}\right) \times \left(0, \frac{\pi}{2}\right) \to \mathbb{R}^3, \ (u, v) \mapsto \left(\left(a + b\sin(v)\right)\sin(u), \left(a - b\cos(v)\right)\sin(u), c\sin(u)\right),$$

where a, b, c are real numbers.

- (i) Determine when X is a regular parameterized surface.
- (ii) Determine (in the case of regularity) the first fundamental form of X.

Exercise 3.

Let $I \subset \mathbb{R}$ be an open interval and let $\alpha \colon I \to \mathbb{R}^3$ be a regular, injective curve which is parameterized by arc length and has nowhere vanishing curvature. For r > 0, let

$$X: I \times (0, 2\pi) \to \mathbb{R}^3, (u, v) \mapsto \alpha(u) + r(\cos(v)n(u) + \sin(v)b(u)),$$

where n and b is the normal resp. binormal vector of the curve α .

- (i) Determine the first fundamental form of X. Under which conditions is X a regular parameterized surface?
- (ii) Determine the Gauß mapping of X under the assumption that X is regular.
- (iii) Determine X if the curve is the circle $\alpha: (0,2\pi) \to \mathbb{R}^3$, $t \mapsto (\cos(t),\sin(t),0)$ and $r = \frac{1}{2}$. Sketch the surface.

Exercise 4.

Let $\Omega \subset \mathbb{R}^2$ be open, $X \colon \Omega \to \mathbb{R}^3$ be a parameterized surface and let $\varphi \colon \widetilde{\Omega} \to \Omega$ be a parameter transformation which preserves the orientation $(\det(D\varphi) > 0)$. Show the following relation between the second fundamental form II (resp. II^{TX}) of X and the second fundamental form \widetilde{II} (resp. $II^{T\tilde{X}}$) of the reparameterized surface $\tilde{X} = X \circ \varphi$.

(i) For all $(\tilde{u}, \tilde{v}) \in \tilde{\Omega}$ and $\tilde{U}, \tilde{V} \in \mathbb{R}^2$, we have

$$\widetilde{II}_{(\tilde{u},\tilde{v})}(\tilde{U},\tilde{V}) = II_{\varphi(\tilde{u},\tilde{v})}(D\varphi_{(\tilde{u},\tilde{v})}\tilde{U},D\varphi_{(\tilde{u},\tilde{v})}\tilde{V}).$$

(ii) For all $(\tilde{u}, \tilde{v}) \in \tilde{\Omega}$ and $U, V \in T_{(\tilde{u}, \tilde{v})} \tilde{X}$, we have

$$II_{(\tilde{u},\tilde{v})}^{T\tilde{X}}(U,V) = II_{\varphi(\tilde{u},\tilde{v})}^{TX}(U,V).$$

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves & surfaces. Revised & updated second edition. Dover Publications, Inc., Mineola, NY, 2016.

[Fuc08] Martin Fuchs. Vorlesungsskript zur Differentialgeometrie. 2008.