Exercises for the Lecture
Differential Geometry

Summer Term 2020
Sheet 8
Submission:

Resources: Up to Lesson 14; Up to p. 60 in [Fuc08]; Sections 2-1 - 2-5 and Section 3-1 - p. 143 in |Car16|

Exercise 1.

Let $I \subset \mathbb{R}$ be an interval and let X be a surface of revolution with generating regular planar curve $\alpha: I \rightarrow \mathbb{R}^{3}, t \mapsto(x(t), y(t), 0)$ and with rotation around the x axis. Show that there always exists a parametrization $X:(0,2 \pi) \times I^{\circ} \rightarrow \mathbb{R}^{3}$ such that

$$
G(u, v)=\left(\begin{array}{cc}
\mathcal{E}(v) & 0 \\
0 & 1
\end{array}\right)
$$

for all $(u, v) \in(0,2 \pi) \times I^{\circ}$.

Exercise 2.

Consider the map

$$
X:\left(0, \frac{\pi}{2}\right) \times\left(0, \frac{\pi}{2}\right) \rightarrow \mathbb{R}^{3},(u, v) \mapsto((a+b \sin (v)) \sin (u),(a-b \cos (v)) \sin (u), c \sin (u))
$$

where a, b, c are real numbers.
(i) Determine when X is a regular parameterized surface.
(ii) Determine (in the case of regularity) the first fundamental form of X.

Exercise 3.

Let $I \subset \mathbb{R}$ be an open interval and let $\alpha: I \rightarrow \mathbb{R}^{3}$ be a regular, injective curve which is parameterized by arc length and has nowhere vanishing curvature. For $r>0$, let

$$
X: I \times(0,2 \pi) \rightarrow \mathbb{R}^{3},(u, v) \mapsto \alpha(u)+r(\cos (v) n(u)+\sin (v) b(u))
$$

where n and b is the normal resp. binormal vector of the curve α.
(i) Determine the first fundamental form of X. Under which conditions is X a regular parameterized surface?
(ii) Determine the Gauß mapping of X under the assumption that X is regular.
(iii) Determine X if the curve is the circle $\alpha:(0,2 \pi) \rightarrow \mathbb{R}^{3}, t \mapsto(\cos (t), \sin (t), 0)$ and $r=\frac{1}{2}$. Sketch the surface.

Exercise 4.

Let $\Omega \subset \mathbb{R}^{2}$ be open, $X: \Omega \rightarrow \mathbb{R}^{3}$ be a parameterized surface and let $\varphi: \tilde{\Omega} \rightarrow \Omega$ be a parameter transformation which preserves the orientation $(\operatorname{det}(D \varphi)>0)$. Show the following relation between the second fundamental form $I I$ (resp. $I I^{T X}$) of X and the second fundamental form $\widetilde{I I}\left(\right.$ resp. $I I^{T \tilde{X}}$) of the reparameterized surface $\tilde{X}=X \circ \varphi$.
(i) For all $(\tilde{u}, \tilde{v}) \in \tilde{\Omega}$ and $\tilde{U}, \tilde{V} \in \mathbb{R}^{2}$, we have

$$
\widetilde{I I}_{(\tilde{u}, \tilde{v})}(\tilde{U}, \tilde{V})=I I_{\varphi(\tilde{u}, \tilde{v})}\left(D \varphi_{(\tilde{u}, \tilde{v})} \tilde{U}, D \varphi_{(\tilde{u}, \tilde{v})} \tilde{V}\right) .
$$

(ii) For all $(\tilde{u}, \tilde{v}) \in \tilde{\Omega}$ and $U, V \in T_{(\tilde{u}, \tilde{v})} \tilde{X}$, we have

$$
I I_{(\tilde{u}, \tilde{v})}^{T \tilde{X}}(U, V)=I I_{\varphi(\tilde{u}, \tilde{v})}^{T X}(U, V) .
$$

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves \& surfaces. Revised \& updated second edition. Dover Publications, Inc., Mineola, NY, 2016.
[Fuc08] Martin Fuchs. Vorlesungsskript zur Differentialgeometrie. 2008.

