Exercises for the Lecture
 Differential Geometry

Summer Term 2020
Sheet 9
Submission:

Resources: Up to Lesson 15; Up to p. 65 in Fuc08]; Sections 2-1-2-5 and Section 3-1 - p. 147 in |Car16|

Exercise 1.

Consider the parametrization

$$
X:(-\pi, \pi) \times \mathbb{R}, \quad(u, v) \mapsto(\cos (u), \sin (u), v),
$$

i.e. X is a parametrization of the cylinder

$$
Z=\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+y^{2}=1\right\} .
$$

Determine all normal sections as well as the minimal and the maximal normal curvature of X in $p=X(0,0)=(1,0,0)$.

Exercise 2.

(See Exercise 18 in Section 3-2 in Car16)
Show: If a regular curve C is the intersection of two surfaces $X_{1} X_{2}$, then the curvature $\kappa_{C}(p)$ of C in $p \in C$ is given by

$$
\kappa_{C}(p)^{2} \sin (\theta)^{2}=\kappa_{n_{1}}^{2}+\kappa_{n_{2}}^{2}-2 \kappa_{n_{1}} \kappa_{n_{2}} \cos (\theta),
$$

where $\kappa_{n_{1}}$ and $\kappa_{n_{2}}$ are the normal curvatures at p along the tangent on C of X_{1} resp. X_{2} and θ is the angle between the normal vectors N_{1} and N_{2} of X_{1} resp. X_{2} at p.
(Hint: Consider the triangle spanned by $\kappa_{n_{1}} N_{2}$ and $\kappa_{n_{2}} N_{1}$.)

Exercise 3.

Let a and r be positive real numbers with $r<a$ and define the torus

$$
X:(0,2 \pi) \times(-\pi, \pi) \rightarrow \mathbb{R}^{3},(u, v) \mapsto((a+r \cos (u)) \cos (v),(a+r \cos (u)) \sin (v), r \sin (u)) .
$$

(i) Calculate the first and second fundamental form of X.
(ii) Determine a formula for the area of X.
(iii) Sketch the normal sections of X through the point $(a, 0, r)$.

Exercise 4.

Let I be an open interval, $\alpha: I \rightarrow \mathbb{R}^{3}$ be a regular curve and let $w: I \rightarrow \mathbb{R}^{3} \backslash\{0\}$ be smooth. The mapping

$$
X: I \times \mathbb{R} \rightarrow \mathbb{R}^{3},(u, v) \mapsto \alpha(u)+v w(u)
$$

is called a ruled surface if X is regular. The curve α is called directrix and the straight lines $\mathbb{R} \rightarrow \mathbb{R}^{3}, v \mapsto \alpha(u)+v w(u)(u \in I)$ are called generators.
(i) Under which conditions is X a regular parameterized surface?
(ii) Let $u \in I$ such that the tangent plane $T_{(u, v)} X$ of X in (u, v) exists for all $v \in \mathbb{R}$. Show that $T_{(u, v)} X=T_{(u, \tilde{v})} X$ for all $v, \tilde{v} \in \mathbb{R}$ if and only if the vectors $\alpha^{\prime}(u), w^{\prime}(u)$ and $w(u)$ are linear dependent.
(iii) Show that hyperbolic paraboloid (see Sheet 7, Exercise 1) is a ruled surface.
(Hint: Third binomial formula.)

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves \& surfaces. Revised \& updated second edition. Dover Publications, Inc., Mineola, NY, 2016.
[Fuc08] Martin Fuchs. Vorlesungsskript zur Differentialgeometrie. 2008.

