Prof. Dr. Martin Fuchs
Dr. Dominik Schillo

Exercises for the Lecture
Differential Geometry
Summer Term 2020
Sheet 9, Solution
Submission:

Resources: Up to Lesson 15; Up to p. 65 in Fuc08; Sections 2-1 - 2-5 and Section 3-1 - p. 147 in Car16|

Exercise 1.

Consider the parametrization

$$
X:(-\pi, \pi) \times \mathbb{R},(u, v) \mapsto(\cos (u), \sin (u), v)
$$

i.e. X is a parametrization of the cylinder

$$
Z=\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+y^{2}=1\right\}
$$

Determine all normal sections as well as the minimal and the maximal normal curvature of X in $p=X(0,0)=(1,0,0)$.

Solution 1.

We have

$$
\begin{aligned}
& \partial_{1} X(u, v)=(-\sin (u), \cos (u), 0) \\
& \partial_{2} X(u, v)=(0,0,1)
\end{aligned}
$$

and

$$
\partial_{1} X(u, v) \times \partial_{2} X(u, v)=(\cos (u), \sin (u), 0)
$$

for all $(u, v) \in(-\pi, \pi) \times \mathbb{R}$. Let $\theta \in\left[0, \frac{\pi}{2}\right]$. We consider the plane

$$
E_{\theta}=\left\{p+\lambda\left(\partial_{1} X(0,0) \times \partial_{2} X(0,0)\right)+\mu\left(\cos (\theta) \partial_{1} X(0,0)+\sin (\theta) \partial_{2} X(0,0)\right) ; \lambda, \mu \in \mathbb{R}\right\}
$$

Then

$$
\begin{aligned}
n_{\theta} & =\left(\partial_{1} X(0,0) \times \partial_{2} X(0,0)\right) \times\left(\cos (\theta) \partial_{1} X(0,0)+\sin (\theta) \partial_{2} X(0,0)\right) \\
& =\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \times\left(\cos (\theta)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+\sin (\theta)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right) \\
& =\left(\begin{array}{c}
0 \\
-\sin (\theta) \\
\cos (\theta)
\end{array}\right)
\end{aligned}
$$

is the normal vector of this plane and, since

$$
0=\left\langle n_{\theta}, X(u, v)-p\right\rangle=-\sin (\theta) \sin (u)+\cos (\theta) v \quad((u, v) \in(-\pi, \pi) \times \mathbb{R})
$$

we obtain for the normal section

$$
\operatorname{Bild}(X) \cap E_{\theta}=\{(u, v) \in(-\pi, \pi) \times \mathbb{R} ; \cos (\theta) v=\sin (\theta) \sin (u)\}
$$

Let $(u, v) \in \operatorname{Bild}(X) \cap E_{\theta}$.
(i) $\theta \in\left[0, \frac{\pi}{2}\right):$ Then

$$
v=\tan (\theta) \sin (u)
$$

hence

$$
\alpha:(-\pi, \pi) \rightarrow \mathbb{R}^{3}, t \mapsto\left(\begin{array}{c}
\cos (t) \\
\sin (t) \\
\tan (\theta) \sin (t)
\end{array}\right)
$$

is a parametrization of the normal section. For $t \in(-\pi, \pi)$, we obtain

$$
\alpha^{\prime}(t)=\left(\begin{array}{c}
-\sin (t) \\
\cos (t) \\
\tan (\theta) \cos (t)
\end{array}\right), \alpha^{\prime \prime}(t)=\left(\begin{array}{c}
-\cos (t) \\
-\sin (t) \\
-\tan (\theta) \sin (t)
\end{array}\right), \alpha^{\prime}(t) \times \alpha^{\prime \prime}(t)=\left(\begin{array}{c}
0 \\
-\tan (\theta) \\
1
\end{array}\right),
$$

thus

$$
\kappa_{\alpha}(t)=\frac{\left(1+\tan (\theta)^{2}\right)^{1 / 2}}{\left(1+\tan (\theta)^{2} \cos (t)^{2}\right)^{3 / 2}}
$$

and therefore

$$
\kappa_{\alpha}(0)=\frac{1}{1+\tan (\theta)^{2}} \in(0,1] .
$$

(ii) $\theta=\frac{\pi}{2}$: Then

$$
0=-\sin (\theta) \sin (u)+\cos (\theta) v=-\sin (u) \Longleftrightarrow u=0
$$

hence

$$
\alpha: \mathbb{R} \rightarrow \mathbb{R}^{3}, t \mapsto\left(\begin{array}{l}
1 \\
0 \\
t
\end{array}\right)
$$

is a parametrization of the normal section. For $t \in \mathbb{R}$, we obtain

$$
\alpha^{\prime}(t)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \alpha^{\prime \prime}(t)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right), \alpha^{\prime}(t) \times \alpha^{\prime \prime}(t)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),
$$

thus

$$
\kappa_{\alpha}(t)=0=\kappa_{\alpha}(0) .
$$

The minimal and maximal normal curvature of X in p is therefore 0 and 1 , respectively.

Exercise 2.

(See Exercise 18 in Section 3-2 in Car16/)
Show: If a regular curve C is the intersection of two surfaces $X_{1} X_{2}$, then the curvature $\kappa_{C}(p)$ of C in $p \in C$ is given by

$$
\kappa_{C}(p)^{2} \sin (\theta)^{2}=\kappa_{n_{1}}^{2}+\kappa_{n_{2}}^{2}-2 \kappa_{n_{1}} \kappa_{n_{2}} \cos (\theta),
$$

where $\kappa_{n_{1}}$ and $\kappa_{n_{2}}$ are the normal curvatures at p along the tangent on C of X_{1} resp. X_{2} and θ is the angle between the normal vectors N_{1} and N_{2} of X_{1} resp. X_{2} at p.
(Hint: Consider the triangle spanned by $\kappa_{n_{1}} N_{2}$ and $\kappa_{n_{2}} N_{1}$.)

Solution 2.

We consider the triangle spanned by $\kappa_{n_{1}} N_{2}$ and $\kappa_{n_{2}} N_{1}$. For the third side, we obtain by the law of cosines

$$
\left|\kappa_{n_{1}} N_{2}-\kappa_{n_{2}} N_{1}\right|^{2}=\kappa_{n_{1}}^{2}+\kappa_{n_{2}}^{2}-2 \cos (\theta) \kappa_{n_{1}} \kappa_{n_{2}}
$$

With Sheet 2, Exercise 1 (iii) we obtain

$$
\begin{aligned}
\left|\kappa_{n_{1}} N_{2}-\kappa_{n_{2}} N_{1}\right| & =\left|\kappa_{C}(p)\left\langle n, N_{1}\right\rangle N_{2}-\kappa_{C}(p)\left\langle n, N_{2}\right\rangle N_{1}\right| \\
& =\kappa_{C}(p)\left|\left\langle n, N_{1}\right\rangle N_{2}-\left\langle n, N_{2}\right\rangle N_{1}\right| \\
& =\kappa_{C}(p)\left|n \times\left(N_{1} \times N_{2}\right)\right| \\
& =\kappa_{C}(p)\left|N_{1} \times N_{2}\right| \\
& =\kappa_{C}(p)|\sin (\theta)|
\end{aligned}
$$

where we used $n \perp N_{1} \times N_{2}=t_{C}(p)$ and $|n|=\left|N_{1}\right|=\left|N_{2}\right|$. Hence the result follows.

Exercise 3.

Let a and r be positive real numbers with $r<a$ and define the torus

$$
X:(0,2 \pi) \times(-\pi, \pi) \rightarrow \mathbb{R}^{3},(u, v) \mapsto((a+r \cos (u)) \cos (v),(a+r \cos (u)) \sin (v), r \sin (u))
$$

(i) Calculate the first and second fundamental form of X.
(ii) Determine a formula for the area of X.
(iii) Sketch the normal sections of X through the point $(a, 0, r)$.

Solution 3.

Let $(u, v) \in(0,2 \pi) \times(-\pi, \pi)$.
(i) We have

$$
\begin{aligned}
& \partial_{1} X(u, v)=-r(\sin (u) \cos (v), \sin (u) \sin (v),-\cos (u)) \\
& \partial_{2} X(u, v)=(a+r \cos (u))(-\sin (v), \cos (v), 0)
\end{aligned}
$$

hence

$$
\begin{aligned}
\left|\partial_{1} X(u, v)\right|^{2} & =r^{2} \\
\left|\partial_{2} X(u, v)\right|^{2} & =(a+r \cos (u))^{2} \\
\left\langle\partial_{1} X(u, v), \partial_{2} X(u, v)\right\rangle & =0
\end{aligned}
$$

Thus it follows that

$$
\begin{aligned}
\partial_{1} X(u, v) \times \partial_{2} X(u, v) & =-r(a+r \cos (u))(\cos (u) \cos (v), \cos (u) \sin (v), \sin (u)) \\
\left|\partial_{1} X(u, v) \times \partial_{2} X(u, v)\right| & =r(a+r \cos (u))
\end{aligned}
$$

and therfore

$$
N(u, v)=-(\cos (u) \cos (v), \cos (u) \sin (v), \sin (u))
$$

Furthermore, we see that

$$
\begin{aligned}
& \partial_{1} N(u, v)=(\cos (v) \sin (u), \sin (v) \sin (u),-\cos (u)) \\
& \partial_{2} N(u, v)=(\sin (v) \cos (u),-\cos (v) \cos (u), 0)
\end{aligned}
$$

The first fundamental form is given by

$$
\left(\begin{array}{cc}
r^{2} & 0 \\
0 & (a+r \cos (u))^{2}
\end{array}\right)
$$

and the second fundamental form is given by

$$
\left(\begin{array}{cc}
r & 0 \\
0 & (a+r \cos (u)) \cos (u)
\end{array}\right)
$$

(ii) With (i) we obtain

$$
\begin{aligned}
A_{(0,2 \pi) \times(-\pi, \pi)}(X) & =\int_{(0,2 \pi) \times(-\pi, \pi)}\left|\partial_{1} X(u, v) \times \partial_{2} X(u, v)\right| \mathrm{d}(u, v) \\
& =\int_{(-\pi, \pi)} \int_{(0,2 \pi)} r(a+r \cos (u)) \mathrm{d} u \mathrm{~d} v \\
& =2 \pi r[a u+r \sin (u)]_{0}^{2 \pi} \\
& =4 \pi^{2} r a .
\end{aligned}
$$

(iii) Cassini ovals.

Exercise 4.

Let I be an open interval, $\alpha: I \rightarrow \mathbb{R}^{3}$ be a regular curve and let $w: I \rightarrow \mathbb{R}^{3} \backslash\{0\}$ be smooth. The mapping

$$
X: I \times \mathbb{R} \rightarrow \mathbb{R}^{3},(u, v) \mapsto \alpha(u)+v w(u)
$$

is called a ruled surface if X is regular. The curve α is called directrix and the straight lines $\mathbb{R} \rightarrow \mathbb{R}^{3}, v \mapsto \alpha(u)+v w(u)(u \in I)$ are called generators.
(i) Under which conditions is X a regular parameterized surface?
(ii) Let $u \in I$ such that the tangent plane $T_{(u, v)} X$ of X in (u, v) exists for all $v \in \mathbb{R}$. Show that $T_{(u, v)} X=T_{(u, \tilde{v})} X$ for all $v, \tilde{v} \in \mathbb{R}$ if and only if the vectors $\alpha^{\prime}(u), w^{\prime}(u)$ and $w(u)$ are linear dependent.
(iii) Show that hyperbolic paraboloid (see Sheet 7, Exercise 1) is a ruled surface.
(Hint: Third binomial formula.)

Solution 4.

(i) Let $(u, v) \in I \times \mathbb{R}$. We have

$$
\begin{aligned}
& \partial_{1} X(u, v)=\alpha^{\prime}(u)+v w^{\prime}(u), \\
& \partial_{2} X(u, v)=w(u),
\end{aligned}
$$

hence

$$
\partial_{1} X(u, v) \times \partial_{2} X(u, v)=\alpha^{\prime}(u) \times w(u)+v w^{\prime}(u) \times w(u) .
$$

Therfore X is regular if and only if $\alpha^{\prime}(u) \times w(u)$ and $w^{\prime}(u) \times w(u)$ are linear independent for all $u \in I$.
(ii) First, let $T_{(u, v)} X=T_{(u, \tilde{v})} X$ for all $v, \tilde{v} \in \mathbb{R}$. It follows that

$$
T_{(u, v)} X=T_{(u, 0)} X=\operatorname{span}\left\{\alpha^{\prime}(u), w(u)\right\}
$$

for all $v \in \mathbb{R}$ and hence

$$
\partial_{1} X(u, v)=\alpha^{\prime}(u)+v w^{\prime}(u)=\lambda \alpha^{\prime}(u)+\mu w(u)
$$

for all $v \in \mathbb{R}$. We obtain that

$$
0=(\lambda-1) \alpha^{\prime}(u)+\mu w(u)-v w^{\prime}(u)
$$

for all $v \in \mathbb{R}$. Thus $\alpha^{\prime}(u), w(u), w^{\prime}(u)$ are linear dependent.
Now let $\alpha^{\prime}(u), w(u), w^{\prime}(u)$ be linear dependent. Then $\alpha^{\prime}(u) \times w(u)$ and $w^{\prime}(u) \times w(u)$ are linear dependent and thus $\partial_{1} X(u, v) \times \partial_{2} X(u, v)$ and $\alpha^{\prime}(u) \times w(u)$ are linear dependent for all $v \in \mathbb{R}$. We conclude that

$$
T_{(u, v)} X=\left\{\partial_{1} X(u, v) \times \partial_{2} X(u, v)\right\}^{\perp}=\left\{\alpha^{\prime}(u) \times w(u)\right\}^{\perp}=T_{(u, \tilde{v})} X
$$

for all $v, \tilde{v} \in \mathbb{R}$.
(iii) The hyperbolic paraboloid has been parameterized by

$$
X: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(u, v) \mapsto\left(u, v, \frac{u^{2}}{a^{2}}-\frac{v^{2}}{b^{2}}\right)
$$

Since

$$
\frac{u^{2}}{a^{2}}-\frac{v^{2}}{b^{2}}=\left(\frac{u}{a}-\frac{v}{b}\right)\left(\frac{u}{a}+\frac{v}{b}\right)
$$

for all $(u, v) \in \mathbb{R}^{2}$, using the linear bijection

$$
\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(u, v) \mapsto\left(\frac{u}{a}-\frac{v}{b}, \frac{u}{a}+\frac{v}{b}\right)=\left(\begin{array}{cc}
\frac{1}{a} & -\frac{1}{b} \\
\frac{1}{a} & \frac{1}{b}
\end{array}\right)\binom{u}{v}
$$

we can write the parametrization as

$$
\begin{aligned}
X: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(u, v) & \mapsto\left(\varphi^{-1}(\varphi(u, v)), \varphi_{1}(u, v) \varphi_{2}(u, v)\right) \\
& =\left(\frac{a}{2}\left(\varphi_{1}(u, v)+\varphi_{2}(u, v)\right), \frac{b}{2}\left(\varphi_{2}(u, v)-\varphi_{1}(u, v)\right), \varphi_{1}(u, v) \varphi_{2}(u, v)\right)
\end{aligned}
$$

or

$$
\tilde{X}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3},(\tilde{u}, \tilde{v}) \mapsto\left(\frac{a}{2}(\tilde{u}+\tilde{v}), \frac{b}{2}(\tilde{v}-\tilde{u}), \tilde{u} \tilde{v}\right)=\left(\frac{a}{2} \tilde{u},-\frac{b}{2} \tilde{u}, 0\right)+\tilde{v}\left(\frac{a}{2}, \frac{b}{2}, \tilde{u}\right)
$$

since

$$
\varphi^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad(\tilde{u}, \tilde{v}) \mapsto\left(\begin{array}{cc}
\frac{a}{2} & \frac{a}{2} \\
-\frac{b}{2} & \frac{b}{2}
\end{array}\right)\binom{\tilde{u}}{\tilde{v}}=\left(\begin{array}{l}
\left.\frac{a}{2}(\tilde{u}+\tilde{v}), \frac{b}{2}(\tilde{v}-\tilde{u})\right) . . .
\end{array}\right.
$$

With

$$
\alpha: \mathbb{R} \rightarrow \mathbb{R}^{3}, t \mapsto\left(\frac{a}{2} t,-\frac{b}{2} t, 0\right) \quad \text { and } \quad w: \mathbb{R} \rightarrow \mathbb{R}^{3} \backslash\{0\}, t \mapsto\left(\frac{a}{2}, \frac{b}{2}, t\right)
$$

it follows that

$$
\tilde{X}(\tilde{u}, \tilde{v})=\alpha(\tilde{u})+v w(\tilde{u})
$$

for all $(\tilde{u}, \tilde{v}) \in \mathbb{R}^{2}$.

References

[Car16] Manfredo P. do Carmo. Differential geometry of curves \& surfaces. Revised \& updated second edition. Dover Publications, Inc., Mineola, NY, 2016.
[Fuc08] Martin Fuchs. Vorlesungsskript zur Differentialgeometrie. 2008.

