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Exercise 1.
Consider the parametrization

X: (—m,7m) xR, (u,v) — (cos(u),sin(u),v),
i.e. X is a parametrization of the cylinder
Z={(z,y,2) eR®; 2® +4* =1},

Determine all normal sections as well as the minimal and the maximal normal curvature of X in

p = X(0,0) = (1,0,0).

Solution 1.
We have

" X (u,v) = (—sin(u), cos(u),0),
02 X (u,v) = (0,0,1)

and
" X (u,v) X 02X (u,v) = (cos(u),sin(u),0)

for all (u,v) € (—m,m) x R. Let 6 € [0, §]. We consider the plane

Ey = {p + /\(81X(0, 0) X GQX(O, O)) + ,U,(COS(Q)alX(O, 0) + Sin((g)azX(O, O)) AU E R}

Then
ng = (01X(0,0) x 02X(0,0)) x (cos(6)01X(0,0) + sin(#)02X(0,0))

1 0 0

=0 x|cos(d)|1]|+sin(®) |0
0 0 1

0

= | —sin(0)

cos(#)

is the normal vector of this plane and, since
0 = (np, X (u,v) — p) = —sin(f) sin(u) + cos(@)v  ((u,v) € (—m,m) x R),
we obtain for the normal section
Bild(X)NEy = {(u,v) € (—m,m) x R ; cos(f)v = sin() sin(u)}.
Let (u,v) € Bild(X) N Ep.
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(i) 0 €[0,%): Then
v = tan(0) sin(u),
hence
cos(t)
a: (—m,m) = R3, t— sin(t)
tan (@) sin(t)

is a parametrization of the normal section. For ¢ € (—m, ), we obtain

— sin(t) —cos(t) 0
o (t) = cos(t) , d'(t) = — sin(t) , () xa’(t) = [ —tan(0) |,
tan(6) cos(t) — tan(0) sin(t) 1
thus
rat) = (1 + tan(6)?)/2
(1 + tan(6)2 cos(t)?2)3/2
and therefore .
HQ(O) = H—TH(H)Z € (O, 1]
(i) 0 = 5: Then
0 = —sin(#) sin(u) 4 cos(f)v = —sin(u) <= u =0,
hence
1
a:R-R3 t— [0
t

is a parametrization of the normal section. For ¢ € R, we obtain

thus
Ka(t) =0 = ko (0).
The minimal and maximal normal curvature of X in p is therefore 0 and 1, respectively.

Exercise 2.
(See Ezercise 18 in Section 3-2 in [Carl6|])

Show: If a regular curve C' is the intersection of two surfaces X; Xo, then the curvature k¢ (p)
of C'in p € C is given by

Iic(p)2 sin(9)2 = mil + Ii?w — 2K, Kn, cos(6),

where k,, and k,, are the normal curvatures at p along the tangent on C of X; resp. Xy and 6
is the angle between the normal vectors N1 and No of X7 resp. Xo at p.

(Hint: Consider the triangle spanned by tin, N2 and kn,N1.)
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Solution 2.
We consider the triangle spanned by kn, N2 and x,,N1. For the third side, we obtain by the law

of cosines
|Kony No — ny N1|? = K2, + Koy — 208(0) K, i,
With Sheet 2, Exercise 1 (iii) we obtain
|finy N2 = fin, N1| = |0 (p)(n, N1) N — ke (p)(n, N2) N1 |

= rc(p)|(n, N1) N2 — (n, Na) V1|

= ro(p)ln x (N1 x Na)|

= ki (p)[N1 x Nof

= rc(p)lsin(0)],
where we used n L N1 x Ny =tc(p) and |n| = |N1| = | N2|. Hence the result follows.

Exercise 3.
Let a and r be positive real numbers with » < a and define the torus

X:(0,27) x (—m,m) = R®, (u,v) — ((a + 7 cos(u)) cos(v), (a + rcos(u)) sin(v), r sin(u)).
(i) Calculate the first and second fundamental form of X.
(ii) Determine a formula for the area of X.
(iii) Sketch the normal sections of X through the point (a,0,r).
Solution 3.
Let (u,v) € (0,27) x (—m, 7).
(i) We have

" X (u,v) = —r(sin(u) cos(v), sin(u) sin(v), — cos(u)),
02X (u,v) = (a + rcos(u))(—sin(v), cos(v), 0),

hence

01X (u, ) =12,
|02 X (u, v)\2 = (a+ rcos(u))Q,
(0 X (u,v), 1 X (u,v)) =0.

Thus it follows that

O X (u,v) x 02X (u,v) = —r(a + rcos(u))(cos(u) cos(v), cos(u) sin(v), sin(u)),
|01 X (u,v) X 92X (u,v)| = r(a+ rcos(u)),

and therfore
N (u,v) = —(cos(u) cos(v), cos(u) sin(v), sin(u)).

Furthermore, we see that

01N (u,v) = (cos(v) sin(u), sin(v) sin(u), — cos(u)),
02N (u,v) = (sin(v) cos(u), — cos(v) cos(u), 0).

The first fundamental form is given by

(7;)2 (a+ T((:)os(u))2>

and the second fundamental form is given by

(g (a+r cos(()u) ) cos(u)) '
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(ii) With (i) we obtain

Aoz (X) = /02 X0 > 0 0 0
/ / (a + rcos(u)) dudv
—7T7T 027r

= 2mr[au + rsin(u)]3"

= 47%ra.
(iii) Cassini ovals.

Exercise 4.

Let I be an open interval, a: I — R3 be a regular curve and let w: I — R3\ {0} be smooth.
The mapping
X: I xR =R (u,v) — a(u) + vw(u)

is called a ruled surface if X is regular. The curve « is called directriz and the straight lines
R — R3, v+ a(u) +vw(u) (u € I) are called generators.

(i) Under which conditions is X a regular parameterized surface?

(ii) Let u € I such that the tangent plane T(, ,)X of X in (u,v) exists for all v € R. Show
that T(y, X = T(y,5X for all v,o € R if and only if the vectors o/ (u), w'(u) and w(u) are
linear dependent.

(iii) Show that hyperbolic paraboloid (see Sheet 7, Exercise 1) is a ruled surface.
(Hint: Third binomial formula.)

Solution 4.
(i) Let (u,v) € I x R. We have

X (u,v) = (u) + vw'(u),
1 X (u,v) = w(u),

hence
01X (u,v) x 9 X (u,v) = o (u) x w(u) + vw' (u) x w(u).

Therfore X is regular if and only if o/(u) x w(u) and w'(u) x w(u) are linear independent
for all u € 1.

(ii) First, let Tiy )X = Ty, X for all v,o € R. Tt follows that
Ty X = T(u,0)X = span{a/(u), w(u)}
for all v € R and hence
X (u,v) = o (u) + vw'(u) = A (u) + pw(u)
for all v € R. We obtain that
0=\—1)d(u) + pw(u) — vw'(u)
for all v € R. Thus o/ (u), w(u),w (u) are linear dependent.

Now let o/(u), w(u),w’(u) be linear dependent. Then o/(u) x w(u) and w'(u) x w(u) are
linear dependent and thus 9 X (u,v) X 92X (u,v) and o'(u) x w(u) are linear dependent
for all v € R. We conclude that

Ty X = {01 X (u,v) x DX (u,v)}t = { (u) x w(u)}t+ = T X

for all v, v € R.
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(iii) The hyperbolic paraboloid has been parameterized by

u?  0?
X:R? 5 R, (u,v) — <u,v,a2—b2>.

Since
2 2

E DG

for all (u,v) € R?, using the linear bijection

. R2 s R? (3—93 ”)
R SR, () o (20 g

S =

Il
7 N\
Q| |
S
~_
7N

[SEES
~_

we can write the parametrization as
X:R? =R, (u,0) = (07 Hp(u,v), @1 (u, 0)pa(u, v))

= (Se1000) + patu ). S oa(0) — 1001 )n () )

or
b b
XRS5 RS, (0,9) 0 | S(a+0), 2(6—a),a0 ) = | wi,——a,0) +3( 2, 2,a),
279 272
since e @ ~
ctir o @ (4 1) ()= (jarag0-0)
With

b b
a:R—- RS t— (;t,—zt,O) and w:R — R3\ {0}, t — (;,2,t>

it follows that

X(a,0) = a(u) + vw(a)
for all (%,7) € R2.
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