UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Martin Fuchs Dr. Dominik Schillo

Übungen zur Vorlesung Differentialgeometrie

Sommersemester 2020

Blatt 2 Abgabetermin: /

Materialien: $\S1 - \S2$; Sections 1-1 - 1-6 in [Car16]

Übung 1.

Es seien $\alpha, \beta \colon I \to \mathbb{R}^3$ differenzierbare Abbildungen auf einem Intervall $I \subset \mathbb{R}$. Zeigen Sie:

(i) Die Abbildung $\alpha \times \beta \colon I \to \mathbb{R}^3$ ist differenzierbar mit

$$(\alpha \times \beta)' = \alpha' \times \beta + \alpha \times \beta'.$$

(ii) Gelten mit den Konstanten $a,b,c\in\mathbb{R}$ die Beziehungen

$$\alpha' = a\alpha + b\beta$$
 und $\beta' = c\alpha - a\beta$,

so ist $\alpha \times \beta$ konstant.

(iii) Beweisen Sie für $u, v, w \in \mathbb{R}^3$ die Identität

$$(u \times v) \times w = (u \cdot w)v - (v \cdot w)u.$$

Übung 2.

Seien $a, b, c \in \mathbb{R}$ mit $a^2 + b^2 = c^2$ und $a \neq 0$. Betrachten Sie die durch

$$\gamma \colon \mathbb{R} \to \mathbb{R}^3, \ s \mapsto \left(a \cos\left(\frac{s}{c}\right), a \sin\left(\frac{s}{c}\right), b\frac{s}{c}\right)$$

erklärte parametrisierte Kurve.

- (i) Ist γ nach Bogenlänge parametrisiert?
- (ii) Berechnen Sie die Krümmung und Torsion von γ .
- (iii) Zeigen Sie, dass der Winkel, unter dem sich die Gerade in Richtung des Normalenvektors von $\gamma(s)$, die durch $\gamma(s)$ geht, die z-Achse schneidet, unabhängig von $s \in \mathbb{R}$ ist und bestimmen Sie diesen.
- (iv) Skizzieren Sie die Kurve γ .

Übung 3.

Seien $I \subset \mathbb{R}$ ein Intervall und $\alpha \colon I \to \mathbb{R}^3$ eine beliebig (nicht notwendig nach der Bogenlänge parametrisierte) reguläre Kurve mit nirgends verschwindender Krümmung. Zeigen Sie, dass das Frenetsche Dreibein $(t_{\alpha}, n_{\alpha}, b_{\alpha})$ gegeben ist durch

$$t_{\alpha} = \frac{\alpha'}{|\alpha'|}, \ n_{\alpha} = \frac{\alpha' \times \alpha''}{|\alpha' \times \alpha''|} \times \frac{\alpha'}{|\alpha'|}, \ b_{\alpha} = \frac{\alpha' \times \alpha''}{|\alpha' \times \alpha''|}.$$

(Hinweis: Parametrisieren Sie die Kurve nach der Bogenlänge und benutzen Sie Aufgabe 1 sowie die Seiten 23 & 24 im Skript.)

Übung 4.

(i) Zeigen Sie, dass die orientierte Krümmung einer beliebigen regulären ebenen Kurve $\alpha \colon I \to \mathbb{R}^2, \ t \mapsto (x(t), y(t)) \ (I \subset \mathbb{R}$ ein Intervall) gegeben ist durch

$$\kappa_{\alpha} \colon I \to \mathbb{R}, \ t \mapsto \frac{x'(t)y''(t) - x''(t)y'(t)}{(x'(t)^2 + y'(t)^2)^{3/2}}.$$

(ii) Zeigen Sie, dass die orientierte Krümmung einer regulären ebenen Kurve bei Umorientierung das Vorzeichen wechselt.

Literatur

[Car16] Manfredo P. do Carmo. Differential geometry of curves & surfaces. Revised & updated second edition. Dover Publications, Inc., Mineola, NY, 2016.