Universität des Saarlandes Fachrichtung 6.1 – Mathematik

Prof. Dr. Martin Fuchs Jan Müller, M.Sc.

Variationsrechnung (SS 2015) Blatt 1

Bitte beachten Sie, dass die durch (*) gekennzeichneten Aufgaben nicht bewertet und korrigiert werden. Sie werden im Tutorium gemeinsam bearbeitet.

Aufgabe 1 (3+1+1 Punkte)

Sei $X:=C^0([0,1])$ der Vektorraum der auf dem abgeschlossenen Intervall [0,1] stetigen, reellwertigen Funktionen und $U:=\{f\in X\mid f(0)=0\}$. Ferner seien wie in der Vorlesung durch $\parallel f\parallel_{\infty}:=\max_{x\in[0,1]}|f(x)|$ und $\parallel f\parallel_{1}:=\int_{0}^{1}|f(x)|dx$ zwei Normen auf X definiert.

- (a) Zeigen Sie, dass U ein abgeschlossener Unterraum von $(X, \| . \|_{\infty})$ ist, aber als Unterraum von $(X, \| . \|_{1})$ nicht abgeschlossen ist.
- (b) Es sei $(X, \| . \|)$ ein Banachraum und $Y \subset X$ ein abgeschlossener Unterraum. Beweisen Sie, dass $(Y, \| . \|)$ ebenfalls vollständig ist.
- (c) Zeigen Sie die Umkehrung der Aussage in (b), d.h. jeder vollständige Unterraum $(Y, \| . \|)$ eines Normierten Raumes $(X, \| . \|)$ ist abgeschlossen.

Aufgabe 2 (*)

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt und sei $k \in \mathbb{N}_0 \cup \{\infty\}$. Beweisen Sie:

(a) Auf dem Raum $C^k(\overline{\Omega})$ wird eine Norm erklärt durch die Vorschrift:

$$\parallel u \parallel := \begin{cases} \sum_{\nu \in \mathbb{N}_0^n, |\nu| \le k} \parallel \partial^{\nu} u \parallel_{\infty} & \text{wenn } k \in \mathbb{N}_0, \\ \max_{\nu \in \mathbb{N}_0^n} \parallel \partial^{\nu} u \parallel_{\infty} & \text{wenn } k = \infty. \end{cases}$$

Dabei bezeichnet $\| \cdot \|_{\infty}$ wie üblich die Supremumnorm.

(b) Der Raum $C^k(\overline{\Omega})$ ist vollständig bezüglich dieser Norm.

Aufgabe 3 (3+2 Punkte)

(a) Zeigen Sie, dass die Funktion $\eta: \mathbb{R}^n \to \mathbb{R}$,

$$\eta(x) := \begin{cases} \exp(\frac{1}{|x|^2 - 1}) & \text{wenn } |x| < 1, \\ 0 & \text{sonst} \end{cases}$$

beliebig oft differenzierbar ist und Träger in $\overline{B}_1(0)$ hat. Folgern Sie: $\int_{\mathbb{R}^n} \eta(x) dx < \infty$.

(b) Es sei $I \subset \mathbb{R}$ ein Intervall. Konstruieren Sie eine Funktion $\eta \in C^{\infty}(\mathbb{R})$ deren Träger spt η kompakt in I enthalten ist.

Hinweis zu Teil (a): Betrachten Sie die Funktion $\exp(\frac{1}{x})$.

Aufgabe 4 (*)

Sei $X \subset \mathbb{R}^n$ mit $\mathcal{L}^n(X) < \infty$, wobei \mathcal{L}^n das n-dimensionale Lebesgue-Maß ist. Für $p \geq 1$ bezeichne $L^p(X)$ den Raum der Äquivalenzklassen von p-integrierbaren reellwertigen Funktionen auf X.

- (a) Zeigen Sie, dass für alle Exponenten $1 \le p \le q \le \infty$ gilt: $L^p(X) \subset L^q(X)$.
- (b) Finden Sie im Fall $\mathcal{L}^n(X) = \infty$ zwei Exponenten $1 \le p \le q \le \infty$ für die die Aussage in (a) falsch ist.

Abgabe: Montag, den 4. Mai vor der Vorlesung.