Universität des Saarlandes Fachrichtung 6.1 - Mathematik

Prof. Dr. Martin Fuchs Jens Horn, M. Sc.

Analysis I (WS 2020/21) Übungsblatt 8

Abgabe: Freitag, den 15.01.2021.

Aufgabe 1 (2+1+2=5 Punkte)

Die komplexwertigen Funktionen Sinus hyperbolicus und Cosinus hyperbolicus werden definiert durch:

$$\sinh(z) = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$$

und

$$\cosh(z) = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}.$$

Sei $z \in \mathbb{C}$. Zeigen Sie die folgenden Eigenschaften der hyperbolischen Funktionen:

(i)
$$\sinh(z) = \frac{\exp(z) - \exp(-z)}{2}$$
 und $\cosh(z) = \frac{\exp(z) + \exp(-z)}{2}$.

(ii)
$$\cosh^2(z) - \sinh^2(z) = 1$$
.

(iii)
$$\sin(z) = -i \sinh(iz)$$
 und $\cos(z) = \cosh(iz)$.

Aufgabe 2 (2+3+3+2=10 Punkte)

Bestimmen Sie alle Punkte $x \in \mathbb{R}$, in denen die angegebenen Funktionen stetig sind.

(i)
$$f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$$

(ii)
$$g: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} 0, & x \in \mathbb{Q}, \\ \cos(x), & x \in \mathbb{R} - \mathbb{Q}. \end{cases}$$

(iii)
$$h: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} 0, & x = 0, \\ x \sin(x), & x \text{ sonst.} \end{cases}$$

(iv)
$$n: \mathbb{R} \to \mathbb{R}, x \mapsto \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{R} - \mathbb{Q}. \end{cases}$$

Aufgabe 3 (2+2+2+3=9 Punkte)

Seien $I \subset \mathbb{R}$ ein beschränktes Intervall und $0 < \alpha < 1$. Eine Funktion $f: I \to \mathbb{R}$ heißt genau dann **Hölder-stetig** (mit Exponent α), wenn es eine Konstante $K \in (0, \infty)$ gibt, sodass

$$|f(x) - f(y)| \le K|x - y|^{\alpha} \tag{*}$$

für alle $x, y \in I$ gilt. Wir schreiben $f \in C^{\alpha}(I)$.

- (i) Beweisen Sie, dass jede Hölder-stetige Funktion eine stetige Funktion ist.
- (ii) Beweisen Sie, dass jede auf einem beschränktem Intervall Lipschitz-stetige Funktion eine Hölder-stetig Funktion zu jedem Exponenten $\alpha \in (0,1)$ ist.
- (iii) Seien $\alpha, \beta \in (0,1)$ mit $\alpha > \beta$. Zeigen Sie, dass jede Hölder-stetige Funktion mit Exponent α eine Hölder-stetige Funktion mit Exponent β ist.
- (iv) Sei $f: I \to \mathbb{R}$ eine Funktion, die (\star) für ein $\alpha > 1$ erfüllt. Zeigen Sie, dass f konstant ist.

[Hinweis: Betrachten Sie $x, y \in I$ mit x < y und teilen Sie das Intervall [x, y] in n gleich lange Teilintervalle $[x_{i-1}, x_i]$ mit $x_0 = x$, $x_n = y$ und betrachten Sie |f(x) - f(y)|.

Aufgabe 4 (2+4+4=10 Punkte)

- (i) Zeigen Sie, dass jede stetige Funktion $f:[a,b] \to [a,b]$ einen Fixpunkt hat, d.h. es gibt ein $x_0 \in [a,b]$ mit $f(x_0) = x_0$.
- (ii) Zeigen Sie, dass jede stetige und injektive Funktion $f:[a,b] \to \mathbb{R}$ streng monoton ist.
- (iii) Sei $f : \mathbb{R} \to \mathbb{R}$ eine stetig Funktion mit f(x+y) = f(x) + f(y) für alle $x, y \in \mathbb{R}$. Zeigen Sie, dass es ein $\lambda \in \mathbb{R}$ mit $f(x) = \lambda x$ für alle $x \in \mathbb{R}$ gibt.

Aufgabe 5 (2+4=6 Punkte)

- (i) Beweisen Sie, dass kompakte Mengen beschränkt sind.
- (ii) Beweisen Sie, dass endliche Vereinigungen und beliebige Durchschnitte kompakter Mengen auch kompakt sind.