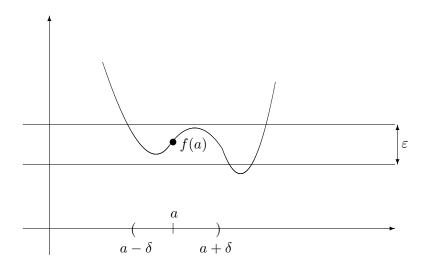
Stetigkeit von Funktionen

Definition 9.1: Sei $D \subset \mathbb{R}$ oder $\subset \mathbb{C}$ und $f: D \to \mathbb{R}, \mathbb{C}$.

 $\begin{array}{lll} f & stetig \ in & a \in D & :\Longleftrightarrow & \forall \, \varepsilon > 0 \, \exists \, \, \delta > 0 \quad mit \quad |f(z) - f(a)| < \varepsilon \\ & & f \ddot{u}r \ alle & z \in D, |z - a| < \delta. \end{array}$

 $f \quad \textit{stetig auf} \quad D \qquad :\Longleftrightarrow \quad f \quad \textit{stetig in jedem Punkt} \quad a \in D.$

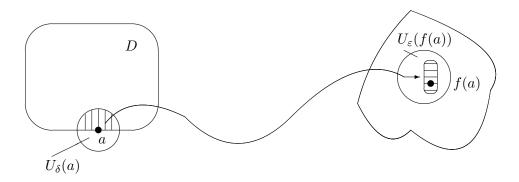


i) für $D \subset \mathbb{R}, f: D \to \mathbb{R}$:

Über $(a - \delta, a + \delta)$ muß Graph (f) im ε - Streifen liegen

$$f(D \cap (a - \delta, a + \delta)) \subset (f(a) - \varepsilon, f(a) + \varepsilon)$$

ii) für
$$D \subset \mathbb{C}, f: D \to \mathbb{C}$$



iii), iv)
$$D \subset \mathbb{R}, f: D \to \mathbb{C}$$
 bzw. $D \subset \mathbb{C}, f: D \to \mathbb{R}$ analog

"Man gibt die zulässige Schwankung vor und muß dazu eine Umgebung $U_{\delta}(a)$ von a ausrechnen, so dass dort die Abweichung von f(a) durch ε kontrolliert wird"

Satz 9.1 :
$$f: D \to \mathbb{C}$$
 (oder \mathbb{R}) Lipschitz $\Longrightarrow f$ stetig auf D

Beweis: " $\delta = \varepsilon/L$ "

Beispiele:

- 0) Satz $9.1 \implies$ Potenzreihen sind stetig auf dem Inneren des Konvergenzbereiches
- 1) $x \mapsto e^x$, $\sin x$, $\cos x$, $\cos x$ stetig (Satz 9.1) auf \mathbb{R}
- 2) tan, cot stetig auf ihrem Definitionsbereich (Rechenregeln, s.u)
- 3) Hyperbelfunktionen " (folgt aus Stetigkeit von e^x + Rechenregeln für stetige Funktionen)
- 4) $[0, \infty) \ni t \mapsto \sqrt{t}$ stetig an jeder Stelle $t_{\circ} \ge 0$: Es ist $\sqrt{t} - \sqrt{t_{\circ}} = (t - t_{\circ}) / (\sqrt{t} + \sqrt{t_{\circ}})$ (wenn eine der Zahlen > 0)

$$\varepsilon > 0$$
 gegeben; $\delta := \sqrt{t_{\circ}} \cdot \varepsilon$, falls $t_{\circ} > 0$

$$\implies |\sqrt{t} - \sqrt{t_{\circ}}| \leq \sqrt{t_{\circ}} \cdot \varepsilon \frac{1}{\sqrt{t + \sqrt{t_{\circ}}}} \leq \varepsilon \quad \forall t \in (t_{\circ} - \delta, t_{\circ} + \delta)$$

ist $t_{\circ} = 0$, so gilt $|\sqrt{t}| < \varepsilon$ für alle $t \in [0, \varepsilon^2)$, also $\delta := \varepsilon^2$.

4) ist Spezialfall von 0), nochmals direkte Rechnung $n \in \mathbb{N}, \ f(z) := z^n, \ z \in \mathbb{C}, \$ ist stetig:

Sei $z_{\circ} \in \mathbb{C}, \ \varepsilon > 0 \ \text{ gegeben. Fall } n = 1: \ \delta = \varepsilon$

$$n \ge 2: \quad f(z) - f(z_{\circ}) = (z - z_{\circ}) \ (z^{n-1} + z^{n-2}z_{\circ} + \dots + z_{\circ}^{n-1})$$

$$\implies \qquad |f(z) - f(z_{\circ})| \le n \cdot \max \left\{ |z|^{n-1}, |z|^{n-2} \cdot |z_{\circ}|, \dots, |z_{\circ}|^{n-1} \right\} |z - z_{\circ}|$$

$$\le n \cdot (1 + |z_{\circ}|)^{n-1} |z - z_{\circ}|,$$

 $\text{falls} \quad |z-z_{\circ}| < 1. \quad \text{W\"{a}hlt man} \quad \delta := \min\Big\{1, \varepsilon \frac{1}{n} \cdot (1+|z_{\circ}|)^{-n+1}\Big\},$ so folgt

$$|f(z) - f(z_{\circ})| < \varepsilon \text{ für } |z - z_{\circ}| < \delta.$$

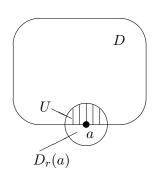
5)
$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \begin{cases} 0, & x \in \mathbb{Q} \\ 1, & \text{sonst} \end{cases}$$
 ist nirgends stetig,

da in jedem Intervall $(x_{\circ} - \delta, x_{\circ} + \delta)$ sowohl Punkte $\in \mathbb{Q}$ als auch $\notin \mathbb{Q}$ liegen. Aber: $g: \mathbb{R} \to \mathbb{R}, \quad g(x) := x \cdot f(x), \quad \text{ist stetig in } 0,$ denn $|g(x) - g(\circ)| = |x \cdot f(x)| \le |x|.$

Bemerkung: topologische Definition der Stetigkeit

 $D \subset \mathbb{C}, \quad a \in D$

 $U \subset D$ heißt <u>Umgebung von a in D (oder: relativ zu D)</u>: $\Leftrightarrow \exists r > 0$ mit $U \cap D(a) \subset D_r$, $D_r(a) := \{z \in \mathbb{C} : |z - a| < r\}$



oder

Dann gilt für $f: D \to \mathbb{C}$:

f stetig in $a \iff$ zu jeder Umgebung V von f(a) in $\mathbb C$ gibt es eine Umgebung U von a in D mit $f(U) \subset V$.

Beweis: Übung! (das ist nur eine Umformulierung der Definition)

Fall
$$D \subset \mathbb{R}$$
: betrachte Intervalle $\subset \mathbb{R}$

Sehr praktisch ist

Satz 9.2 : Folgenkriterium für Stetigkeit

$$f: D \to \mathbb{R}, \mathbb{C} \text{ stetig in } a \iff$$

$$f\ddot{u}r \ \underline{jede} \ Folge \ \{x_n\} \ in \ D \ mit \ x_n \to a \ gilt \ f(x_n) \to f(a).$$

f ist also <u>unstetig in a</u>, wenn man <u>eine</u> Folge $\{x_n\}$ angeben kann mit $x_n \longrightarrow a$, aber $f(x_n) \xrightarrow{} f(a)$.

Beweis: " \Longrightarrow " Sei $x_n \longrightarrow a$; $\varepsilon > 0$ gegeben; berechne dazu δ mit $|f(x) - f(a)| < \varepsilon$ für alle $x \in D$, $|x-a| < \delta$. Für $n \ge N$ ist $|x_n-a| < \delta$, also $|f(x_n) - f(a)| < \varepsilon$, so dass $f(x_n) \longrightarrow f(a)$.

" \Longleftrightarrow ": indirekt! dann gibt es ein $\varepsilon > 0$ wie folgt: zu jedem $\delta > 0$ existiert in $\{x \in D : |x-a| < \delta\}$ ein x_δ mit $|f(x_\delta) - f(a)| \ge \varepsilon$ betrachte $\delta := 1/n$, setze $z_n := x_{1/n} \implies z_n \longrightarrow a$, aber $f(z_n) \longrightarrow f(a)$.

Satz 9.3 : Rechenregeln für stetige Funktionen

- (i) $f, g: D \to \mathbb{R}, (\mathbb{C})$ stetig in $a \in D \Longrightarrow$ $f+g, f\cdot g, f/g$ (falls $g(a) \neq 0$) stetig in a
- (ii) $f: D \to \mathbb{R}(\mathbb{C})$ stetig in $a, g: E \to \mathbb{R}(\mathbb{C})$ stetig in $f(a), f(D) \subset E \implies g \circ f$ stetig in a

Beweis: Folgenkriterium!

Folgerung: i) Polynome sind überall stetig (natürlich auch Spezialfall von "Potenzreihe").

- ii) Rat. Funktionen sind stetig auf ihrem Definitionsbereich.
- iii) $f: D \to \mathbb{C}$ stetig $\Longrightarrow \overline{f}$, Re f, Im f, |f| stetig

Bemerkung: Die Handlichkeit des Folgenkriteriums gegenüber der $\varepsilon - \delta$ Definition sieht man z.B. unschwer, wenn man die Stetigkeit von $x \mapsto \operatorname{cis}^3(x^2 + \sin x)$ im Punkt x = 1 nachprüfen muß.

Satz 9.4 : Stetigkeit der Umkehrfunktion (s.Forster, p106)

Sei
$$f:[a,b] \to \mathbb{R}$$
 streng monoton und stetig \Longrightarrow die Bildmenge $f([a,b])$ ist ein Intervall mit Grenzen $f(a), f(b)$ und $g=f^{-1}: f([a,b]) \to [a,b]$ ist stetig

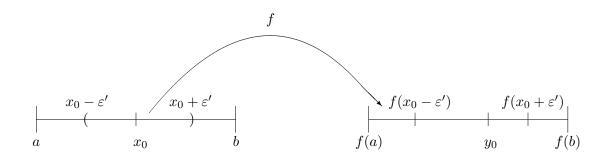
Wir werden diesen Satz ableiten aus

Satz 9.5 : Zwischenwertsatz ZWS

anders gesagt:

$$f([a,b]) \supset \begin{cases} [f(a),f(b)] & \text{für } f(a) \leq f(b) \\ [f(b),f(a)] & \text{sonst} \end{cases}$$

Beweis von Satz 9.4 mit 9.5: Die Aussage über f([a,b]) folgt aus dem ZWS. Sei f streng wachsend $\implies g$ streng wachsend



$$y_{\circ} \in \Big[f(a), f(b)\Big] = f\Big([a, b]\Big)$$
 fixiert, $\varepsilon > 0$ gegeben, $x_{\circ} := g(y_{\circ})$

Fall 1: y_0 innerer Punkt von [f(a), f(b)]

 \implies (strenge Monotonie) $x_{\circ} \in (a, b)$

$$\implies \exists \varepsilon' \leq \varepsilon : \qquad (x_{\circ} - \varepsilon', x_{\circ} + \varepsilon') \subset [a, b] \cap (x_{\circ} - \varepsilon, x_{\circ} + \varepsilon)$$

f stetig und streng monoton $\implies (f(x_{\circ} - \varepsilon'), f(x_{\circ} + \varepsilon')) \subset [f(a), f(b)]$

und
$$y_{\circ} \in (f(x_{\circ} - \varepsilon'), f(x_{\circ} + \varepsilon'))$$

Also:
$$\exists \delta > 0$$
 mit $(y_{\circ} - \delta, y_{\circ} + \delta) \subset (f(x_{\circ} - \varepsilon'), f(x_{\circ} + \varepsilon'))$

Für
$$y \in (y_{\circ} - \delta, y_{\circ} + \delta)$$
 folgt: $g(y) \in (x_{\circ} - \varepsilon', x_{\circ} + \varepsilon') \implies |g(y) - g(y_{\circ})| < \varepsilon' \le \varepsilon$.

Fall 2: y_0 Randpunkt \rightsquigarrow analog mit einseitigen Intervallen.

Beweis von Satz 9.5: Sei o.E. f(a) < f(b), f(a) > f(b) behandelt man analog, für f(a) = f(b) ist nichts zu zeigen. Sei $y \in (f(a), f(b))$ z.z.: $\exists x \in [a, b]$ f(x) = y. Sei $M := \{x \in [a, b] : f(x) \le y\} \neq \emptyset$, nach oben beschränkt $\Longrightarrow \exists c := \sup M \in [a, b]$ wähle $\{x_n\} \in M$ mit $x_n \longrightarrow c \Longrightarrow_{f \text{ stetig}} f(x_n) \longrightarrow f(c)$

 $\implies f(c) \leq y.$

Gemäß f(b) > y folgt f(c) < f(b), also c < b. Daher kann man eine Folge $\{z_n\}$ in (c,b) finden mit $c = \lim_{n \to \infty} z_n$. $z_n > c$ heißt : $z_n \notin M \implies f(z_n) \ge y$, also $f(c) = \lim_{n \to \infty} f(z_n) \ge y$, so dass f(c) = y gilt.

Bemerkung: Man kann Satz 9.4 verschärfen

 $f:[a,b]\to\mathbb{R}$ streng monoton, stetig in $x_{\circ}\in[a,b]\Longrightarrow f^{-1}$ stetig in $f(x_{\circ})$ d.h. man braucht nicht Stetigkeit von f auf ganz [a,b].

Folgerungen aus dem Z.W.S:

1)
$$f:[a,b] \to \mathbb{R}$$
 stetig, $f([a,b]) \subset [a,b] \implies \exists \text{ Fixpunkt } x, \text{d.h. } f(x) = x.$

Beweis:
$$\varphi(x) := f(x) - x$$
, $\varphi(a) = f(a) - a \ge a - a = 0$, $\varphi(b) = f(b) - b \le b - b = 0 \implies \left[\varphi(b), \varphi(a) \right] \subset \varphi([a, b])$ $\Rightarrow \exists x \in [a, b] : \varphi(x) = 0$.

2) "Existenz von Wurzeln": $n \in \mathbb{N}, \alpha > 0$ gegeben $\Longrightarrow \beta > 0$ $\beta^n = \alpha$

Beweis:
$$f(x) = x^n - \alpha$$
, $f(0) < 0$, $f(1 + \alpha) > 0$
Bernoulli

 $\implies \exists \text{ Nullstelle von } f \text{ in } (0, 1 + \alpha)$

3) "reelle Polynome ungeraden Grades haben mindestens eine reelle Nullstelle"

$$P(x) := x^{2n+1} + a_{2n}x^{2n} + \ldots + a_0, n \in \mathbb{N}_0, a_i \in \mathbb{R}$$

zeige (Übung): P(r) > 0, P(-r) < 0 für r > 0 "groß"

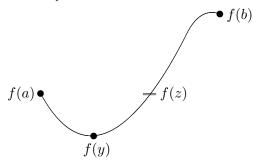
4) f stetig und injektiv auf $[a,b] \implies f$ streng monoton

Beweis: Sei f(a) < f(b), Fall f(a) > f(b) analog.

Dann gilt: * f(a) < f(x) $\forall x \in (a, b]$

Falls nicht, so finde $y \in (a, b]$ mit f(a) > f(y) ("=" geht nicht wegen Inj. von f), also $f(a) \in (f(y), f(b))$

Z.W.S
$$\Rightarrow$$
 $\exists z \in (y, b)$ mit $f(a) = f(z)$
Wspr!



Also gilt *. Seien $x_1 < x_2 \in [a, b]$. Angenommen

$$f(x_1) > f(x_2)$$

$$\stackrel{*}{\Rightarrow} \quad f(a) \le f(x_2) < f(x_1)$$

Z.W.S. $\Rightarrow \exists u \in [a, x_1]$ mit $f(u) = f(x_2)$, Wspr. zur Injektivität, da $u \leq x_1$, also $u \neq x_2$.

Auf die Stetigkeit kann man nicht verzichten.

Wir diskutieren jetzt, wie der Definitionsbereich einer stetigen Funktion $f:K\longrightarrow\mathbb{R}$ beschaffen sein muß, damit diese auf K Maximum und Minimum annimmt.

Definition 9.2 : Kompakte Mengen

 $K \subset \mathbb{R}$ oder \mathbb{C} . K heißt kompakt, wenn jede Folge $\{x_n\}$ in K eine Teilfolge hat, die konvergiert mit Limes in K.

Beispiele: 1) $[a, b] \subset \mathbb{R}$ ist kompakt nach Bolzano Weierstraß.

2) (0,1) <u>nicht</u> kompakt: $\frac{1}{n} \in (0,1)$ hat keine Teilfolge mit Limes in (0,1).

Bemerkungen: 1) K kompakt K beschränkt

falls nicht \Rightarrow zu jedem $n \in \mathbb{N}$ existiert ein Element $x_n \in K$ mit $|x_n| \ge n \{x_n\}$ ist unbeschränkt und kann deshalb keine konvergente Teilfolge haben.

2) Umkehrung falsch! Bspl.2)

Satz 9.6: Seien $f_1, \ldots, f_m : \mathbb{C} \to \mathbb{R}$ stetige Funktionen, man setzt

$$K := \Big\{ z \in \mathbb{C} : \quad f_1(z) \le 0, \dots, f_m(z) \le 0 \Big\}.$$

Dann gilt: K beschränkt \Longrightarrow K kompakt.

Beweis: Aus Satz 6.6 (BW) folgt: jede Folge $\{z_n\}$ in K hat eine konvergente Teilfolge $\{z'_n\}$

also
$$\lim_{n\to\infty} z_n' = z$$
 existiert. Z.Z.: $z \in K$
$$z_n' \in K \iff f_{\ell}(z_n') \le 0, \ \ell = 1, \dots, m, \ n \in \mathbb{N}$$

$$f_{\ell} \text{ stetig} \implies \lim_{n\to\infty} f_{\ell}(z_n') = f_{\ell}(z) \implies f_{\ell}(z) \le 0, \text{ so dass} \quad z \in K.$$

1) Kreisscheibe $\overline{D_r(a)} := \{z \in \mathbb{C} : |z - a| \le r\}$ Beispiele:

 $\left(\overline{D_r(a)}:= ext{abgeschlossene}$ Hülle von $D_r(a)
ight)$ ist offenbar beschränkt. Mit f(z):=|z-a|-r

$$\overline{D_r(a)} = \{ z \in \mathbb{C} : \ f(z) \le 0 \}.$$

2) Rechtecke $\{z \in \mathbb{C} : \alpha \leq \text{Re } z \leq \beta, \ a \leq \text{Im } z \leq b\} = [\alpha, \beta] \times [a, b]$ sind kompakt.

Satz 9.7 : Operationen mit kompakten Mengen

- (i) <u>endliche Vereinigung:</u> $K_1, \ldots, K_m \text{ kompakt} \Longrightarrow \bigcup_{i=1}^m K_i \text{ kompakt}$
- (ii) <u>beliebige Durchschnitte:</u> K_{α} kompakt, $\alpha \in A \Longrightarrow \bigcap_{\alpha \in A} K_{\alpha}$ kompakt

Beweis: (i)
$$\{z_n\}$$
 Folge in $\bigcup_{i=1}^m K_i \Longrightarrow \exists i_\circ : \quad \sharp \{n : z_n \in K_{i_\circ}\} = \infty$

 \implies man kann T.F. $\{z_n'\}$ von $\{z_n\}$ in K_{i_\circ} wählen; benutze dann die Kompaktheit von K_{i_\circ} : $\exists \{z_n''\} \subset \{z_n'\} \text{ und } z \in K_{i_0} \text{ mit } z_n'' \to z.$

(ii) $\{z_n\}$ Folge in $K = \bigcap_{\alpha \in A} K_{\alpha}$. fixiere ein $\alpha \implies \{z_n\}$ Folge in K_{α} , K_{α} kompakt, also $\exists z \in K_{\alpha}$ und $\{z'_n\} \subset \{z_n\}$ mit $z_n' \longrightarrow z$. Aber: $\{z_n'\}$ ist Folge in jedem K_{β}, K_{β} kompakt \Longrightarrow

$$\exists y \in K_{\beta}, \{z_n''\} \subset \{z_n'\} \text{ mit } z_n'' \longrightarrow y.$$

Da aber $\{z'_n\}$ bereits konvergiert, folgt y=z, d.h. $z\in K_\beta\ \forall\,\beta,$ und wir haben gezeigt: $z'_n \longrightarrow z \quad \text{mit} \quad z \in \bigcap_{\alpha \in A} K_\alpha.$

Sei K kompakt und $f: K \longrightarrow \mathbb{C}$ stetig. Dann ist f(K) kompakt. **Satz 9.8** :

Beweis: Sei
$$\{y_k\} = \{f(x_k)\}$$
 Folge in $f(K)$, $x_k \in K$. Wähle T.F. $\{x'_n\}$ von $\{x_k\}$ mit $x'_k \longrightarrow x \in K$. f stetig $\Longrightarrow \{y'_k\} := \{f(x'_k)\}$ konvergiert gegen $f(x) \in f(K)$.

Korollar: "Satz vom Maximum"

$$f: K \longrightarrow \mathbb{R}$$
 stetig, $K \subset \mathbb{R}, \mathbb{C}$ kompakt \Longrightarrow $\exists x_1, x_2 \in K \text{ mit } f(x_1) \leq f(x) \leq f(x_2) \text{ für alle } x \in K$

M.a.W.: die Bildmenge f(K) hat Max. und Minimum!

Beweis: Satz $9.7 \Longrightarrow f(K)$ kompakt $\Longrightarrow f(K)$ beschränkt; Satz 3.7 (Supremumseigenschaft): $\sup f(K)$, $\inf f(K)$ existieren. Wähle $\{x_n\} \subset K$ mit $f(x_n) \underset{n \to \infty}{\longrightarrow} \sup f(K)$ (existiert nach Def. von \sup) und benutze Kompaktheit von f(K), um $\sup f(K) \in f(K)$ zu sehen (alternativ: Stetigkeit von f + Kompaktheit von K). Analog für inf.

Wir haben gezeigt: $f:[a,b]\to\mathbb{R}$ stetig und injektiv \Longrightarrow $f \text{ streng monoton und stetig }\Longrightarrow$ $f^{-1} \text{ ist stetig}$

Diese Aussage läßt sich wie folgt verallgemeinern.

Satz 9.9 : (Stetigkeit der Umkehrfunktion)

Sei K <u>kompakt</u> $\subset \mathbb{R}$ (oder \mathbb{C}) und $f: K \to \mathbb{C}$ stetig und injektiv. Dann ist $f^{-1}: f(K) \to K$ stetig.

Beweis: Sei $f = f^{-1}$ und $\{z_n\}$ eine Folge in f(K) mit $z_n \longrightarrow z$. Z.z.: $g(z_n) \longrightarrow g(z)$ * $x_n := g(z_n)$ ist Folge in K, K kompakt $\Longrightarrow x'_n \to x$ für ein $x \in K$, $\{x'_n\} \subset \{x_n\}$. f stetig $\Longrightarrow f(x'_n) \to f(x)$. Es gilt: $f(x'_n) = z'_n$, also: $z'_n \longrightarrow f(x)$. Da wir $z_n \to z$ voraussetzen, folgt z = f(x) bzw. x = g(z). Wir haben also: $g(z'_n) \longrightarrow g(z)$. Somit gilt * zumindest für eine T.F. Jetzt benutzen wir ein allgemeines Prinzip: Angenommen $g(z_n) \xrightarrow{} g(z)$. Dann gibt es eine T.F. $\{\hat{z}_n\}$ von $\{z_n\}$ und ein $\varepsilon > 0$ mit $|g(\hat{z}_n) - g(z)| \ge \varepsilon \quad \forall n$ betrachte wie oben $\hat{x}_n := g(\hat{z}_n)$ und zeige mit den selben Rechnungen \exists T.F. $\{\hat{z}_n\}$ mit $g(\hat{z}_n) \longrightarrow g(z)$, Wspr.!

<u>allg. Prinzip:</u> $\{a_n\}$ sei eine Folge mit

• jede T.F. hat eine konvergente T.F.

• die Limiten sind gleich $\{a_n\}$ sei eine Folge mit

• jede T.F. hat eine konvergente T.F.

Anwendung des Satzes vom Maximum:

Satz 9.10 : Fundamentalsatz der Algebra Seien $n \in \mathbb{N}, \overline{a_0, \dots, a_n \in \mathbb{C}, a_n \neq 0}$.

Dann hat $P(z) = \sum_{\ell=0}^{n} a_{\ell} z^{\ell}$ eine Nullstelle in \mathbb{C} .

Korollar: Ist P(z) ein komplexes Polynom vom Grad $n \geq 1$, so gibt es $z_1, \ldots, z_n \in \mathbb{C}$ (nicht notwendig alle verschieden) und $a \in \mathbb{C}$ mit $P(z) = a \cdot (z - z_1)(z - z_2) \dots (z - z_n)$ auf \mathbb{C} .

Beweis: das Korollar folgt induktiv durch schrittweise Anwendung des Satzes

a) Sei o.E.
$$a_n = 1$$
, also $P(z) = z^n + \sum_{k=0}^{n-1} a_k z^k$

Beh.: $\exists z_{\circ} \in \mathbb{C} : |P(z_{\circ})| \leq |P(z)| \quad \forall z \in \mathbb{C}$

Bew.: Es ist
$$|P(z)| \ge |z|^n - |z|^{n-1} \sum_{k=0}^{n-1} |a_k|$$

$$= |z|^{n-1} \cdot \left(|z| - \sum_{k=0}^{n-1} |a_k| \right)$$

für $|z| \geq 1$. Außerdem sieht man:

$$\exists\, R\geq 1: \quad |P(z)|\geq 1+|P(0)| \quad \text{für alle } |z|\geq R.$$

Sei
$$K := \{ z \in \mathbb{C} : |z| \le R \}$$
. $K \text{ kompakt } \Rightarrow \exists z_o \in K : |P(z_o)| \le |P(z)| \quad \forall z \in K \}$

Insbesondere ist auch $|P(z_0)| \le |P(0)|$, d.h. $|P(z_0)| \le |P(w)|$ für $|w| \ge R$, z_{\circ} die gesuchte Minimalstelle von |P| auf \mathbb{C} ist.

b) Wir zeigen indirekt: $P(z_0) = 0$.

Sei also $P(z_{\circ}) \neq 0$. Dann können wir definieren:

$$q(w) := P(z_{\circ} + w) / P(z_{\circ}) \implies q(0) = 1.$$

n=1: $q(w)=1+b\cdot w$ mit Koeff. $b\neq 0$ (Polynom 1 ten Grades). Wähle $w_\circ:=-\frac{1}{b}\implies 0=q(w_\circ)=P(z_\circ)^{-1}P(z_\circ+w_\circ)\implies P(z_\circ+w_\circ)=0$ und damit $0 = |P(z_{\circ} + w_{\circ})| < |P(z_{\circ})|$, was der Minimalität widerspricht.

 $n \geq 2$: Dann hat q die Form

$$q(w) = 1 + \sum_{k=1}^{n} b_k \cdot w^k, \ b_n = P(z_0)^{-1}.$$

Sei $m \in \{1, ..., n\}$ der <u>kleinste</u> Index mit $b := b_m \neq 0 \Longrightarrow$

$$q(w) = 1 + b \cdot w^m + \sum_{k=m+1}^{n} b_k w^k.$$

Wir konstruieren ein $\beta \in \mathbb{C}$ mit $\beta^m = -1/b$ $\left[a := -1/b \Longrightarrow a/|a| \in S^1 \Longrightarrow \exists x \in \mathbb{R} : e^{ix} = a/|a|,$ also: $a = |a| \cdot e^{ix};$ $\beta := |a|^{1/m} \cdot e^{ix/m}\right].$

Dann ist

$$q(\beta w)=1-w^m+w^{m+1}\cdot \ R(w)$$
 Restpolynom geeignet definiert
$$R(w)=\sum_{k=m+1}^n b_k(\beta w)^k$$

 $\text{W\"{a}hle} \quad c \ \geq \ \max\{1, \max_{|w| \ \leq \ 1} |R(w)|\}.$

$$\implies |R(w)| \le c \quad \forall |w| \le 1$$

$$\implies |w^{m+1} \cdot R(w)| \le c \cdot |w|^{m+1} < |w|^m \quad \forall |w| < 1/c, w \ne 0$$

(beachte $\frac{1}{c} \leq 1$)

Sei $x_0 \in (0, \frac{1}{c})$ beliebig \Longrightarrow

$$|q(\beta x_{\circ})| = |1 - x_{\circ}^{m} + x_{\circ}^{m+1} R(x_{\circ})| < 1 - x_{\circ}^{m} + x_{\circ}^{m} = 1.$$

D.h.:

$$|P(z_{\circ} + \beta x_{\circ})/P(z_{\circ})| < 1 \iff |P(z_{\circ} + \beta x_{\circ})| < |P(z_{\circ})|,$$

im Wspr. zur Minimalität von z_{\circ} .

Grenzwerte von Funktionen:

Sei $f: \mathbb{R} - \{1\} \to \mathbb{R}$; $f(x) = \frac{x^2 - 1}{x - 1}$. Die Frage nach Stetigkeit von f in x = 1 stellt sich hier nicht, da $1 \notin D(f)$.

Für jede Folge $x_n \in D(f), x_n \to 1$ gilt:

$$f(x_n) = (x_n^2 - 1) / (x_n - 1) = x_n + 1 \longrightarrow 2,$$

d.h. f hat einen Grenzwert bei $x \to 1$, und wie man sofort sieht, ist

$$\tilde{f}:\mathbb{R}\to\mathbb{R},\ \tilde{f}(x):=\left\{\begin{array}{ll}f(x),x\neq 1\\2,&x=1\end{array}\right.,\quad \text{eine }\underline{\text{stetige Fortsetzung}}\ \text{von}\ f.$$

Fortsetzungsproblem (allgemein):
$$D \subset \mathbb{C}$$
, $f: D \longrightarrow \mathbb{C}$ stetig, $a \notin D$. Gibt es eine stetige Funktion $\tilde{f}: D \cup \{a\} \longrightarrow \mathbb{C}$ mit $\tilde{f} = f$ auf D ?

<u>Hinweis:</u> i) <u>Wenn</u> es eine Folge $\{z_n\}$ in D gibt mit $z_n \to a$, so muß es im Falle einer positiven Antwort gelten:

 $\alpha := \lim_{n \to \infty} f(z_n)$ <u>existiert</u> und <u>hängt nicht von der speziellen Wahl der Folge</u> $\{z_n\}$ <u>ab</u>.

 $\tilde{f}(a) := \alpha$ leistet dann das Gewünschte.

ii) Gibt es <u>keine</u> Folge $\{z_n\}$ in D mit $z_n \to a$, so kann man $\tilde{f}(a)$ <u>beliebig wählen</u> und erhält eine stetige Fortsetzung.

ii) ist offenbar ein Trivialfall! Man betrachtet Punkte a wie folgt

Definition 9.3: Sei $D \subset \mathbb{C}$. $a \in \mathbb{C}$ heißt <u>Häufungspunkt von D</u> falls eine der drei äquivalenten Bedingungen erfüllt ist:

- 1) \exists Folge $\{z_n\}$ in D mit $z_n \neq a$ und $z_n \longrightarrow a$
- 2) in jeder Umgebung W von a liegen unendlich viele Elemente von D
- 3) in jeder Umgebung W von a gibt es einen Punkt $z \neq a$

(Beweis von 1) \Rightarrow 2) \Rightarrow 3) \Rightarrow 1) als Übung)

Bemerkungen:

- 1) a kann muß aber nicht zu D gehören.
- 2) $D = (a, b), [a, b] \Longrightarrow$ alle Punkte sind H.P.



- 4) $D := \{z_1, ..., z_n\}$ hat keine H.P.!
- 5) Fortsetzungsproblem nur interessant, wenn a H.P. von D.
- 6) \mathbb{R} = Menge aller H.P. von \mathbb{Q}

Definition 9.4: Grenzwerte von Funktionen

Sei $f: D \to \mathbb{C}$, a H.P. von D. $b \in \mathbb{C}$ heißt Grenzwert von f an der Stelle a, i.Z. $b = \lim_{z \to a} f(z)$, wenn für jede Folge $\{z_n\} \subset D$ mit $z_n \neq a$ und $z_n \longrightarrow a$ gilt: $b = \lim_{n \to \infty} f(z_n)$.

Beispiele: $D = (-1, 1) - \{0\}, 0 \text{ ist H.P. von } D$

1) $\lim_{x\to 0} \frac{1}{x}$, $\lim_{x\to 0} \frac{x}{|x|}$, $\lim_{x\to 0} (\sin \frac{1}{x})$ existieren <u>nicht</u>

(Begründung durch Angabe geeigneter Folgen, z.B.

$$1/n/|1/n| \to 1, \quad -1/n/|-1/n| \to -1)$$

- 2) $\lim_{x\to 0} |x|^{\alpha} = 0, \ \alpha > 0$
- 3) $\lim_{x \to 0} x \cdot \sin \frac{1}{x} = 0 \quad (da \quad |\sin| \le 1)$
- 4) $\lim_{x\to 0} \frac{1}{x}(e^x 1) = 1$

(Satz 8.3
$$\Rightarrow$$
 $1 \le \frac{1}{x}(e^x - 1) \le \frac{1}{1-x}$ für $x \in (0,1)$ $1 \ge \frac{1}{x}(e^x - 1) \ge \frac{1}{1-x}$ für $x \in (-1,0)$

Es gilt offenbar:

Satz 9.11 : Sei $a \in \mathbb{C}$ H.P. von D und $f : D \to \mathbb{C}$ eine Funktion. Dann gilt:

$$b := \lim_{z \to a} f(z)$$
 existiert \iff

 \exists eine Fortsetzung $g: D \cup \{a\} \rightarrow \mathbb{C}$ von f, die in a stetig ist.

Beweis: klar!

Bemerkung: f wird nicht als stetig auf D vorausgesetzt!

Satz 9.12 : $\varepsilon - \delta$ Charakterisierung von Grenzwerten

Sei $a \in \mathbb{C}$ H.P. von D und $f: D \to \mathbb{C}$ eine Funktion. $\lim_{z \to a} f(z) = b \iff \forall \varepsilon > 0 \exists \delta > 0 \text{ mit } |f(z) - b| < \varepsilon \text{ für alle } z \in D, z \neq a, |z - a| < \delta.$

Beweis: Satz 9.11 + " $\varepsilon - \delta$ Beschreibung der Stetigkeit".

Wichtig ist folgendes Kriterium, da man hier den Grenzwert nicht kennen muß.

Satz 9.13 : Cauchy-Kriterium

 $\begin{array}{ll} f:D\to\mathbb{C}, & a \text{ H.P. } von \text{ D.} & \lim_{z\to a} f(z) \text{ existiert} \Longleftrightarrow \forall \, \varepsilon>0 \quad \exists \, \delta>0 : \quad |f(z)-f(w)|<\varepsilon \text{ f\"{u}r} \\ alle \text{ } z,w\in D-\{a\}, \, |w-a|, |z-a|<\delta. \end{array}$

Beweis: "⇒" Satz 9.12 + Dreiecksungleichung

"\(\iff \text{in} \) Sei $\{z_n\} \subset D$, $z_n \neq 0$, $z_n \to a$. Nach Voraussetzung ist dann $|f(z_n) - f(z_m)| < \varepsilon$, wenn $|z_n - z_m| < \delta$, wobei die letzte Bed. sicher für $n, m \geq N$ erfüllt ist. Also: $\{f(z_n)\}$ C.F. $\Rightarrow b = \lim_{n \to \infty} f(z_n)$ exist.

Sei $\{z'_n\}$ andere Folge in $D - \{a\}$ mit $z_n \to a \Longrightarrow_{\text{wie oben}} b' := \lim_{n \to \infty} f(z'_n)$ exist.

Nun ist

$$|b-b'| \le \underbrace{|f(z_n)-b|}_{<\varepsilon/3} + \underbrace{|f(z'_n)-b'|}_{<\varepsilon/3} + |f(z_n)-f(z'_n)|$$

$$f \ddot{u} r \stackrel{>N}{n}$$

Nach Vor. exist. $\delta > 0$ mit $|f(z) - f(w)| < \varepsilon/3 \quad \forall |z - w| < \delta, z, w \in D - \{a\}$

Für $n \geq M_{\delta}$ ist offenbar $|z_n - z_n'| < \delta$, insgesamt

$$|b - b'| < \varepsilon \implies b = b'$$
, da ε beliebig.

Wir fassen nun alle Häufungspunkte mit D zusammen:

$$\{z\in\mathbb{C}:\ z\in D\quad oder\quad z\ H.P.\ von\ D\}=D\cup\{z:z\ H.P.\ von\ D\}$$

Schreibweise: \overline{D}

In Worten: \overline{D} = Limiten aller konvergenten Folgen mit Gliedern in D

Beispiele: 1) $\overline{(a,b)} = [a,b], \overline{[a,b]} = [a,b]$

 $2) \quad D = \Big\{z \in \mathbb{C}: \quad |z - a| < r \} \Longrightarrow \overline{D} = \{z \in \mathbb{C}: \quad |z - a| \le r \Big\}$

 $\textbf{Bemerkung:} \quad D \subset \mathbb{C} \quad \underline{\text{abgeschlossen}} : \Longleftrightarrow \overline{D} = D.$

Wir suchen nun ein Kriterium dafür, wann sich eine stetige Funktion $f:D\to\mathbb{R}$ stetig auf fortsetzen läßt.

 $\textbf{Definition 9.6} \ : \quad f: D \to \mathbb{C} \quad \ \textit{heißt } \underline{\textit{gleichm\"{a}\betaig stetig}} \ \textit{auf } D: \Longleftrightarrow$

$$\forall \varepsilon < 0 \quad \exists \delta > 0 \quad |f(z) - f(w)| < \varepsilon \quad \text{ für alle } \quad z, w \in D, |z - w| < \delta.$$

Bemerkungen:

- 1) Das " δ " ist unabhängig von z, w, also gleichmäßig bzgl. D.
- 2) $f: D \to \mathbb{C}$ Lipschitz \Longrightarrow f glm. stetig auf D

3) f(x) = 1/x ist nicht glm. stetig auf $(0, \infty)$:

Z.Z.:
$$\exists \varepsilon > 0 \quad \forall \delta > 0 \quad \exists x, y \quad \text{mit} \quad |x - y| < \delta \quad \text{ aber} \quad |f(x) - f(y)| \ge \varepsilon.$$

Wähle
$$\varepsilon=1.$$
 Setze $y=\delta,\ x=\frac{\delta}{2} \Longrightarrow |x-y|<\delta$ und $|\frac{1}{x}-\frac{1}{y}|=2\cdot\delta^{-1}-\delta^{-1}=\delta^{-1}>1,$ wenn $\delta\in(0,1).$

Ist
$$\delta \ge 1$$
, so setzt man $y = 1, x = \frac{1}{2} (\Rightarrow |x - y| = \frac{1}{2} < \delta)$.

4) offenbar:
$$f$$
 glm. stetig auf $D \Longrightarrow f$ stetig an jeder Stelle $a \in D$

Satz 9.14: Ist $f: D \to \mathbb{C}$ <u>glm. stetig</u>, so gibt es genau eine stetige Fortsetzung $\overline{f}: \overline{D} \to \mathbb{C}:$ von f auf \overline{D} .

Beweis: Übung

1) Eindeutigkeit: sei \overline{f}_i eine Fortsetzung, $i=1,2;\ z_{\circ}\in \overline{D}-D;$ wähle $z_n\in D$ mit $z_n\to z_{\circ}\underset{\overline{f}_i\text{ stetig}}{\Longrightarrow}$

$$\overline{f}_i(z_\circ) = \lim_{n \to \infty} f(z_n). \implies \overline{f}_1(z_\circ) = \overline{f}_2(z_\circ)$$

2) Existenz: aus der Def. von glm. stetig folgt, dass die Cauchy-Bed. aus Satz 9.13 in jedem H.P. a von D erfüllt ist $\implies \lim_{z \to a} f(z) \exists$ in allen H.P. von D.

Da die Punkte aus $\overline{D} - D$ H.P. sind, können wir definieren:

$$\overline{f}(z) = \begin{cases} f(z), & z \in D \\ \lim_{x \to z} f(x), & z \in \overline{D} - D \end{cases}$$

3) zeige: \overline{f} ist sogar glm. stetig auf \overline{D}

Satz 9.14 beantwortet also das Problem der stetigen Fortsetzbarkeit in sehr allgemeiner Weise. Wir schließen mit einem Satz, der die Bedeutung der Kompaktheit nochmals deutlich macht.

Satz 9.15: $f: D \to \mathbb{C}$ sei stetig und D kompakt $\Longrightarrow f$ glm. stetig.

Beweis: Übung (indirekt!)

Ergänzung: Eine andere Charakterisierung kompakter Mengen

 $\textbf{Satz 9.16} \ : D \subset \mathbb{C} \ kompakt \Longleftrightarrow D \ beschränkt \ und \ abgeschlossen \ (\overline{D} = D)$

Beweis: " \Longrightarrow " Beschränktheit wurde bewiesen; sei a H.P. von D. Z.Z.: $a \in D$ Wähle $z_n \neq a, z_n \in D$ $z_n \longrightarrow a$. D kpt. \Rightarrow \exists $\underline{\text{in }D}$ konvergente T.F. $\{z'_n\} \subset \{z_n\} \Longrightarrow a = \lim_{n \to \infty} z'_n \in D$.

"\(\sim \) Sei $\{z_n\}$ Folge in D; $\{z_n\}$ beschränkt $\Longrightarrow_{B,W}$

 \exists konvergente Teilfolge $\{z_n'\}; \quad a=\lim_{n\to\infty}z_n'$ gehört zu \overline{D} also zu D, da $\overline{D}=D$ nach Vor. \Box