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Purpose of Lesson

Purpose of Lesson:

@ To prove a general result about problems with inequality
constraints
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Inequality constraints (cont.)

§6. Inequality constraints (cont.)
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Inequality constraints (cont.) General result

General result

If F,» depends on y’, then at the point where the extremal transfers
from the Euler-Lagrange curve to the domain boundary the tangent
varies continuously.
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Inequality constraints (cont.)

y(x)

General result: proof

g(x)
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Inequality constraints (cont.) General result: proof

y(x)+en(x)
g(x)
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Inequality constraints (cont.) General result: proof

@ We break the integral into two parts:

Xx* X1
JM=AM+@M=/H&%WW+/H&%ﬂW
X0 X*

@ we assume the shape of the curve on the RHS of x* fits the
boundary, e.g. y(x) = g(x), and the LHS follows the
Euler-Lagrange equations

X* Xq
JM:AM+&M=/H&%wW+/H&@wW
X0 X*

@ So, we study the functional J;[y] with free right-end x* satisfying
the condition y(x*) = g(x*).
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Inequality constraints (cont.) General result: proof

y(x)+en(x)
g(x)
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Inequality constraints (cont.) General result: proof

@ As before, differentiating the function ¢1() = Ji[y + en] with
respect to ¢, taking into account the formula of differentiation of

the integral (cf exercise 2) and setting ¢ = 0, we arrive at

)"(*
_ doq(e) _ i / / /
0_ d€ ’5_0 - dE o F(X’y+8777y +877 )dX
Xo

X*+eX
/ F(x,y +en,y +en)dx

Xo

del._o

X*
— XF(x,y./y’)]X:X* + / (Fyn+ Fym') dx

X0
X*

d

X0

:XF(vavy,)’ +Fy/77

X=X*
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Inequality constraints (cont.) General result: proof

@ Note that [nFy/}X:X* is no longer simple to calculate because we
don’t fix x*.

@ How can we learn x*?
@ We need a new natural boundary condition that will give us this.

@ The perturbed point (X*, y*) and perturbation function n must
satisfy certain conditions to be compatible.

@ Remember that

+eX

&* X*
y'+eY

_}A/*

@ Notice that
V' =y(x* +eX) +en(x* +eX).
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Inequality constraints (cont.) General result: proof

@ From Taylor’s theorem, for small ¢

y(X* +eX) = y(x*) + eXy'(x*) + O(?)
=y 4+ eXy'(x*) + O(?)
en(x* + eX) = en(x*) + O(?)
@ So
Y +eY =y +eXy'(x*) +en(x*) + O(e?)
eY = eXy'(x*) + en(x*) + O(£?)
n(x*) =Y = Xy'(x*) + O(e)

@ Thus, we have

n(x*) =Y - Xy'(x*) + O(e) (10.1)
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Inequality constraints (cont.) General result: proof

@ Substituting the compatibility constraint (10.1) into the our first
variation we get

x*

d
0= [XF—i— Fy,’r]] e —|—/ <Fy — dXFyI> nax

X0
X* d
= XF|X:X* + [Y = Xy'(x*)| Fyr - —|—/ (Fy — dxFy'> nax
Xo
X* d
= X[F — y’Fy/]X:X* + YFy, e +/ (Fy — dxFy') nax

X0

@ So, we get an integral term which results in the E-L equation, plus
the additional constraint

X[F-yF)],_.+YF

=0 (10.2)

X=X* X=X*
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Inequality constraints (cont.) General result: proof

@ Due to condition y(x*) = g(x*) we cannot consider arbitrary

(X,Y). In fact
V' =9g(X") = g(x* +X), V'=y"+eY
y*=g(x")
Therefore,
eY = g(x* +eX) — g(x*) = g'(x*)eX + O(e?)
Y = g/ (x)X
ag

@ Assuming that ax is defined and substituting Y = g’(x)X into
(10.2) we get the condition

X{gFy+F—-yFy}|

and, consequently,

=0,

X=X*

{gFy+F—-yF,}| =0| (10.3)

X=X*
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Inequality constraints (cont.) General result: proof

@ From (10.3) it follows that we may write the condition in x* in
terms of limits from the left and right, e.g.

9Fy +F=YFyl —9Fy+F-yF],.. =0

X*—

@ Taking into account that y’ = g’ on the RHS of x* we get

0=[gFy+F-yFl. —|gF +F-9gF].
=g~y )Fy+Fl. —F

x*+

or

(9 -Y)Fyl,.. =F|..—F

o — Fl (10.4)
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Inequality constraints (cont.) General result: proof

@ Consider the term {F| ., — F

x**}'

x*+

@ Note that at the “join” y(x*) = g(x™), so if the two limits of F differ

it is because of a difference in y’ on either side of the join.

@ Treat F as a function of just y/, i.e.,
F(x,y.¥") = aey(y') = a(y").

@ Taking q(y') = F(x,y,y’) we get

d oF
q(z): (Xa}”}/)
dz oy’ Y=z

So
oF

d(c)= oy’

(X", ¥, 0).
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Inequality constraints (cont.) General result: proof
@ Hence

Fl . —F

x*+

o q(g’(X*)) CI(Y’(X*))

= [g() -~ ¥(x)] 4(©)
g0) ~ Y ()] 5 (", 0)

[ !/

@ So, the condition (10.4) can be rewritten as follows

X

(@] =00 =y )] gy o)

@ Hence

[(g’—y’)<§yF( YY) - g;(x,y,c))]x_)(*:o

for some ¢ between g’(x*) and y’(x*).
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Inequality constraints (cont.) General result: proof

oF

(v _ v/ (v* 7 (¥ * eV _ ﬁ * * _
(0'06) = Y 00D (50 y0)y (60D = S0 y(x),0)) =0
So, there are two possibilities

@ g'(x*) = y'(x*), which means that y meets the boundary at a
tangent to the boundary.

@ Fu(x,y,¥y')— Fy(x,y,c) = 0. This latter condition holds when F
is constant with respect to y/, i.e.,
0?F
8)/’2 =

Remark
In the lake example, Fy, # 0. J
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Inequality constraints (cont.) Example: parking a car

Example 10.1 : parking a car (see Example 9.1)
@ Reuvisit the problem of parking a car.

@ If we think about the problem, it makes no sense unless there is
maximum force Umax.

e Otherwise we move from A to B arbitrarily fast.
@ There are no valid E-L equation solutions.
@ We must end-up in the boundary domain, e.g. U = +Upmax-

o Obvious solution is to accelerate as fast as possible until we get
half-way, and then to decelerate as fast as possible.
OF

20 = 0, so we don’t have to stress about continuity (u is not
continuous either).
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Inequality constraints (cont.) Example: parking a car

Example 10.1: parking a car (cont.)
@ Our solution is in the boundary domain, e.g. U = +Umax

velocity

0 T time

force

“Umax feoeessnssssnssssnssssssssssssnssssssssssss

@ called a bang-bang controller.
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