Calculus of Variations Summer Term 2014

Lecture 10

4. Juni 2014

Purpose of Lesson:

To prove a general result about problems with inequality constraints

§6. Inequality constraints (cont.)

General result

If $F_{y'}$ depends on y', then at the point where the extremal transfers from the Euler-Lagrange curve to the domain boundary the tangent varies continuously.

• We break the integral into two parts:

$$J[y] = J_1[y] + J_2[y] = \int_{x_0}^{x^*} F(x, y, y') dx + \int_{x^*}^{x_1} F(x, y, y') dx$$

• we assume the shape of the curve on the RHS of x^* fits the boundary, e.g. y(x) = g(x), and the LHS follows the Euler-Lagrange equations

$$J[y] = J_1[y] + J_2[y] = \int_{x_0}^{x^*} F(x, y, y') dx + \int_{x^*}^{x_1} F(x, g, g') dx$$

• So, we study the functional $J_1[y]$ with free right-end x^* satisfying the condition $y(x^*) = g(x^*)$.

7/19

lecture 10

• As before, differentiating the function $\phi_1(\varepsilon) = J_1[y + \varepsilon \eta]$ with respect to ε , taking into account the formula of differentiation of the integral (cf exercise 2) and setting $\varepsilon = 0$, we arrive at

$$0 = \frac{d\phi_{1}(\varepsilon)}{d\varepsilon}\Big|_{\varepsilon=0} = \frac{d}{d\varepsilon}\Big|_{\varepsilon=0} \int_{x_{0}}^{\hat{x}^{*}} F(x, y + \varepsilon \eta, y' + \varepsilon \eta') dx$$

$$= \frac{d}{d\varepsilon}\Big|_{\varepsilon=0} \int_{x_{0}}^{x^{*}+\varepsilon X} F(x, y + \varepsilon \eta, y' + \varepsilon \eta') dx$$

$$= XF(x, y, y')\Big|_{x=x^{*}} + \int_{x_{0}}^{x^{*}} (F_{y}\eta + F_{y'}\eta') dx$$

$$= XF(x, y, y')\Big|_{x=x^{*}} + F_{y'}\eta\Big|_{x=x^{*}} + \int_{x_{0}}^{x^{*}} (F_{y} - \frac{d}{dx}F_{y'}) \eta dx$$

- Note that $[\eta F_{\nu'}]_{\nu-\nu^*}$ is no longer simple to calculate because we don't fix x^*
- How can we learn x*?
- We need a new natural boundary condition that will give us this.
- The perturbed point (\hat{x}^*, \hat{y}^*) and perturbation function η must satisfy certain conditions to be compatible.
- Remember that

$$\hat{\mathbf{x}}^* = \mathbf{x}^* + \varepsilon \mathbf{X}$$
$$\hat{\mathbf{y}}^* = \mathbf{y}^* + \varepsilon \mathbf{Y}$$

Notice that

$$\hat{\mathbf{y}}^* = \mathbf{y}(\mathbf{x}^* + \varepsilon \mathbf{X}) + \varepsilon \eta(\mathbf{x}^* + \varepsilon \mathbf{X}).$$

ullet From Taylor's theorem, for small arepsilon

$$y(x^* + \varepsilon X) = y(x^*) + \varepsilon X y'(x^*) + O(\varepsilon^2)$$
$$= y^* + \varepsilon X y'(x^*) + O(\varepsilon^2)$$
$$\varepsilon \eta(x^* + \varepsilon X) = \varepsilon \eta(x^*) + O(\varepsilon^2)$$

So

$$y^* + \varepsilon Y = y^* + \varepsilon X y'(x^*) + \varepsilon \eta(x^*) + O(\varepsilon^2)$$
$$\varepsilon Y = \varepsilon X y'(x^*) + \varepsilon \eta(x^*) + O(\varepsilon^2)$$
$$\eta(x^*) = Y - X y'(x^*) + O(\varepsilon)$$

Thus, we have

$$\overline{\eta(x^*) = Y - Xy'(x^*) + O(\varepsilon)}$$
(10.1)

 Substituting the compatibility constraint (10.1) into the our first variation we get

$$0 = [XF + F_{y'}\eta]_{x=x^*} + \int_{x_0}^{x^*} \left(F_y - \frac{d}{dx}F_{y'}\right) \eta dx$$

$$= XF|_{x=x^*} + [Y - Xy'(x^*)]F_{y'}|_{x=x^*} + \int_{x_0}^{x^*} \left(F_y - \frac{d}{dx}F_{y'}\right) \eta dx$$

$$= X[F - y'F_{y'}]_{x=x^*} + YF_{y'}|_{x=x^*} + \int_{x_0}^{x^*} \left(F_y - \frac{d}{dx}F_{y'}\right) \eta dx$$

 So, we get an integral term which results in the E-L equation, plus the additional constraint

$$X[F - y'F_{y'}]_{x=x^*} + YF_{y'}|_{x=x^*} = 0$$
 (10.2)

• Due to condition $y(x^*) = g(x^*)$ we cannot consider arbitrary (X, Y). In fact

$$\hat{y}^* = g(\hat{x}^*) = g(x^* + \varepsilon X), \qquad \hat{y}^* = y^* + \varepsilon Y$$

 $y^* = g(x^*)$

Therefore,

$$\varepsilon Y = g(x^* + \varepsilon X) - g(x^*) = g'(x^*)\varepsilon X + O(\varepsilon^2)$$

 $Y = g'(x^*)X$

• Assuming that $\frac{dg}{dx}$ is defined and substituting Y = g'(x)X into (10.2) we get the condition

$$X\{g'F_{y'}+F-y'F_{y'}\}\big|_{x=x^*}=0,$$

and, consequently,

$$\left| \left\{ g' F_{y'} + F - y' F_{y'} \right\} \right|_{x = x^*} = 0$$
(10.3)

• From (10.3) it follows that we may write the condition in x^* in terms of limits from the left and right, e.g.

$$[g'F_{y'} + F - y'F_{y'}]_{x^{*-}} - [g'F_{y'} + F - y'F_{y'}]_{x^{*+}} = 0$$

• Taking into account that y' = g' on the RHS of x^* we get

$$0 = [g'F_{y'} + F - y'F_{y'}]_{x^{*-}} - [g'F_{y'} + F - g'F_{y'}]_{x^{*+}}$$

= $[(g' - y')F_{y'} + F]_{x^{*-}} - F|_{x^{*+}}$

or

$$[(g'-y')F_{y'}]_{x^{*-}} = F|_{x^{*+}} - F|_{x^{*-}}.$$
 (10.4)

- Consider the term $\{F|_{X^{*+}} F|_{X^{*-}}\}$.
- Note that at the "join" $y(x^*) = g(x^*)$, so if the two limits of F differ it is because of a difference in y' on either side of the join.
- Treat F as a function of just y', i.e.,

$$F(x, y, y') = q_{x,y}(y') = q(y').$$

• Taking q(y') = F(x, y, y') we get

$$\frac{d}{dz}q(z) = \frac{\partial F}{\partial y'}(x, y, y')\Big|_{y'=z}.$$

So

$$q'(c) = \frac{\partial F}{\partial v'}(x^*, y^*, c).$$

Hence

$$F|_{x^{*+}} - F|_{x^{*-}} = q(g'(x^*)) - q(y'(x^*))$$

$$= [g'(x^*) - y'(x^*)] q'(c)$$

$$= [g'(x^*) - y'(x^*)] \frac{\partial F}{\partial y'}(x^*, y^*, c)$$

So, the condition (10.4) can be rewritten as follows

$$\left[(g' - y') \frac{\partial F}{\partial y'} \right]_{x^{*-}} = \left[g'(x^{*}) - y'(x^{*}) \right] \frac{\partial F}{\partial y'}(x^{*}, y^{*}, c)$$

Hence

$$\left[(g' - y') \left(\frac{\partial F}{\partial y'}(x, y, y') - \frac{\partial F}{\partial y'}(x, y, c) \right) \right]_{x = x^*} = 0$$

for some c between $g'(x^*)$ and $y'(x^*)$.

$$(g'(x^*) - y'(x^*)) \left(\frac{\partial F}{\partial y'}(x^*, y(x^*), y'(x^*)) - \frac{\partial F}{\partial y'}(x^*, y(x^*), c) \right) = 0$$

So, there are two possibilities

- $g'(x^*) = y'(x^*)$, which means that y meets the boundary at a tangent to the boundary.
- $F_{y'}(x, y, y') F_{y'}(x, y, c) = 0$. This latter condition holds when $F_{y'}$ is constant with respect to y', i.e.,

$$\frac{\partial^2 F}{\partial y'^2} = 0.$$

Remark

In the lake example, $F_{v'v'} \neq 0$.

Example 10.1 : parking a car (see Example 9.1)

- Revisit the problem of parking a car.
- If we think about the problem, it makes no sense unless there is maximum force u_{max} .
 - Otherwise we move from A to B arbitrarily fast.
- There are no valid E-L equation solutions.
- We must end-up in the boundary domain, e.g. $u = \pm u_{max}$.
 - Obvious solution is to accelerate as fast as possible until we get half-way, and then to decelerate as fast as possible.
 - $\frac{\partial F}{\partial \dot{u}} = 0$, so we don't have to stress about continuity (u is not continuous either).

Example 10.1: parking a car (cont.)

ullet Our solution is in the boundary domain, e.g. $u=\pm u_{max}$

• called a bang-bang controller.