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Purpose of Lesson

Purpose of Lesson:
@ To discuss numerical solutions of the variational problems

@ To introduce Euler’s Finite Difference Method and Ritz's Method.
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Numerical Solutions

§9. Numerical Solutions
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Numerical Solutions

Numerical Solutions:

The Euler-Lagrange equations may be hard to solve.

Natural response is to find numerical methods.

@ Numerical solution of the Euler-Lagrange equations

e We won'’t consider these here (see other courses)

@ Euler’s finite difference method
© Ritz (Rayleigh-Ritz)

e In 2D: Kantorovich’s method
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Numerical Solutions Euler’s Finite Difference Method

Euler’s Finite Difference Method

@ We can approximate our function (and hence the integral) onto a
finite grid.

@ In this case, the problem reduces to a standard multivariable
maximization (or minimization) problem, and we find the solution
by setting the derivatives to zero.

@ In the limit as the grid gets finer, this approximates the
Euler-Lagrange equations.
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Numerical Solutions Numerical Approximation

Numerical approximation of integrals:

@ use an arbitrary set of mesh points

a=Xg< Xy <Xo<---<Xp=Db.

@ approximate
Yitr — Vi A}/i
y'a) = Xig1 — X AX

@ rectangle rule

n—1

Jly] = /F (x,y,y)ax~>"F <x,,y,, y>Ax, = Jly]

i=0

3[-] is a function of the vector y = (y1, ¥2, ..., ¥n)-
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Numerical Solutions Finite Difference Method (FDM)

@ Treat this as a maximization of a function of n variables, so that we

require N
g‘;j ~0
foralli=1,2,...,n.
@ Typically use uniform grid so
AXx; = Ax = b- a

n
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Numerical Solutions Simple Example

Example 12.1
Find extremals for

1
1 1
Jyl = / [zy’z + 5% - y] ax
0

with y(0) = 0 and y(1) = 0.

The Euler-Lagrange equation y” — y = —1.
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Numerical Solutions Simple Example: direct solution

Example 12.1 (direct solution)
@ E-L equation: y” — y = —1

@ Solution to homogeneous equation y” — y = 0 is given by e
giving characteristic equation

so[3 = =1

@ Particular solution y = 1.

@ Final solution is

y(x)=Ae*+Be X +1|
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Numerical Solutions Simple Example: direct solution

Example 12.1 (direct solution)
@ The boundary conditions y(0) = y(1) = 0 constrain
A+ B= -1
Ae+ Be ' = —1

1—e _e—¢é?

= B=——|
So|A 2 1 and 2 1

@ Then the exact solution to the extremal problem is

1-e , e—¢€

e e *X+1|
e’ —1 e 1°

y(x) =
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Example 12.1 (Euler’s FDM)
Find extremals for

]
JIyl = / [;y’z + %yz - y] dx
0
Euler's FDM:
@ Take the grid x; =i/n,fori=0,1,...,ns0
@ end points yp =0and y, =0
o Ax=1/nand Ay; = yiy1 — Y.
@ So
o yi = Ayi/Ax = n(yit1 — ¥i)

e and
¥ =P (Y2 = 2yiyip1 + Y2) -
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Numerical Solutions Simple Example: Euler's FDM

Example 12.1 (Euler’s FDM)
Find extremals for

1

1 1
Jy] = / [zy’Z + 57 - y] ax

0
Its FDM approximation is
n—1
J[y] (Xivyiayi/)dx
i=0
n—1

I
.rgﬂ_k

2 <y12 — 2)i¥is1 _|_y,.2+1) AX + (}//2/2 - }’i> Ax

i=0
n—1 2
1 Yil2—Yi
_ 2 . 2 i /
=2_3" (yi — 2YiYit1 + y,-+1) SR
e 2 n
i=0
v
© Daria Apushkinskaya 2014 () Calculus of variations  lecture 12 26. Juni 2014 12/25



Numerical Solutions Simple Example: end-conditions

Example 12.1 (end-conditions)
@ We know the end conditions y(0) = y(1) = 0, which imply that

Yo=Yn=0.

@ Include them into the objective using Lagrange multipliers

n—1 2
1 22—y,
MYl =3 an(v2 - 2y 20 ) + X2V

i=0
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Numerical Solutions Simple Example: Euler's FDM

Example 12.1 (Euler’s FDM)
@ Taking derivatives, note that y; only appears in two terms of the
FDM approximation

n—1 2
1 2/ _y,
H[y]222n<}/i2_2}/i}/i+1‘|‘Yi2+1)+yl/ny’+)‘0}/0+/\n}/n
i—0
OHly] n(yo—y1)+yO + X for i=0
dyr ) M2Yi—Yix1—Yia)+yi/n—1/n fori=1,....n-1

n(yn—Yn-1)+Ap for i=n

@ We need to set the derivatives to all be zero, so we now have
n = 3 linear equations, including yy = y» = 0, and n + 3 variables
including the two Lagrange multipliers.

@ We can solve this system numerically using, e.g., Maple.
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Numerical Solutions Simple Example: Euler's FDM

Example 12.1 (Euler’s FDM)

Example: n = 4, solve

where
1.00
4.25
—4.00
A=
and

—4.00
8.25
—4.00

Az=Db
—4.00
8.25 —4.00
—4.00 8.25
—4.00

—4.00
4.00
1.00

1.00

b = (0.00, 0.25, 0.25, 0.25, 0.25, 0.00, 0.00)"

© Daria Apushkinskaya 2014

Calculus of variations  lecture 12

26. Juni 2014

15/25



Numerical Solutions Simple Example: Euler's FDM

Example 12.1 (Euler’s FDM)
@ First n+ 1 terms of z give y

@ Last two terms of z give the Lagrange multipliers Ao and Ap.
@ Solving the system we get for n =4

y1 = y3 = 0.08492201040, Yo = 0.1126516464
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Numerical Solutions Simple Example: results

Example 12.1 (results)

0.10 - =4

0.06 4
0.04 4

0.02 4
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Numerical Solutions Simple Example: results

Example 12.1 (results)

0.10 - =6

0.08 -
.06
0.04 1

0.02 4
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Numerical Solutions Convergence of Euler's FDM

Convergence of Euler's FDM

J[y] - Z F <Xlayla Vi > Ax and Ay, Yie1 — Vi

Only two terms in the sum involve y;, so

83 0 Ay B Ay
F<Xi—17yi—17 Vi 1>+F<Xlayl7yl>

1 OF Ayi1
AX@yI (XI 17}’/ 1 AX )
oF Ay 1 OF Ay;
+ 87_}/, <X/,y/, AX) AX ayl ( I?.yla AX>
oy, o B 8) - 8 (o )
- ay/ EPARDA| AX
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Numerical Solutions Convergence of Euler's FDM

Convergence of Euler's FDM

9O (v %) = 5 (sr. i, 25

3}/,' _aiyi(xiayiayi Ax

=0.
In limit n — oo, then Ax — 0, and so we get

oF _d (OF) _

dy dx \oy')
which are the Euler-Lagrange equations.

@ i.e., the finite difference solution converges to the solution of the
Euler-Lagrange equations.
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Numerical Solutions Comments

Remarks
@ There are lots of ways to improve Euler's FDM

@ use a better method of numerical quadrature (integration)

@ trapezoidal rule
@ Simpson’s rule

@ Romberg’s method
@ use a non-uniform grid

@ make it finer where there is more variation

@ We can use a different approach that can be even better.
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Numerical Solutions Ritz’s Method

Ritz’s Method

@ In Ritz's method (called Kantorovich’s method where there is more
than one independent variable), we approximate our functions (the
extremal in particular) using a family of simple functions.

@ Again we can reduce the problem into a standard multivariable
maximization problem, but now we seek coefficients for our
approximation.
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Numerical Solutions Ritz’s Method

Assume we can approximate y(x) by

Y(X) = ¢o(X) + C1¢1(X) + Cod2(X) + - - - + Cnn(X)

where we choose a convenient set of functions ¢;(x) and find the
values of ¢; which produce an extremal.

For fixed end-points problem:
@ Choose ¢g(x) to satisfy the end conditions.
@ Then ¢j(xo) = ¢j(x1) =0forj=1,2,...,n

The ¢ can be chosen from standard sets of functions, e.g. power
series, trigonometric functions, Bessel’s functions, etc. (but must be
linearly independent).
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Numerical Solutions Ritz’s Method

o Select {¢;} 4
@ Approximate

Yn(X) = ¢o(X) + C191(X) + Cop2(X) + -+ - + Cnn(X)

X1
@ Approximate J[y] ~ J[yn] = [ F(X, Yn, y})dX.

Xo
@ Integrate to get J[yn] = Jn(cy, Co, ..., Cn).

@ J, is a known function of n variables, so we can maximize (or

minimize) it as usual by
Odn 0

ac
foralli=1,2,...,n.
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Numerical Solutions Upper Bounds

@ Assume the extremal of interest is a minimum, then for the
extremal

Jiyl < JIyl
for all  within the neighborhood of y.

@ Assume our approximating function y;, is close enough to be in
that neighborhood, then

JIy] < Jlyn] = Jn[c]

so the approximation provides an upper bound on the minimum
JIyl.

@ Another way to think about it is that we optimize on a smaller set
of possible functions y, so we can’t get quite as good a minimum.
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