Calculus of Variations Summer Term 2014

Lecture 12

26. Juni 2014

Purpose of Lesson:

- To discuss numerical solutions of the variational problems
- To introduce Euler's Finite Difference Method and Ritz's Method.

§9. Numerical Solutions

2014 ()

lecture 12

3 / 25

Numerical Solutions:

The Euler-Lagrange equations may be hard to solve.

Natural response is to find numerical methods.

- Numerical solution of the Euler-Lagrange equations
 - We won't consider these here (see other courses)
- Euler's finite difference method
- Ritz (Rayleigh-Ritz)
 - In 2D: Kantorovich's method

Euler's Finite Difference Method

- We can approximate our function (and hence the integral) onto a finite grid.
- In this case, the problem reduces to a standard multivariable maximization (or minimization) problem, and we find the solution by setting the derivatives to zero.
- In the limit as the grid gets finer, this approximates the Euler-Lagrange equations.

5/25

Numerical approximation of integrals:

use an arbitrary set of mesh points

$$a = x_0 < x_1 < x_2 < \cdots < x_n = b.$$

approximate

$$y'(x_i) = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} = \frac{\Delta y_i}{\Delta x_i}$$

rectangle rule

$$J[y] = \int_{a}^{b} F(x, y, y') dx \simeq \sum_{i=0}^{n-1} F\left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x_{i}}\right) \Delta x_{i} = \widehat{J}[\mathbf{y}]$$

 $\widehat{J}[\cdot]$ is a function of the vector $\mathbf{y} = (y_1, y_2, \dots, y_n)$.

 Treat this as a maximization of a function of n variables, so that we require

$$\frac{\partial \widetilde{J}}{\partial y_i} = 0$$

for all i = 1, 2, ..., n.

• Typically use uniform grid so

$$\Delta x_i = \Delta x = \frac{b-a}{n}$$
.

Example 12.1

Find extremals for

$$J[y] = \int_{0}^{1} \left[\frac{1}{2} y'^{2} + \frac{1}{2} y^{2} - y \right] dx$$

with y(0) = 0 and y(1) = 0.

The Euler-Lagrange equation y'' - y = -1.

Example 12.1 (direct solution)

- E-L equation: y'' y = -1
- Solution to homogeneous equation y'' y = 0 is given by $e^{\lambda x}$ giving characteristic equation

$$\lambda^2 - 1 = 0,$$

so
$$\lambda = \pm 1$$

- Particular solution y = 1.
- Final solution is

$$y(x) = Ae^x + Be^{-x} + 1$$

Example 12.1 (direct solution)

• The boundary conditions y(0) = y(1) = 0 constrain

$$A + B = -1$$
$$Ae + Be^{-1} = -1$$

so
$$A = \frac{1-e}{e^2-1}$$
 and $B = \frac{e-e^2}{e^2-1}$.

Then the exact solution to the extremal problem is

$$y(x) = \frac{1-e}{e^2-1}e^x + \frac{e-e^2}{e^2-1}e^{-x} + 1$$

Find extremals for

$$J[y] = \int_{0}^{1} \left[\frac{1}{2} y'^{2} + \frac{1}{2} y^{2} - y \right] dx$$

Euler's FDM:

- Take the grid $x_i = i/n$, for i = 0, 1, ..., n so
 - end points $y_0 = 0$ and $y_n = 0$
 - $\Delta x = 1/n$ and $\Delta y_i = y_{i+1} y_i$.
- So
 - $y_i' = \Delta y_i/\Delta x = n(y_{i+1} y_i)$
 - and

$$y_i'^2 = n^2 (y_i^2 - 2y_i y_{i+1} + y_{i+1}^2).$$

Find extremals for

$$J[y] = \int_{0}^{1} \left[\frac{1}{2} y'^{2} + \frac{1}{2} y^{2} - y \right] dx$$

Its FDM approximation is

$$\widetilde{J}[\mathbf{y}] = \sum_{i=0}^{n-1} F(x_i, y_i, y_i') dx$$

$$= \sum_{i=0}^{n-1} \frac{1}{2} n^2 \left(y_i^2 - 2y_i y_{i+1} + y_{i+1}^2 \right) \Delta x + \left(y_i^2 / 2 - y_i \right) \Delta x$$

$$= \sum_{i=0}^{n-1} \frac{1}{2} n \left(y_i^2 - 2y_i y_{i+1} + y_{i+1}^2 \right) + \frac{y_i^2 / 2 - y_i}{n}.$$

Example 12.1 (end-conditions)

• We know the end conditions y(0) = y(1) = 0, which imply that

$$y_0 = y_n = 0.$$

Include them into the objective using Lagrange multipliers

$$\mathcal{H}[\mathbf{y}] = \sum_{i=0}^{n-1} \frac{1}{2} n \left(y_i^2 - 2y_i y_{i+1} + y_{i+1}^2 \right) + \frac{y_i^2/2 - y_i}{n} + \lambda_0 y_0 + \lambda_n y_n.$$

• Taking derivatives, note that y_i only appears in two terms of the FDM approximation

$$\mathcal{H}[\mathbf{y}] = \sum_{i=0}^{n-1} \frac{1}{2} n \left(y_i^2 - 2y_i y_{i+1} + y_{i+1}^2 \right) + \frac{y_i^2 / 2 - y_i}{n} + \lambda_0 y_0 + \lambda_n y_n$$

$$\frac{\partial \mathcal{H}[\mathbf{y}]}{\partial y_i} = \begin{cases} n(y_0 - y_1) + \frac{y_0 - 1}{n} + \lambda_0 & \text{for } i = 0 \\ n(2y_i - y_{i+1} - y_{i-1}) + y_i / n - 1 / n & \text{for } i = 1, \dots, n-1 \\ n(y_n - y_{n-1}) + \lambda_n & \text{for } i = n \end{cases}$$

- We need to set the derivatives to all be zero, so we now have n = 3 linear equations, including $y_0 = y_n = 0$, and n + 3 variables including the two Lagrange multipliers.
- We can solve this system numerically using, e.g., Maple.

Example: n = 4, solve

$$Az = b$$

where

$$A = \begin{pmatrix} 1.00 \\ 4.25 & -4.00 \\ -4.00 & 8.25 & -4.00 \\ & -4.00 & 8.25 & -4.00 \\ & & -4.00 & 8.25 & -4.00 \\ & & & -4.00 & 4.00 & 1.00 \\ & & & & 1.00 \end{pmatrix}$$

and

 $\mathbf{b} = (0.00, 0.25, 0.25, 0.25, 0.25, 0.00, 0.00)^T$

- First n+1 terms of **z** give **y**
- Last two terms of **z** give the Lagrange multipliers λ_0 and λ_n .
- Solving the system we get for n = 4

$$y_1 = y_3 = 0.08492201040,$$
 $y_2 = 0.1126516464$

Example 12.1 (results)

Example 12.1 (results)

lecture 12

Convergence of Euler's FDM

$$\widehat{J}[\mathbf{y}] = \sum_{i=0}^{n-1} F\left(x_i, y_i, \frac{\Delta y_i}{\Delta x_i}\right) \Delta x$$
 and $\Delta y_i = y_{i+1} - y_i$

Only two terms in the sum involve y_i , so

$$\begin{split} \frac{\partial \widehat{J}}{\partial y_{i}} &= \frac{\partial}{\partial y_{i}} F\left(x_{i-1}, y_{i-1}, \frac{\Delta y_{i-1}}{\Delta x}\right) + \frac{\partial}{\partial y_{i}} F\left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x}\right) \\ &= \frac{1}{\Delta x} \frac{\partial F}{\partial y_{i}'} \left(x_{i-1}, y_{i-1}, \frac{\Delta y_{i-1}}{\Delta x}\right) \\ &+ \frac{\partial F}{\partial y_{i}} \left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x}\right) - \frac{1}{\Delta x} \frac{\partial F}{\partial y_{i}'} \left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x}\right) \\ &= \frac{\partial F}{\partial y_{i}} (x_{i}, y_{i}, y_{i}') - \frac{\frac{\partial F}{\partial y_{i}'} \left(x_{i}, y_{i}, \frac{\Delta y_{i}}{\Delta x}\right) - \frac{\partial F}{\partial y_{i}'} \left(x_{i-1}, y_{i-1}, \frac{\Delta y_{i-1}}{\Delta x}\right)}{\Delta x} \end{split}$$

→□ → → □ → → □ → □ → ○ ○ ○

Convergence of Euler's FDM

$$\frac{\partial \widehat{J}}{\partial y_i} = \frac{\partial F}{\partial y_i}(x_i, y_i, y_i') - \frac{\frac{\partial F}{\partial y_i'}\left(x_i, y_i, \frac{\Delta y_i}{\Delta x}\right) - \frac{\partial F}{\partial y_i'}\left(x_{i-1}, y_{i-1}, \frac{\Delta y_{i-1}}{\Delta x}\right)}{\Delta x} = 0.$$

In limit $n \to \infty$, then $\Delta x \to 0$, and so we get

$$\frac{\partial F}{\partial y} - \frac{d}{dx} \left(\frac{\partial F}{\partial y'} \right) = 0$$

which are the Euler-Lagrange equations.

 i.e., the finite difference solution converges to the solution of the Euler-Lagrange equations.

Remarks

- There are lots of ways to improve Euler's FDM
 - use a better method of numerical quadrature (integration)
 - trapezoidal rule
 - Simpson's rule
 - Romberg's method
 - use a non-uniform grid
 - make it finer where there is more variation
- We can use a different approach that can be even better.

Ritz's Method

- In Ritz's method (called Kantorovich's method where there is more than one independent variable), we approximate our functions (the extremal in particular) using a family of simple functions.
- Again we can reduce the problem into a standard multivariable maximization problem, but now we seek coefficients for our approximation.

Assume we can approximate y(x) by

$$y(x) = \phi_0(x) + c_1\phi_1(x) + c_2\phi_2(x) + \cdots + c_n\phi_n(x)$$

where we choose a convenient set of functions $\phi_j(x)$ and find the values of c_j which produce an extremal.

For fixed end-points problem:

- Choose $\phi_0(x)$ to satisfy the end conditions.
- Then $\phi_j(x_0) = \phi_j(x_1) = 0$ for j = 1, 2, ..., n

The ϕ can be chosen from standard sets of functions, e.g. power series, trigonometric functions, Bessel's functions, etc. (but must be linearly independent).

- Select $\{\phi_i\}_{i=0}^n$
- Approximate

$$y_n(x) = \phi_0(x) + c_1\phi_1(x) + c_2\phi_2(x) + \cdots + c_n\phi_n(x)$$

- Approximate $J[y] \simeq J[y_n] = \int_{x_n}^{x_1} F(x, y_n, y_n') dx$.
- Integrate to get $J[y_n] = J_n(c_1, c_2, \dots, c_n)$.
- J_n is a known function of n variables, so we can maximize (or minimize) it as usual by

$$\frac{\partial J_n}{\partial c_i} = 0$$

for all i = 1, 2, ..., n.

Assume the extremal of interest is a minimum, then for the extremal

$$J[y] < J[\hat{y}]$$

for all \hat{y} within the neighborhood of y.

• Assume our approximating function y_n is close enough to be in that neighborhood, then

$$J[y] \leqslant J[y_n] = J_n[\mathbf{c}]$$

so the approximation provides an upper bound on the minimum J[y].

 Another way to think about it is that we optimize on a smaller set of possible functions y, so we can't get quite as good a minimum.

