Calculus of Variations Summer Term 2014

Lecture 13

26. Juni 2014

Purpose of Lesson:

- First application of the Ritz method.
- The Ritz method applied to the catenary gives additional insights.

Example 13.1

Find extremals for

$$J[y] = \int_{0}^{1} \left[\frac{1}{2} y'^{2} + \frac{1}{2} y^{2} - y \right] dx$$

with y(0) = 0 and y(1) = 0.

The Euler-Lagrange equation y'' - y = 1, but we shall bypass the Euler-Lagrange equation to use Ritz's method.

$$y_n(x) = \phi_0(x) + \sum_{i=1}^n c_i \phi_i(x)$$

where we take $\phi_0(x) = 0$ and $\phi_i(x) = x^i (1 - x)^i$.

3/19

Example 13.1

• Simple approximation $y_1 = c_1 \phi_1(x)$ we get

$$J_1[c_1] = J[y_1] = \int_0^1 \left[\frac{1}{2} c_1^2 \phi_1'^2 + \frac{1}{2} c_1^2 \phi_1^2 - c_1 \phi_1 \right] dx.$$

• Now $\phi_1(x) = x(1-x)$ so $\phi_1' = 1-2x$, and

$$J_{1}[c_{1}] = \int_{0}^{1} \left[\frac{c_{1}^{2}}{2} (1 - 2x)^{2} + \frac{c_{1}^{2}}{2} x^{2} (1 - x)^{2} - c_{1} x (1 - x) \right] dx$$

$$= \frac{c_{1}^{2}}{2} \int_{0}^{1} \left[1 - 4x + 5x^{2} - 2x^{3} + x^{4} \right] dx + c_{1} \int_{0}^{1} \left[-x + x^{2} \right] dx$$

$$= \frac{3c_{1}^{2}}{5} - \frac{c_{1}}{6}.$$

Example 13.1

We solve for c₁ by setting

$$\frac{dJ_1}{dc_1} = \frac{6c_1}{5} - \frac{1}{6} = 0$$

to get $c_1 = 5/36$, so the approximate extremal is

$$y_1(x) = \frac{5}{36}x(1-x).$$

The value of the approximate functional at this point is

$$J_1[5/36] = \frac{3c_1^2}{5} - \frac{c_1}{6} = -0.01157407$$

which is an upper bound on the true value of the functional on the extremal.

Example 13.1 (alternate approach)

- Choose $\phi_1(x) = \sin(\pi x)$ (use the first element of a trigonometric series to approximate y).
- Then, $\phi_1'(x) = \pi \cos(\pi x)$, and so the functional is

$$J_{1}[c_{1}] = J[c_{1}\phi_{1}] = \int_{0}^{1} \left[\frac{1}{2}c_{1}^{2}\phi_{1}^{\prime 2} + \frac{1}{2}c_{1}^{2}\phi_{1}^{2} - c_{1}\phi_{1} \right] dx$$

$$= \int_{0}^{1} \left[\frac{c_{1}^{2}\pi^{2}}{2}\cos^{2}(\pi x) + \frac{c_{1}^{2}}{2}\sin^{2}(\pi x) - c_{1}\sin(\pi x) \right] dx.$$

• Observe that $\int_{0}^{1} \cos^{2}(\pi x) dx = \int_{0}^{1} \sin^{2}(\pi x) dx = 1/2$, and $\int_{0}^{1} \sin(\pi x) dx = \left[-\frac{1}{\pi} \cos(\pi x) \right]_{0}^{1} = -2/\pi$.

Example 13.1 (alternate approach)

So

$$J_1[c_1] = \frac{c_1^2}{4} \left[\pi^2 + 1 \right] - \frac{2}{\pi} c_1.$$

• Once again we solve for c_1 by setting

$$\frac{dJ_1}{dc_1} = \frac{c_1}{2} \left[\pi^1 + 1 \right] - \frac{2}{\pi} = 0$$

to get $c_1 = \frac{4}{\pi(\pi^2+1)}$, so the approximate extremal is

$$y_1(x) = \frac{4}{\pi(\pi^2 + 1)} \sin{(\pi x)}.$$

Example 13.2 (the catenary, again)

The functional of interest (the potential energy) is

$$J_p[y] = mg \int_{x_0}^{x_1} y \sqrt{1 + y'^2} dx.$$

Take symmetric problem with fixed end points

$$y(-1) = a$$
 and $y(1) = a$

and we know the solution looks like

$$y(x) = c_1 \cosh\left(\frac{x}{c_1}\right)$$

where c_1 is chosen to match the end points.

D 1 4 3 1 4 3 1 4 3 1 4 3 0 0

Example 13.2 (the catenary, again)

$$y(1) = 2$$
 gives $c_1 = 0.47$ or $c_1 = 1.697$

• Are they both local minima?

Lets try approximating the curve by a polynomial

$$y(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + \dots$$

 Note that symmetry of problem implies y is an even function, and hence the odd terms

$$a_1=a_3=\cdots=0.$$

So, to second order we can approximate

$$y(x) \simeq a_0 + a_2 x^2.$$

• We have fixed $y(1) = y_1$, so we can simplify to get

$$y(x) \simeq a_0 + (y_1 - a_0)x^2$$
.

◆ロト ◆部 ト ◆草 ト ◆草 ・ りゅべ

$$y \simeq a_0 + (y_1 - a_0)x^2$$

 $y' \simeq 2(y_1 - a_0)x$

• Taking into account y(1) = 2 we get $a_0 + a_2 = 2$. We can substitute into the functional

$$J_p[y] = mg \int_{x_0}^{x_1} y \sqrt{1 + y'^2} dx$$

and integrate to get a function $J_p[a_2]$ with respect to a_2 .

But this function is pretty complicated.

From Maple we have the value for $J_p[a_2]$, $(a := a_2)$

```
\begin{bmatrix}
> f(x) := (2 - a + a \cdot x^2) \cdot \sqrt{1 + 4 \cdot a^2 \cdot x^2} : \\
> int(f(x), x = -1 ..1) \\
\frac{1}{64} \frac{1}{a^2} \left( \left( 16 a^2 \ln \left( \left( -2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) + 128 \sqrt{1 + 4 a^2} a^2 \operatorname{csgn}(a) \right)
\end{bmatrix}

                                 -64 a^3 \sqrt{1+4 a^2} \operatorname{csgn}(a) - 32 a \ln((-2 a + \sqrt{1+4 a^2} \operatorname{csgn}(a)) \operatorname{csgn}(a)) + \ln((-2 a + \sqrt{1+4 a^2} \operatorname{csgn}(a)) \operatorname{csgn}(a))
                             -2 a + \sqrt{1+4 a^2} \operatorname{csgn}(a) \operatorname{csgn}(a) - 4 \sqrt{1+4 a^2} a \operatorname{csgn}(a) + 8 (1+4 a^2)^3
                           ^{1/2} a \operatorname{csgn}(a) - 16 a^2 \ln \left( \left( 2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) + 32 a \ln \left( \left( 2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) + 32 a \ln \left( \left( 2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) + 32 a \ln \left( \left( 2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) + 32 a \ln \left( \left( 2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) + 32 a \ln \left( \left( 2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) + 32 a \ln \left( \left( 2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) + 32 a \ln \left( \left( 2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) + 32 a \ln \left( \left( 2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) + 32 a \ln \left( \left( 2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) + 32 a \ln \left( \left( 2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) + 32 a \ln \left( \left( 2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) + 32 a \ln \left( \left( 2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) + 32 a \ln \left( \left( 2 a + \sqrt{1 + 4 a^2} \operatorname{csgn}(a) \right) \operatorname{csgn}(a) \right) \right) 
                               +\sqrt{1+4a^2} \operatorname{csgn}(a) \operatorname{csgn}(a) - \ln((2a+\sqrt{1+4a^2} \operatorname{csgn}(a)) \operatorname{csgn}(a))
                               csgn(a)
```

lecture 13

(1)

• Its a pain to find the zeros of $\frac{dJ_p}{da}$, but its easy to plot, and find them numerically.

Stationary points

- local max: $a = a_2 \simeq 1.6$
- local min: $a = a_2 \simeq 0.3$

lecture 13

lecture 13

Ritz and the Catenary

Doesn't just give us an approximation to the extremal curves, its also give us some insight into the nature of these extremals. If

- approximations are near to the actual extrema
- There are no other extrema so close by
- The functional is smooth (it can't have jumps either)

Then the type of extrema we get for the approximation will be the same for the real extrema, i.e.,

- local max: $a_2 \simeq 1.6 \Rightarrow \text{local max for } c_1 = 0.497$
- local min: $a_2 \simeq 0.3 \Rightarrow \text{local min for } c_1 = 1.697$

