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Purpose of Lesson

Purpose of Lesson:

@ Kantorovich’s method generalizes Ritz to 2D functions.
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Numerical Solutions (continued) More than one independent variables

2D Case:
We are approximating a surface with series of functions, e.g.

Z(X,y) 2 za(X,y) = do(X, ¥) + > _ Cidi(X.¥)
i=1
where

@ ¢o(x,y) satisfies the boundary conditions, e.g.

qu(Xay):ZO(va) for (Xay)eaQ’
the boundary of the region on interest Q,

@ and the ¢;(x, y) satisfy the homogeneous boundary conditions

di(x,y) =0 for (x,y) e oQ.
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Numerical Solutions (continued) More than one independent variables

2D Case:
@ As before, we approximate the functional by

J[2] ~ J[z0] = Jn(ct, .. ., Cn)-

@ As before we determine the ¢; by requiring that the partial
derivatives are zero, e.g.

0dn
ac

foralli=1,2,...,n.
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Numerical Solutions (continued) Kantorovich’s Method

Kantorovich’s Method
@ Approximate with

Z(x,y) ~ zn(x,¥) = do(x, ¥) +Zc, )¢i(X, ¥).
i=1

@ Again the ¢, are suitable chosen, but the ¢; are no longer
constants, but rather functions of one independent variable.

@ This allows a larger class of functions to be used.
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Numerical Solutions (continued) Kantorovich’s Method

Kantorovich’s Method
@ Note that the integral function

yi(x)

Jzn) = //zn X, y)dxdy = Z/c,(x) / i(x, y)dy | dx

Yo(x)

@ We integrate the inner integral, and get

J[zn] = i/c,-(x)d>,(x)dx
i=0

@ Now we just have a function of x, and so we may apply the
Euler-Lagrange machinery.

@ The method approx. separates the variables x and y.
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Numerical Solutions (continued) Kantorovich’s Method

Example 14.1
Find the extremals of
b a
J[z(x,y)] = // (zf +25 - 22) dxdy
—b—a

with z = 0 on the boundary.

@ The Euler-Lagrange equation reduces to the Poisson equation,

eg.
d d
Fz*&FzX*dinzyZO
d d
Zxx+Zyy = _1

v
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Numerical Solutions (continued) Kantorovich’s Method

Example 14.1
@ Approximate

z1(x,y) = c(x) (6 - y?)

@ Note z¢(x, £b) = 0 (as required) and

() = lwa ()

= c/(x)? [b“ —2b%y2 + yﬂ :
(?fy‘)z ~ o(x)2yP

= 4c(x)?y?
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Numerical Solutions (continued) Kantorovich’s Method

Example 14.1
Hence, we approximate
J[z(x, )] =~ J[z1(x, y)] = /b /a (z§ + 22— 2z) dxdy
b ’a
_ /a - /b [c’(x)z (b2 - y2>2 + 4c(x)2y? — 2¢(x) (b2 - y2>] dy] dx
Ya b
- /a :c’(x)z (b"’ y —2b2y%/3 + 5 /5) +4c(x)2y3/3
- +2¢(x) (b2 y—y° /3)} bb dx
= /a “2195@-'()()2 + §b3c(x)2 - 2b30(x)] dx

—a
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Numerical Solutions (continued) Kantorovich’s Method

Example 14.1
@ So we can write

a

J[z(x,y)] = J[z1(x,y)] = J[e(x)] = /F(X, c, c)dx

—a

@ We can use the simple Euler-Lagrange equation, where

n_ 16,5, o 83 » 8.3
F(x,c,c)_15b c'(x) +3b c(x) 3b c(x)
OF 16,5 . 8,
gc ~— 3 Pex)—3b
OF 32,5, doF 32,
90 — 152 ¢™X) oo — 152
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Numerical Solutions (continued) Kantorovich’s Method

Example 14.1
@ The Euler-Lagrange equation

E 3 _§ 3_% 5 1 _
3 b°c(x) 3b 15b c'(x)=0
CII(X)_

202X =~ 752

@ Solutions

5x . 5x 1
c(x) = kq cosh (\/;b> + ko sinh (\/;b> + 5
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Numerical Solutions (continued) Kantorovich’s Method

Example 14.1
@ Note that the function must be zero on the boundary, so
z(+a,y)=0.

@ We look for an even function ¢(x), and so k; = 0.

@ Also ¢c(+a) =0, so

5a 1
c(a) = kq cosh (\@b) + >
1 5a
_E = k~| cosh (\/;b>

1

2cosh (ﬁg)

ky = —

v
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Numerical Solutions (continued) Kantorovich’s Method

Example 14.1
@ Solution

cosh<\/§’,§>
cosh<\/§g>

1
z1(x,y) = 5(B* —y?) | 1 -
2

@ If we want a more exact approximation, we could try

2(x,y) = (b? — y?)cr(x) + (b7 — y?)?ca(x).

© Daria Apushkinskaya 2014 () Calculus of variations  lecture 14 20. Juni 2014

13/14



Numerical Solutions (continued) Lower bounds

Remarks
@ Obviously, quality of solution depends on

o family of functions chosen
@ number of terms used, n

@ Could test convergence by increasing n and seeing the difference
in

[IYni1] = Jlynll,
but this is not guaranteed to be a good indication.

@ A better way to assess convergence is to have a lower bound

lower bound < J[y] < upper bound

© Daria Apushkinskaya 2014 () Calculus of variations  lecture 14 20. Juni 2014 14/14



	Purpose of Lesson
	Numerical Solutions (continued)
	More than one independent variables
	Kantorovich's Method
	Lower bounds


