Calculus of Variations Summer Term 2014

Lecture 14

20. Juni 2014

Purpose of Lesson:

• Kantorovich's method generalizes Ritz to 2D functions.

2D Case:

We are approximating a surface with series of functions, e.g.

$$z(x,y) \simeq z_n(x,y) = \phi_0(x,y) + \sum_{i=1}^n c_i \phi_i(x,y)$$

where

• $\phi_0(x, y)$ satisfies the boundary conditions, e.g.

$$\phi_0(x,y) = z_0(x,y)$$
 for $(x,y) \in \partial\Omega$,

the boundary of the region on interest Ω ,

• and the $\phi_i(x, y)$ satisfy the homogeneous boundary conditions

$$\phi_i(x,y) = 0$$
 for $(x,y) \in \partial \Omega$.

2D Case:

As before, we approximate the functional by

$$J[z] \simeq J[z_n] = J_n(c_1, \ldots, c_n).$$

• As before we determine the c_j by requiring that the partial derivatives are zero, e.g.

$$\frac{\partial J_n}{\partial c_i} = 0$$

for all i = 1, 2, ..., n.

Kantorovich's Method

Approximate with

$$z(x,y) \simeq z_n(x,y) = \phi_0(x,y) + \sum_{i=1}^n c_i(x)\phi_i(x,y).$$

- Again the ϕ_i are suitable chosen, but the c_i are no longer constants, but rather functions of one independent variable.
- This allows a larger class of functions to be used.

Kantorovich's Method

Note that the integral function

$$J[z_n] = \iint\limits_{\Omega} z_n(x,y) dx dy = \sum_{i=0}^n \int\limits_{\infty} c_i(x) \left[\int\limits_{y_0(x)}^{y_1(x)} \phi_i(x,y) dy \right] dx$$

We integrate the inner integral, and get

$$J[z_n] = \sum_{i=0}^n \int c_i(x) \Phi_i(x) dx.$$

- Now we just have a function of x, and so we may apply the Euler-Lagrange machinery.
- The method approx. separates the variables x and y.

Find the extremals of

$$J[z(x,y)] = \int_{-b}^{b} \int_{-a}^{a} (z_x^2 + z_y^2 - 2z) dxdy$$

with z = 0 on the boundary.

 The Euler-Lagrange equation reduces to the Poisson equation, e.g.

$$F_{z} - \frac{d}{dx}F_{z_{x}} - \frac{d}{dy}F_{z_{y}} = 0$$
$$-2 - \frac{d}{dx}(2z_{x}) - \frac{d}{dy}(2z_{y}) = 0$$
$$z_{xx} + z_{yy} = -1$$

Approximate

$$z_1(x,y)=c(x)\left(b^2-y^2\right)$$

• Note $z_1(x, \pm b) = 0$ (as required) and

$$\left(\frac{\partial z_1}{\partial x}\right)^2 = \left[c'(x)\left(b^2 - y^2\right)\right]^2$$

$$= c'(x)^2 \left[b^4 - 2b^2y^2 + y^4\right],$$

$$\left(\frac{\partial z_1}{\partial y}\right)^2 = \left[c(x)2y\right]^2$$

$$= 4c(x)^2y^2$$

Hence, we approximate

$$J[z(x,y)] \simeq J[z_1(x,y)] = \int_{-b}^{b} \int_{-a}^{a} \left(z_x^2 + z_y^2 - 2z\right) dxdy$$

$$= \int_{-a}^{a} \left[\int_{-b}^{b} \left[c'(x)^2 \left(b^2 - y^2 \right)^2 + 4c(x)^2 y^2 - 2c(x) \left(b^2 - y^2 \right) \right] dy \right] dx$$

$$= \int_{-a}^{a} \left[c'(x)^2 \left(b^4 y - 2b^2 y^3 / 3 + y^5 / 5 \right) + 4c(x)^2 y^3 / 3 \right.$$

$$+ 2c(x) \left(b^2 y - y^3 / 3 \right) \right]_{-b}^{b} dx$$

$$= \int_{-a}^{a} \left[\frac{16}{15} b^5 c'(x)^2 + \frac{8}{3} b^3 c(x)^2 - \frac{8}{3} b^3 c(x) \right] dx$$

So we can write

$$J[z(x,y)] \simeq J[z_1(x,y)] = J[c(x)] = \int_{-a}^{a} F(x,c,c')dx$$

We can use the simple Euler-Lagrange equation, where

$$F(x,c,c') = \frac{16}{15}b^5c'(x)^2 + \frac{8}{3}b^3c(x)^2 - \frac{8}{3}b^3c(x)$$

$$\frac{\partial F}{\partial c} = \frac{16}{3}b^3c(x) - \frac{8}{3}b^3$$

$$\frac{\partial F}{\partial c'} = \frac{32}{15}b^5c'(x) \qquad \qquad \frac{d}{dx}\frac{\partial F}{\partial c'} = \frac{32}{15}b^5c''(x)$$

The Euler-Lagrange equation

$$\frac{16}{3}b^3c(x) - \frac{8}{3}b^3 - \frac{32}{15}b^5c''(x) = 0$$
$$c''(x) - \frac{5}{2b^2}c(x) = -\frac{5}{4b^2}$$

Solutions

$$c(x) = k_1 \cosh\left(\sqrt{\frac{5}{2}} \frac{x}{b}\right) + k_2 \sinh\left(\sqrt{\frac{5}{2}} \frac{x}{b}\right) + \frac{1}{2}$$

- Note that the function must be zero on the boundary, so $z(\pm a, y) = 0$.
- We look for an even function c(x), and so $k_2 = 0$.
- Also $c(\pm a) = 0$, so

$$c(a) = k_1 \cosh\left(\sqrt{\frac{5}{2}} \frac{a}{b}\right) + \frac{1}{2}$$
 $-\frac{1}{2} = k_1 \cosh\left(\sqrt{\frac{5}{2}} \frac{a}{b}\right)$
 $k_1 = -\frac{1}{2 \cosh\left(\sqrt{\frac{5}{2}} \frac{a}{b}\right)}$

Solution

$$z_1(x,y) = \frac{1}{2}(b^2 - y^2) \left(1 - \frac{\cosh\left(\sqrt{\frac{5}{2}}\frac{x}{b}\right)}{\cosh\left(\sqrt{\frac{5}{2}}\frac{a}{b}\right)} \right)$$

If we want a more exact approximation, we could try

$$z_2(x,y) = (b^2 - y^2)c_1(x) + (b^2 - y^2)^2c_2(x).$$

Remarks

- Obviously, quality of solution depends on
 - family of functions chosen
 - number of terms used, n
- Could test convergence by increasing n and seeing the difference in

$$|J[y_{n+1}] - J[y_n]|,$$

but this is not guaranteed to be a good indication.

A better way to assess convergence is to have a lower bound

lower bound $\leq J[y] \leq$ upper bound

