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Purpose of Lesson

Purpose of Lesson:
@ To consider optimal control examples

@ To introduce a terminology.
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Formulation of control problems

We break a control problems into two parts
@ The system state: x(t) = (x4 (t), Xa(t), ..., xn(t))!

The system state describes the system (e.g. position and velocity
of the car in car parking example)

@ The control: u(t) = (us(t), ..., um(t))

We apply the control to the system (e.g. force applied to the car).
The evolution of the system is governed by the set of DEs
x(t) = g(t,x,u)

In a control problem we want to get the system to a particular state
x(t) at time t, given initial state x(f).
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Optimal control problems

@ In an optimal control problem we have still have the system
equations

x(t) = g(t,x,u)

and we might wish to get to state x(t) given initial state x(f), but
now we wish to do so while minimizing a functional

b
J[x, u] —/F(t,x,u)dt.
fo

@ That is, we wish to choose a function u(t) which minimizes the
functional J[x, u], while satisfying the end-point conditions
X(f) = Xo and x(t;) = x4, and the non-holonomic constaints

x(t) = g(t, x, u).
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Optimal control problems

Optimization functional

b
J[x, u] :/F(t,x,u)dt
I

Remarks
Note that
@ F(t,x,u) has no dependence on u: this is typically because costs
depend on the control, not how we change the control, but there
might be counter-examples.

@ F(t,x,u) has no dependence on X: this is common in control
problems, but not universal (we have seen at least one counter
example).

v
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Terminal costs

@ Sometimes in optimal control we don'’t fix the end-point x(t;), but
rather we assign a cost ¢(ty,X(¢)) to particular end-points.

@ So now we wish to choose a control u(t) which minimizes the
functional

Jx,u] = o(ty,x /thu

while satisfying the single end-point condition x(#;) = xo, and the
non-holonomic constraint x(t) = g(t,x,u).

o(t,x(ty)) is called the terminal cost.
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System Terminology

@ linear: the state equations are a set of linear DEs.

@ autonomous: time doesn’t appear explicitly in the state equations
(e.g.in g(x,u), or F(x,u)).

@ also called time-invariant.

@ terminal cost: the term ¢(t,x(%)) is called the terminal cost.

@ controllable: a solution to the control problem exists.

@ stable: a stable equilibrium solution to the system DEs exists.

e often we are interested in problems that are unstable, or we
wouldn’t really need a control.
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Control Terminology

@ control (driver or automatic)
e planned (open loop)

o feedback (closed loop) control depends on current state

@ type of control
@ movement from Ato B

e continuous operations (maintain equilibrium)

@ type of cost functional J
@ minimum time
@ minimum fuel

e quadratic costs

@ admissible controls

@ unbounded / bounded / bang-bang
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Cost functional examples

@ minimum time: choose the fastest possible control

t
J[x,u] = /dt.
fo

@ minimum fuel: fuel is expended by the controller, and we wish to
minimize this

t
Jlx, U] = / u(t)|dt
fo

@ quadratic costs:

4

Jix, u] = / (3(0) + a?(1)) ot

b
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Boundary conditions

@ End time t;: can be fixed or free

@ End position x(t;): can be fixed or free

In the cases with free boundary conditions, we introduce natural, or
transversal boundary conditions.
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Optimal control

Example 15.1 Dynamic production
@ A producer in purely competitive market

o A large numbers of independent producers

e Standardized product, e.g. potatoes

e Firms are ,price takers", i.e. they have no significant control over
product price

e Free entry and exit

o Free flow of information

@ wants to find optimal production path x(t),0 <t < T.
@ production target x(T) = xr

@ profit at time tis 7(x, x, t)
T
@ maximize profit functional J[x] = [ = (x, X, t)dt.
0
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Optimal control

Example 15.1 Dynamic production-2

Profit calculation
@ quadratic production costs Cy = aix° + by X + ¢4

@ labor

@ raw materials

e production increase costs C, = a, (X)? + boX + C»
@ new bildings

e recruiting and training costs

@ revenue r = px wWhere p is the constant price per unit

e p = const due to purely competitive market
@ profit attime tis

7(x, %, ) = px — Cy(x) — Ca(X).
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Optimal control

Example 15.1 Dynamic production-3
Problem formulation: maximize total profit

T

Jx] = / (PX — Ci(x) — Ca(X)) o
0

subject to x(0) = 0 and x(T) = x7.
@ notice that the control, and rate of change of state are the same
(i.e., u = x) but we write it as above for simplicity
@ autonomous problem

@ the control is planned, and has quadratic costs

@ admissible controls are unbounded
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Optimal control

Example 15.1 Dynamic production-4
Euler-Lagrange equations

or dor
ox  dtox
00, d0C, _
8x dat ox

p— 2a1x — by —I— [232X—|—b2]
232)"(—231x+p—b1 =0
_a, _bi-p
agx_ 2a,

for ao # 0.
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Optimal control

Example 15.1 Dynamic production-5
Solution (for a;, as # 0)

e\/z + Be~ t bi—p
2a

where A and B are determined by the fixed end points x(0) = xp and
x(T) = xr.

This gives the optimal production schedule

@ no dependence on ¢; or ¢, (these are constant costs and so
shouldn’t effect production strategy)

@ no dependence on b, because this is a linear cost in increasing
production, and so occurs regardless of how we increase over
time (to get to the final production target x(T) = x7).
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Optimal control

Example 15.1 Dynamic production-6

What happens if we make the end point x(T) free, i.e. we don’t have a

production target at time T?
Then we get a natural boundary condition

on e

Xt OX |7 t=T
So, rearranging, we get
: bo
T =—-——=
x(T)=-3 2

@ constants A and B are determined by end-point conditions
x(0) =0and x(T) = — 2.
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Optimal control

*Production costs ! —x(T)=1
C = x2+5x 0.9} == free end point
- 0.8
*Production increase costs
2 e 07
C, =2x"+5x
0.6
. pP= 10 05
0.4
. T=1
0.3
e X=0, x;=1 0.2
0.1
0
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