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Purpose of Lesson

Purpose of Lesson:

@ To consider aerospace example
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Optimal control - aerospace example

Example 16.1 Lauching a rocket

Launch a rocket (with one stage) to deliver its payload into Low-Earth
Orbit (LEO) at some height h above the Earth’s surface.

Assumptions:
@ ignore drag, and curvature and rotation of Earth

@ LEO so assume gravitational force at ground and orbit are
approximately the same

@ thrust will generate acceleration a, which is predefined by rocket
parameters

@ we thrust for some time T, then follow a ballistic trajectory until
(hopefully) we reach height h, at zero vertical velocity, and with
horizontal velocity matching the required orbital injection speed.
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Optimal control - aerospace example

Example 16.1 Launching a rocket-2

(u(1), v(t))
(x(t), y(1))

X

>
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Optimal control - aerospace example

Example 16.1 Launching a rocket-3

thrust component

X
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Optimal control - aerospace example

Example 16.1 Launching a rocket-4
Notation:

x = horizontal position
y = vertical position
u = horizontal velocity
v = vertical velocity

Initial conditions x(0) = y(0) = u(0) = v(0) = 0. Thrust stops at time
T, and then at some later time S, we reach the peak of the trajectory
where

y(S)=h
u(S) = up, orbital velocity
v(S)=0

We don’t actually care about the final position x(S).

v
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Optimal control - aerospace example

Example 16.1 Launching a rocket-5

@ Control: thrust profile is pre-determined. The only thing we can
control (in this problem) is the angle of thrust.

e Thrust a(t) is constant for our example.

e Measure the angle of thrust 6(t) relative to horizontal.

@ want to minimize fuel

e but this is equivalent to minimizing time, e.g.,

! T
J:/adt:a/ 1dt
0
0

@ need to get to height h

@ need to get to horizontal velocity ug to enter orbit.
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______________ Opiimalcontrol- aerospace example |
Constrained equations

Example 16.1 Launching a rocket-6

Thrust component: t < T Ballistic component: T <t < S
X=u X=u
y=v y=v
u=acosf u=20
v=asing—g V=-—g
Initial point Initial point: fixed
x(0) = y(0) = u(0) = v(0) = 0. x(T), y(T), u(T), v(T)
Final point: free Final point:
x(S) free
y(8)=h, v(S) =0, u(S) = w

© Daria Apushkinskaya 2014 () Calculus of variations  lecture 16 11. Juli 2014 8/16



_______________ Optimal controlaerospace examplo |
1st consider ballistic component

Example 16.1 Launching a rocket-7
For t € [T, S] we have no control, and

X=u
y=v
;=0
v=-g

we can calculate the top of the resulting parabola as

and x(T) and x(S) are free.

W
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______________ Opiimalcontrol- aerospace example |
Coordinate transform

Example 16.1 Launching a rocket-8
So we can change variables: make the final point t = T, and take
variables u, v as before, and

2oyl
We can differentiate this and combine with previous results to get the
new system DEs

U = acosf
v=asing—g
Z=y+vi/g

=v(1 +\'//g):52/sin9

v
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Optimization functional

Example 16.1 Launching a rocket-9
Time minimization problem
;
T= /1dt.
0

Including Lagrange multipliers for the 3 system constraints we aim to
minimize

T

/ (1 + Ay (u—acosh)+ Ay (v—asinf+g)+ A, (Z— 2/sin9>) dt

subject to u(0) = v(0) = z(0) =0, 6(0) = free, u(T) = uy,
v(T)=free, z(T) = h, 6(T) = free.

v
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Euler-Lagrange equations

Example 16.1 Launching a rocket-10

oh doh .
u: %—a%_o = X=0
oh doh .
V: 5_55_0 = Ay=-—-X,—s8ind
oh doh
V4 252;‘— 232252;—— O = AZ — 0
g, Oh_doh_
T00  dtoe

a\,sinf — \yacosf — )\za; cosf =0

(X equations give back systems DEs).
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Solving the E-L equations

Example 16.1 Launching a rocket-11
Take the v equation, and noting that v = asind — g
- a
Av = —Az—sinf
v Zg

As .
= —— V+ R
g( 9)

A
)\VZ—EZ(V—FQt—FC)

g
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Solving the E-L equations

Example 16.1 Launching a rocket-12

Substitute \
"4
4Xz - — Z; ——4th +‘t)

into the # E-L equation (dropping the common factor a)

. v
)\U3|n9—)\vcose—)\z§cos«9: 0

and we get
. AzV v
Ausm9+< g +Azt—b> cose—Azacosezo
AusSind + (At —b)cosfd =0
A2 b
tanf = — .
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Solution

Example 16.1 Launching a rocket-13

Remember that A\, and A\, and b are all constants, so the equation

tanf = —

Azt_b

Au

@ angle of thrust now specified

0 =tan! <

Azt—b

Au

@ but we need to determine constants

)
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