Calculus of Variations Summer Term 2014

Lecture 16

11. Juli 2014

Purpose of Lesson:

• To consider aerospace example

Launch a rocket (with one stage) to deliver its payload into Low-Earth Orbit (LEO) at some height *h* above the Earth's surface.

Assumptions:

- ignore drag, and curvature and rotation of Earth
- LEO so assume gravitational force at ground and orbit are approximately the same
- thrust will generate acceleration a, which is predefined by rocket parameters
- we thrust for some time T, then follow a ballistic trajectory until (hopefully) we reach height h, at zero vertical velocity, and with horizontal velocity matching the required orbital injection speed.

Notation:

x = horizontal position

y = vertical position

u =horizontal velocity

v = vertical velocity

Initial conditions x(0) = y(0) = u(0) = v(0) = 0. Thrust stops at time T, and then at some later time S, we reach the peak of the trajectory where

$$y(S) = h$$

 $u(S) = u_0$, orbital velocity
 $v(S) = 0$

lecture 16

We don't actually care about the final position x(S).

- Control: thrust profile is pre-determined. The only thing we can control (in this problem) is the angle of thrust.
 - Thrust *a*(*t*) is constant for our example.
 - Measure the angle of thrust $\theta(t)$ relative to horizontal.
- want to minimize fuel
 - but this is equivalent to minimizing time, e.g.,

$$J = \int_{0}^{t} a dt = a \int_{0}^{T} 1 dt$$

- need to get to height h
- need to get to horizontal velocity u₀ to enter orbit.

Constrained equations

Thrust component: $t \leqslant T$	Ballistic component: $T < t \leqslant S$
$\dot{x} = u$	$\dot{x} = u$
$\dot{y} = v$	$\dot{y} = v$
$\dot{u} = a\cos heta$	$\dot{u}=0$
$\dot{\pmb{v}}=\pmb{a}\sin heta-\pmb{g}$	$\dot{\textit{v}} = -\textit{g}$
Initial point	Initial point: fixed
x(0) = y(0) = u(0) = v(0) = 0.	x(T), y(T), u(T), v(T)
Final point: free	Final point:
-	x(S) free
	$y(S) = h, \ v(S) = 0, \ u(S) = u_0$

1st consider ballistic component

Example 16.1 Launching a rocket-7

For $t \in [T, S]$ we have no control, and

$$\dot{x} = u$$

$$\dot{y} = v$$

$$\dot{u} = 0$$

$$\dot{v} = -g$$

we can calculate the top of the resulting parabola as

$$u(S) = u(T)$$

$$v(S) = 0$$

$$y(S) = y(T) + (v(T))^{2}/2g$$

lecture 16

and x(T) and x(S) are free.

Coordinate transform

Example 16.1 Launching a rocket-8

So we can change variables: make the final point t = T, and take variables u, v as before, and

$$z=y+\frac{v^2}{2g}.$$

We can differentiate this and combine with previous results to get the new system DEs

$$\begin{split} \dot{u} &= a cos \theta \\ \dot{v} &= a \sin \theta - g \\ \dot{z} &= \dot{y} + v \dot{v} / g \\ &= v \left(1 + \dot{v} / g \right) = \frac{a v}{g} \sin \theta \end{split}$$

Optimization functional

Example 16.1 Launching a rocket-9

Time minimization problem

$$T = \int_{0}^{T} 1 dt.$$

Including Lagrange multipliers for the 3 system constraints we aim to minimize

$$\int_{0}^{T} \left(1 + \lambda_{u} \left(\dot{u} - a \cos \theta \right) + \lambda_{v} \left(\dot{v} - a \sin \theta + g \right) + \lambda_{z} \left(\dot{z} - \frac{av}{g} \sin \theta \right) \right) dt$$

subject to
$$u(0) = v(0) = z(0) = 0$$
, $\theta(0) = free$, $u(T) = u_0$, $v(T) = free$, $z(T) = h$, $\theta(T) = free$.

Euler-Lagrange equations

Example 16.1 Launching a rocket-10

$$u: \frac{\partial h}{\partial u} - \frac{d}{dt} \frac{\partial h}{\partial \dot{u}} = 0 \quad \Rightarrow \quad \dot{\lambda}_{u} = 0$$

$$v: \frac{\partial h}{\partial v} - \frac{d}{dt} \frac{\partial h}{\partial \dot{v}} = 0 \quad \Rightarrow \quad \dot{\lambda}_{v} = -\lambda_{z} \frac{a}{g} \sin \theta$$

$$z: \frac{\partial h}{\partial z} - \frac{d}{dt} \frac{\partial h}{\partial \dot{z}} = 0 \quad \Rightarrow \quad \dot{\lambda}_{z} = 0$$

$$\theta: \frac{\partial h}{\partial \theta} - \frac{d}{dt} \frac{\partial h}{\partial \dot{\theta}} = 0 \quad \Rightarrow$$

$$a\lambda_u \sin \theta - \lambda_v a \cos \theta - \lambda_z \frac{av}{g} \cos \theta = 0$$

(λ equations give back systems DEs).

Solving the E-L equations

Example 16.1 Launching a rocket-11

Take the v equation, and noting that $\dot{v} = a \sin \theta - g$

$$\begin{split} \dot{\lambda}_{v} &= -\lambda_{z} \frac{a}{g} \sin \theta \\ &= -\frac{\lambda_{z}}{g} \left(\dot{v} + g \right), \end{split}$$

$$\lambda_{V} = -\frac{\lambda_{z}}{g} (V + gt + c)$$

$$= -\frac{\lambda_{z}V}{g} - \lambda_{z}t + b.$$

Solving the E-L equations

Example 16.1 Launching a rocket-12

Substitute

$$\lambda_z = -\frac{\lambda_z v}{g} - \lambda_z t + b$$

into the θ E-L equation (dropping the common factor a)

$$\lambda_u \sin \theta - \lambda_v \cos \theta - \lambda_z \frac{v}{g} \cos \theta = 0$$

and we get

$$\lambda_{u} \sin \theta + \left(\frac{\lambda_{z} v}{g} + \lambda_{z} t - b\right) \cos \theta - \lambda_{z} \frac{v}{g} \cos \theta = 0$$

$$\lambda_{u} \sin \theta + (\lambda_{z} t - b) \cos \theta = 0$$

$$\tan \theta = -\frac{\lambda_{z} t - b}{\lambda_{u}}$$

Solution

Example 16.1 Launching a rocket-13

Remember that λ_u and λ_v and b are all constants, so the equation

$$\tan \theta = -\frac{\lambda_z t - b}{\lambda_u}$$

angle of thrust now specified

$$\theta = \tan^{-1}\left(-\frac{\lambda_z t - b}{\lambda_u}\right)$$

lecture 16

but we need to determine constants

