Calculus of Variations Summer Term 2014

Lecture 17

4. Juli 2014

Purpose of Lesson:

- To continue the study of aerospace example
- Hamiltonian's formulation.

End-point conditions

Example 16.1 Launching a rocket-14

Final end-points conditions

$$T= ext{ free}$$
 $z(T)=h$ $u(T)=u_0, ext{ orbital velocity}$ $v(T)= ext{ free}$ $heta(T)= ext{ free}$ $\lambda_u= ext{ free}$ $\lambda_v= ext{ free}$ $\lambda_z= ext{ free}$

Example 16.1 Launching a rocket-15

The free-end point boundary condition for

$$J[\mathbf{q},\dot{\mathbf{q}}] = \int F(t,\mathbf{q},\dot{\mathbf{q}})dt$$

is

$$\left[\sum_{k=1}^{m} \delta q_k \frac{\partial F}{\partial \dot{q}_k} + \delta t \left(F - \sum_{k=1}^{m} \dot{q}_k \frac{\partial F}{\partial \dot{q}_k}\right)\right]_{t=T} = 0.$$

In our problem

$$\frac{\partial F}{\partial \dot{\lambda}_{L}} = 0, \quad \frac{\partial F}{\partial \dot{\theta}} = 0, \quad \frac{\partial F}{\partial \dot{u}} = \lambda_{u}, \quad \frac{\partial F}{\partial \dot{v}} = \lambda_{v}, \quad \frac{\partial F}{\partial \dot{z}} = \lambda_{z}$$

Example 16.1 Launching a rocket-16

Consider δq_k for each coordinate:

- for fixed coordinates u and z, we have $\delta q_k = 0$
- it is free for θ , λ_{ν} , λ_{ν} , λ_{z} , but in each case the corresponding $\frac{\partial F}{\partial \dot{q}_{k}} = 0$, so we can ignore these.
- only case where it matters is δv , which we can vary, and for which $\frac{\partial F}{\partial \dot{v}} = \lambda_v$.

Also δt is free, so we get two end-point conditions at t = T

$$\lambda_{v}(T) = 0$$

$$H(T) := [F - \dot{u}\lambda_{u} - \dot{v}\lambda_{v} - \dot{z}\lambda_{z}]_{t=T} = 0$$

Example 16.1 Launching a rocket-17

Given $\lambda_{\nu}(T) = 0$, and from previous work

$$\lambda_{\mathbf{v}} = -\frac{\lambda_{\mathbf{z}}\mathbf{v}}{\mathbf{g}} - \lambda_{\mathbf{z}}\mathbf{t} + \mathbf{b}$$

we get

$$\frac{\lambda_z v(T)}{g} = -\lambda_z T + b$$
$$= \lambda_u \tan \theta(T)$$

$$v(T) = \frac{\lambda_u g}{\lambda_z} \tan \theta(T)$$

Example 16.1 Launching a rocket-18

$$H(T) = [F - \dot{u}\lambda_u - \dot{v}\lambda_v - \dot{z}\lambda_z]_{t=T} = 0.$$

Substituting F and taking into account that $\lambda_{\nu}(T) = 0$ we get

$$a\lambda_u\cos\theta(T)+a\frac{\lambda_zv(T)}{g}\sin\theta(T)=1$$

Combining the latter with $v(T) = \frac{\lambda_u g}{\lambda_z} \tan \theta(T)$ we arrive at

$$a\lambda_u\cos heta(T)+a\lambda_u an heta(T)\sin heta(T)=1$$
 $\lambda_u=rac{\cos heta(T)}{a}$

Acceleration profile

Example 16.1 Launching a rocket-19

The next step depend on the acceleration profile a(t), but lets take a simple case a = const.

First we can solve the DEs, with respect to θ , using the chain rule

$$\frac{dX}{dt} = \frac{dX}{d\theta} \frac{d\theta}{dt} = -\cos^2 \theta \frac{\lambda_z}{\lambda_u} \frac{dX}{d\theta}$$

e.g. from the system DE $\dot{u} = a\cos\theta$

$$\dot{u} = -\cos^2\theta \frac{\lambda_z}{\lambda_u} \frac{du}{d\theta}$$
$$\frac{du}{d\theta} = -\frac{\lambda_u}{\lambda_z \cos^2\theta} \dot{u} = -\frac{a\lambda_u}{\lambda_z \cos\theta}$$

Acceleration profile

Example 16.1 Launching a rocket-20

$$\frac{dX}{d\theta} = \frac{\frac{dX}{dt}}{\frac{d\theta}{dt}} = \frac{\frac{dX}{dt}}{-\cos^2\theta \frac{\lambda_z}{\lambda_u}}$$

The complete set of system DEs becomes

$$\frac{du}{d\theta} = -\frac{a\lambda_u}{\lambda_z \cos \theta}
\frac{dv}{d\theta} = -\frac{a\lambda_u}{\lambda_z} \frac{\sin \theta}{\cos^2 \theta} + \frac{g\lambda_u}{\lambda_z \cos^2 \theta}
\frac{dz}{d\theta} = -\frac{a\lambda_u}{g\lambda_z} \frac{\sin \theta}{\cos^2 \theta} v(\theta)$$

These can just be integrated with respect to θ .

Acceleration profile

Example 16.1 Launching a rocket-21

The system DEs can be directly integrated (with respect to θ) including initial conditions u(0) = v(0) = z(0) = 0 to get

$$\begin{split} &u(\theta) = \frac{a\lambda_u}{\lambda_z}\log\left(\frac{\sec\theta_0 + \tan\theta_0}{\sec\theta + \tan\theta}\right) \\ &v(\theta) = \frac{a\lambda_u}{\lambda_z}\left(\sec\theta_0 - \sec\theta\right) - \frac{g\lambda_u}{\lambda_z}\left(\tan\theta_0 - \tan\theta\right) \\ &z(\theta) = \frac{a^2\lambda_u^2}{g\lambda_z^2}\sec\theta_1\left(\sec\theta_0 - \sec\theta\right) - \frac{a^2\lambda_u^2}{2g\lambda_z^2}\left(\tan^2\theta_0 - \tan^2\theta\right) \\ &+ \frac{a\lambda_u^2}{2\lambda_z^2}\left[\tan\theta_0\sec\theta_0 - \tan\theta\sec\theta + \log\left(\frac{\sec\theta_0 + \tan\theta_0}{\sec\theta + \tan\theta}\right)\right] \\ &\theta = \tan^{-1}\left(-\frac{\lambda_z t - b}{\lambda_u}\right) \end{split}$$

Calculating the constants

Example 16.1 Launching a rocket-22

There are five constants to calculate:

- θ_0 the initial angle of thrust
- θ_1 the final angle of thrust
- λ_u
- \bullet λ_z
- b

and also we need to calculate T.

Solving for end-point conditions is non-trivial, but a method that works well follows.

Calculating the constants

Example 16.1 Launching a rocket-23

Take the equation for v at time T, and substitute $\lambda_z v(T) = g\lambda_u \tan \theta_1$ to get

$$\begin{split} v(\theta_1) &= \frac{a\lambda_u}{\lambda_z} \left(\sec \theta_0 - \sec \theta_1 \right) - \frac{g\lambda_u}{\lambda_z} \left(\tan \theta_0 - \tan \theta_1 \right) \\ \frac{g\lambda_u}{\lambda_z} \tan \theta_1 &= \frac{a\lambda_u}{\lambda_z} \left(\sec \theta_0 - \sec \theta_1 \right) - \frac{g\lambda_u}{\lambda_z} \left(\tan \theta_0 - \tan \theta_1 \right) \\ \sec \theta_1 &= \sec \theta_0 - \frac{g}{a} \tan \theta_0 \end{split}$$

which gives us a way to calculate θ_1 from θ_0 .

Once we know θ_1 we can calculate λ_u using $a\lambda_u = \cos\theta_1$, and b from $\tan\theta = (-(\lambda_z t - b)/\lambda_u)$ at t = 0.

Then we can calculate λ_z from $u(\theta_1) = u_0$, the orbital injection velocity.

Calculating the constants

Example 16.1 Launching a rocket-24

So the only remaining question is how to calculate θ_0 . We do so numerically, by

- take a range of θ_0
- calculate all of the above

2014 ()

- use this to calculate $z(T) = z_1$ as a function of θ_0
- look for the point where $z_1(\theta_0) = h$ the orbit height.

That gives us the θ_0 , from which we can derive everything else.

lecture 17

Restricting choice of θ_0

Example 16.1 Launching a rocket-25

Calculating the range of θ_0 to search

- The maximum (reasonable) value for θ_0 is $\pi/2$.
- The minimum value of θ_0 will be determined by the minimum possible value of θ_1 , i.e., $\theta_1 = 0$

$$\begin{split} \sec \theta_1 &= \sec \theta_0 - \frac{g}{a} \tan \theta_0 \\ &\sec 0 = 1 = \sec \theta_0 - \frac{g}{a} \tan \theta_0 \\ &1 = \frac{1 + \tan^2 (\theta_0/2)}{1 - \tan^2 (\theta_0/2)} - \frac{g}{a} \frac{2 \tan (\theta_0/2)}{1 - \tan^2 (\theta_0/2)} \\ &1 - \tan^2 (\theta_0/2) = 1 + \tan^2 (\theta_0/2) - \frac{2g}{a} \tan (\theta_0/2) \end{split}$$

Restricting choice of θ_0

Example 16.1 Launching a rocket-26

$$1 - \tan^2(\theta_0/2) = 1 + \tan^2(\theta_0/2) - \frac{2g}{a}\tan(\theta_0/2)$$
$$2\tan^2(\theta_0/2) - \frac{2g}{a}\tan(\theta_0/2) = 0$$
$$\tan(\theta_0/2)\left(\tan(\theta_0/2) - \frac{g}{a}\right) = 0.$$

Now θ_0 can't be zero, so the last step implies that the minimum value of θ_0 is

$$\theta_0 = 2 \tan^{-1} \left(\frac{g}{a} \right).$$

Note the existence of a minimum critical *h* below which we can't find a trajectory of this type.

Parameters

Parameters of previous example consistent with a LEO.

$$h = 500km$$

$$u_0 = 8000m/s$$

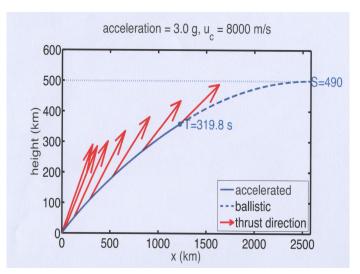
$$g = 9.8m/s^2$$

$$a = 3g$$

Derived constants

$$heta_0 = 0.234\pi \qquad \qquad heta_1 = 0.0973\pi \ \lambda_u = 0.0324 \qquad \qquad \lambda_z = 6.0257e - 0.5 \ b = -0.0295 \ T = 319.8 \ seconds \ S = 489.6 \ seconds$$

Trajectory



Generalizations

More realistic assumptions

- non-zero drag (depends on velocity and height)
- Thrust is constant, but rocket mass changes, so that acceleration isn't constant
- multiple stages
- centripetal forces

- We've seen the Hamiltonian \mathbb{H} earlier an, but haven't explored its full power.
- Using \mathbb{H} can often result in a simpler approach than solving the E-L equations, e.g., where F has no dependence on x, or where there is more than one dependent variable.
- Hamiltonian's formulation can lead to an understanding of how symmetries in the problem of interest lead to conservation laws.

Legendre transformation

- transformation that depends on the derivatives of a variable
- simple one variable Legendre transform of

$$y:[x_0,x_1]\to\mathbb{R},$$

by defining new variable p, by

$$p(x) = y'(x)$$

• provided y''(x) > 0 we can define x in terms of p, by introducing the Hamiltonian

$$\mathbb{H}(p) = px - y(x)$$

Legendre transformation

Assume for convenience that y is convex, e.g. y'' > 0 for $x \in [x_0, x_1]$. Then

$$\frac{d\mathbb{H}}{dp} = \frac{d}{dp}(xp) - \frac{dy}{dp}$$

$$= p\frac{dx}{dp} + x - \frac{dp}{dy}$$

$$= p\frac{dx}{dp} + x - \frac{dy}{dx}\frac{dx}{dp}$$

$$= \left(p - \frac{dy}{dx}\right)\frac{dx}{dp} + x$$

$$= x$$

and also note $px - \mathbb{H} = y$, so from the pair (p, \mathbb{H}) we can recover the original pair (x, y), by a Legendre transform.

Refer back to problems with more than one dependent variable, or where F has no dependence on x.

Define generalized coordinates $\mathbf{q}:[t_0,t_1]\to\mathbb{R}^n$.

- i.e. take a set of n functions $q_k(t)$, with two continuous derivatives with respect to t, and put them into a vector $\mathbf{u}(t)$
- dot notation

$$\dot{q}_k = \frac{dq_k}{dt}, \quad \ddot{q}_k = \frac{d^2q_k}{dt^2} \quad \text{and} \quad \dot{\mathbf{q}} = \left(\frac{dq_1}{dt}, \frac{dq_2}{dt}, \dots, \frac{dq_n}{dt}\right)$$

• Lagrangian $L(t, \mathbf{q}, \dot{\mathbf{q}})$

The extremal of the functional

$$J[\mathbf{q}] = \int_{t_0}^{t_1} L(t, \mathbf{q}, \dot{\mathbf{q}}) dt$$

satisfy the Euler-Lagrange equations

$$\frac{\partial L}{\partial q_k} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_k} = 0$$

for all k.

Legendre transform introduces the conjugate variables

$$p_i = \frac{\partial L}{\partial \dot{q}_i}.$$

Suppose these equations can be solved to write \dot{q}_i as a function of (t, q_i, p_i) , then the Hamiltonian is

$$\mathbb{H}(t,q_1,\ldots,q_n,p_1,\ldots,p_n)=\sum_{i=1}^n p_i\dot{q}_i-L(t,\mathbf{q},\dot{\mathbf{q}}).$$

• the p_i are called generalized momenta

$$\mathbb{H}(t,q_1,\ldots,q_n,p_1,\ldots,p_n)=\sum_{i=1}^n p_i\dot{q}_i-L(t,\mathbf{q},\dot{\mathbf{q}}).$$

So

$$\frac{\partial \mathbb{H}}{\partial \mathbf{p}_{i}} = \dot{\mathbf{q}}_{i}$$

$$\frac{\partial \mathbb{H}}{\partial \mathbf{q}_{i}} = -\frac{\partial \mathbf{L}}{\partial \mathbf{q}_{i}}$$

Given the E-L equations, the second equation gives

$$\frac{\partial \mathbb{H}}{\partial q_i} = -\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i} = -\frac{dp_i}{dt}.$$

Canonical Euler-Lagrange equations

$$\frac{\partial \mathbb{H}}{\partial p_i} = \frac{dq_i}{dt}$$
$$\frac{\partial \mathbb{H}}{\partial q_i} = -\frac{dp_i}{dt}$$

- called Hamiltonian's equations or canonical Euler-Lagrange equations.
- The *n* E-L DEs converted into 2*n* first-order DEs
- derivatives are now uncoupled
 - therefore may be easier to solve

Canonical Euler-Lagrange equations

We can get the same canonical E-L equations from finding extremals of the functional of 2*n* variables

$$\widehat{J}[q_1,\ldots,q_n,p_1,\ldots,p_n] = \int_a^b \left[\sum_{i=1}^n p_i \dot{q}_i - \mathbb{H}\right] dx$$

E.G.

$$\begin{split} &\left(\frac{\partial}{\partial q_i} - \frac{d}{dt}\frac{\partial}{\partial \dot{q}_i}\right) \left[\sum_{i=1}^n p_i \dot{q}_i - \mathbb{H}\right] = 0 \\ &\left(\frac{\partial}{\partial p_i} - \frac{d}{dt}\frac{\partial}{\partial \dot{p}_i}\right) \left[\sum_{i=1}^n p_i \dot{q}_i - \mathbb{H}\right] = 0 \end{split}$$

- J and \widehat{J} are equivalent under the Legendre transformation
 - make q and p independent, whereas before it was a bit of trick to pretend q and \dot{q}_i were independent
- If L does not depend on t, then it should be clear from the Legendre transformation that \mathbb{H} won't depend on t
 - the system will be conservative
 - i.e. ℍ is a conserved (constant) quantity