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Purpose of Lesson

Purpose of Lesson:
@ To continue the study of aerospace example

@ Hamiltonian’s formulation.

© Daria Apushkinskaya 2014 () Calculus of variations  lecture 17

4. Juli 2014

2/28



Optimal control - aerospace example (cont.)

End-point conditions

Example 16.1 Launching a rocket-14
Final end-points conditions

T = free
z(T)=h
u(T) = ug, orbital velocity
v(T) = free
6(T) = free
Ay = free
Ay = free
Az = free
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Optimal control - aerospace example (cont.)

Natural boundary conditions

Example 16.1 Launching a rocket-15
The free-end point boundary condition for

Ja.d] = / F(t.q.q)ot

is
m m
oF . OF
Z(qu—.Jrét (F—qu.> =0.
[k:1 00k o 9% —T
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Optimal control - aerospace example (cont.)

Natural boundary conditions

Example 16.1 Launching a rocket-16
Consider gy for each coordinate:

@ for fixed coordinates u and z, we have §qx = 0

e itis free for 0, Ay, Ay, Az, but in each case the corresponding
9F _ 0, so we can ignore these.

a0k
@ only case where it matters is dv, which we can vary, and for which
OF
= = \y.
ov v

Also 4t is free, so we get two end-point conditions at t =T

v
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Optimal control - aerospace example (cont.)

Natural boundary conditions

Example 16.1 Launching a rocket-17
Given \,(T) = 0, and from previous work

AzV
Ay = — ; — A t+b

we get
= A\ytand(T)
W(T) = 299 tang(T)
Az
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Optimal control - aerospace example (cont.)

Natural boundary conditions

Example 16.1 Launching a rocket-18
H(T) = [F — ihy — VAy — 2\;],_7 = 0.

Substituting F and taking into account that A, (T) = 0 we get

Azv(T)

axycosf(T)+a sing(T) =1

Combining the latter with v(T) = A/\ng tan6(T) we arrive at

a\ycosO(T)+ a\,tanf(T)sinf(T) =1

Ay = cosd(T)
a
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Optimal control - aerospace example (cont.)

Acceleration profile

Example 16.1 Launching a rocket-19

The next step depend on the acceleration profile a(t), but lets take a

simple case a = const.

First we can solve the DEs, with respect to 6, using the chain rule

%—%@—_Coszekﬁ
dat  do dt Ay db
e.g. from the system DE u = acos 6

) Az du

_ 2z 7Y

U= —cos 9>\u a0
@__ Au 0 a\y
dd  \,cos26 \,cosf
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Optimal control - aerospace example (cont.)

Acceleration profile

Example 16.1 Launching a rocket-20

dx ax

aX & at
Tode T 209Az

do o cos? 052

The complete set of system DEs becomes

au a\y

dfd ~  A,cosd

v a\, sind gy
d6 = N, cos20 ' n,cos20
az a\, sing

do ~ gh, cosZGV( )

These can just be integrated with respect to 6.
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Optimal control - aerospace example (cont.)

Acceleration profile

Example 16.1 Launching a rocket-21

The system DEs can be directly integrated (with respect to 6) including
= 0 to get

initial conditions u(0) = v(0) = z(0)

aiy secty +tanfy
9) =
u(6) Az g( sect +tand >
v(9) = Al (secfy — secl) — 9
)\z )\Z
32)\2
z(0) = —— sechq (secty — secl) —
9Xz
a\2
— |tanfp secy —tand
+ 252 [ 0 0
At—b
_tan—1(_22
A =tan < N >

(tanfy —tan @)
2

2g)\2

<tan 0o — tan? 0)

sec g + tan by
secl +tand

)

secf + log (

v
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Optimal control - aerospace example (cont.)

Calculating the constants

Example 16.1 Launching a rocket-22
There are five constants to calculate:

@ 6y the initial angle of thrust
@ ¢4 the final angle of thrust
o\
)\
@b

and also we need to calculate T.

Solving for end-point conditions is non-trivial, but a method that works
well follows.

v
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Optimal control - aerospace example (cont.)

Calculating the constants

Example 16.1 Launching a rocket-23

Take the equation for v at time T, and substitute A\,v(T) = g\, tan 6,
to get

A
v(0y) = A (secty —sech) — 9y (tan 0y — tan 6)
>\Z )\z
A
92 tan 01 = Al (sechy — secty) — I (tandy — tan6y)
>\Z >\Z )\z

sec; = secty — %tan Ao

which gives us a way to calculate 6 from 6.

Once we know 61 we can calculate )\, using a\, = cos 64, and b from
tand = (—(\;t—b)/\y) att =0.

Then we can calculate )\, from u(61) = up, the orbital injection velocity.
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Optimal control - aerospace example (cont.)

Calculating the constants

Example 16.1 Launching a rocket-24

So the only remaining question is how to calculate 6y. We do so
numerically, by

@ take a range of 6y
@ calculate all of the above
@ use this to calculate z(T) = z; as a function of 6,

@ look for the point where z1(6y) = h the orbit height.

That gives us the 6, from which we can derive everything else.
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Optimal control - aerospace example (cont.)

Restricting choice of g

Example 16.1 Launching a rocket-25
Calculating the range of 6, to search
@ The maximum (reasonable) value for 6y is /2.

@ The minimum value of 6y will be determined by the minimum
possible value of 64, i.e., 61 =0

secty =secty — %tan 0o

g
a
_1+tan?(6p/2) g 2tan(6o/2)

T 1—tan?(6p/2) a1 —tan?(6y/2)

1 —tan? (Ay/2) = 1 +tan?(6y/2) — 25 tan (6p/2)

sec0 =1 =secly — =tanb
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Optimal control - aerospace example (cont.)

Restricting choice of g

Example 16.1 Launching a rocket-26

1 —tan? (Ay/2) = 1 +tan? (6y/2) — %g tan (6y/2)
2tan? (6p/2) — 2;9 tan (6p/2) = 0
_9\ _
tan (6o/2) (tan (60/2) a) ~0.
Now 6y can’t be zero, so the last step implies that the minimum value

of fy is
6o = 2tan™" (g) .

Note the existence of a minimum critical h below which we can’t find a
trajectory of this type.

v
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Optimal control - aerospace example (cont.)

Parameters

Parameters of previous example consistent with a LEO.

h = 500km
up = 8000m/s
g=9.8m/s?
a=3g
Derived constants
0o = 0.2347 01 = 0.0973~
Ay = 0.0324 A; = 6.0257e — 0.5
b= —0.0295

T = 319.8 seconds
S = 489.6 seconds
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Optimal control - aerospace example (cont.)

Trajectory
acceleration =3.0 g, e 8000 m/s
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Optimal control - aerospace example (cont.)

Generalizations

More realistic assumptions

@ non-zero drag (depends on velocity and height)

@ Thrust is constant, but rocket mass changes, so that acceleration
isn’t constant

@ multiple stages

@ centripetal forces
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Hamiltonian’s formulation

@ We’ve seen the Hamiltonian H earlier an, but haven’t explored its
full power.

@ Using H can often result in a simpler approach than solving the
E-L equatons, e.g., where F has no dependence on x, or where
there is more than one dependent variable.

@ Hamiltonian’s formulation can lead to an understanding of how
symmetries in the problem of interest lead to conservation laws.
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Legendre transformation

@ transformation that depends on the derivatives of a variable
@ simple one variable Legendre transform of
Yy [X07X1] - Rv

by defining new variable p, by

@ provided y”(x) > 0 we can define x in terms of p, by introducing
the Hamiltonian

H(p) = px — y(x)
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Legendre transformation
Assume for convenience that y is convex, e.g. y” > 0 for x € [xg, X1]-
Then

dH d _dy

Tp:Fp(Xp) o
*p%—i—x—@
dap dy

o adx dy dx

~Pap T * " dxdp
dy\ dx

—< ‘dx>dp“

=X

and also note px — H = y, so from the pair (p, H) we can recover the
original pair (x, y), by a Legendre transform.
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Hamiltonian’s formulation

Refer back to problems with more than one dependent variable, or
where F has no dependence on x.

Define generalized coordinates q : [fy, t;] — R".

@ i.e. take a set of n functions q(t), with two continuous derivatives
with respect to t, and put them into a vector 1(t)

@ dot notation
2

dgx d=qx and

Lo dge . . dg: dgz daqn
=g *~ gp = <dt dt’ dt

@ Lagrangian L(t,q,q)
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Hamilton’s formulation

The extremal of the functional
b
Jal = [ Lit.a.q)et
b

satisfy the Euler-Lagrange equations
oL _doL
oqk  dtogx

for all k.
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Hamilton’s formulation

Legendre transform introduces the conjugate variables

o
g

Suppose these equations can be solved to write g; as a function of
(t,qi, pi), then the Hamiltonian is

Pi

n
H(t,CI1,...,qn,p1,...,pn) = Zp/qf_ L(tuan)

i=1

@ the p; are called generalized momenta
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Hamilton’s formulation

n
H(t,G1, - GnsPrs- - Pn) = Y pidi — L(t, . Q).

=1
So
OH .
op; =4
OH Il
ag;  0q;

Given the E-L equations, the second equation gives

OH  doL _ dp

dq;  dtog, dt’
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Canonical Euler-Lagrange equations

8H_dq,-
op;  dt
8H7 dp,-
g dt

@ called Hamiltonian’s equations or canonical Euler-Lagrange
equations.

@ The n E-L DEs converted into 2n first-order DEs
@ derivatives are now uncoupled

o therefore may be easier to solve
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Canonical Euler-Lagrange equations

We can get the same canonical E-L equations from finding extremals
of the functional of 2n variables

b n
J[q17"‘7qn7p17"'7pn]:/[prqi_
i=1

a

E.G.

(& 58)[Ere ]

0

(5~ com) [ Sopa ] =0
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Hamilton’s formulation

e Jand Jare equivalent under the Legendre transformation

e make g and p independent, whereas before it was a bit of trick to
pretend g and g; were independent

@ If L does not depend on ¢, then it should be clear from the
Legendre transformation that H won'’t depend on t

o the system will be conservative

e i.e. His a conserved (constant) quantity
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