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Purpose of Lesson:
@ To introduce Pontryagin’s Maximum Principle (PMP)

@ To discuss several PMP examples
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Pontryagin’s Maximum Principle

Modern optimal control theory often starts from the PMP. It is a simple,
coincise condition for an optimal control.
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General control problem

Minimize functional

b
Jx,u] = /Fo(t,x,u)dt

fo
subject to constraints x = F(¢, x, u), or more fully,

x; = Fi(t,x,u)

@ notice no dependence on x in Fy

o this differs from many CoV problems

@ no dependence on x in F; because we rearrange the equations so
that derivatives are on the LHS.
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Pontryagin’s Maximum Principle (PMP)

Let u(t) be an admissible control vector that transfers (fy, Xo) to a
target (t,x(t)). Let x(¢) be the trajectory corresponding to u(t).

In order that u(t) be optimal, it is necessary that there exists
p(t) = (p1(t), p2(t), - .., Ppn(t)) and a constant scalar py such that
@ p and x are the solution to the canonical system

X=— and - ol
~ op P="%x

n
@ where the Hamiltonian is H = ) p;F; with pg = —1
i=0
@ MH(t,x,u,p) > H(t,x,u,p) for all alternate controls u

@ all boundary conditions are satisfied
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PMP proof sketch-1

Consider the general problem: minimize functional
t
Jx,u] = /Fo(t,x,u)dt
fo
subject to constraints
xi = Fi(t,x,u).

We can incorporate the constraints into the functional using the
Lagrange multipliers )\;, e.g.

t
J= / L(t,x, %, u)dt
)

t n
:/Fo(t,x,u)dtJrZ)\,-(t) % — Fi(t, x, u)] ot
t i=1
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PMP proof sketch-2

Given such a function we get (by definition)

oL

Pizaf)-(i—)\i-

So we can identify the Lagrange multipliers \; with the generalized
momentum terms p;

@ the p; are known in economics literature as marginal valuation of
X; or the shadow prices

@ shows how much a unit incrgment in x at time t contributes to the
optimal objective functional J

© the p; are known in control as co-state variables (sometimes
written as z;).
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PMP proof sketch-3

By definition (in previous lecture) the Hamiltonian is

n
H(t, X, p,u) = Y piX; — L(t,X, X, p, u)

i=1
n n

= Zplxl - FO(t’xv U) - ZAI(t) [XI - I:j(t,X,U)]
i=1 i=1

n
= —Fo(t,x,u) + Zp,-F,-(t, X, u)
i=1

because \; = p;, so the x; terms cancel. The final result is just the
Hamiltonian as defined in the PMP.
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PMP proof sketch-4

From previous slide the Hamiltonian can be written

H(t, x, p,u) = —Fo(t, X, u) +Zp, (t,x,u)
i=1

which is the Hamiltonian defined in the PMP. Then the canonical E-L
equations (Hamilton’s equations) are

OH  dx; OH  dp;
a2 T @

dx,

Note that the equations 2 ap just revert to

Fi(t,x,u) =

which are just the system equations.
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PMP proof sketch-5

Finally, note that Hamilton’s equations above only relate x; and p;.
What about equations for u;?

Take the conjugate variable to be z;, and we get (by definition) that

oL

and the second of Hamilton’s equations is therefore

oM __azi_ g
8U,'_ dt

which suggests a stationary point of H WRT u;.

In fact we look for a maximum (and note this may happen on the
bounds of v;).
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PMP Example: plant growth

Example 18.1 (Plant growth-1)
Plant growth problem:

@ market gardener wants to plants to grow toa fixed height 2 within a
fixed window of time [0, 1]

@ can supplement natural growth with lights (at night)

@ growth rate dictates
x=1+u

@ cost of lights
)

J[u] :/;uzdt

0
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PMP Example: plant growth

Example 18.1 (Plant growth-2)
Minimize

1
J[u] :/;uzdt
0

subject to x(0) =0 and x(1) = 2 and
x=F(t,x,u)=1+u.
Hamiltonian is
H = —Fo(t, x, u) + pFi(t, x, u)

1
:—§u2+p(1 +u).
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PMP Example: plant growth

Example 18.1 (Plant growth-3)
Hamiltonian is ’
H:—§u2+p(1 +u).

Canonical equations

aﬂ—% and aﬂ—_@

op dt ox  dt
I i3

14+u=x 0=-p

LHS = system DE

RHS = p=0meansthat p = c; where c; is a constant.

© Daria Apushkinskaya 2014 () Calculus of variations  lecture 18 11. Juli 2014 13/25



|
PMP Example: plant growth

Example 18.1 (Plant growth-4)
Maximum principle requires H be a maximum, for which

aﬂ——qu =0
ou p=0

Sou=p,and x =1+ uso
x=(14c)t+co.
The solution which satisfies x(0) =0 and x(1) =2 s

X = 2t.

So u = ¢y = 1, and the optimal cost is .
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PMP and natural boundary conditions

Typically we fix ) and x(ty), but often the right-hand boundary
condition is not fixed, so we need natural boundary conditions.

Here, they differ from traditional CoV problems in two respects:
@ The terminal cost ¢

@ The function Fy is not explicitly dependent on x.

The resulting natural boundary conditions are

¢ B
t:t+(8t—H>6t —0
1

=t

for all allowed 6x; and §t.
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PMP and natural boundary conditions

The resulting natural boundary condition is

+<6¢—H>6t

ot =0

t=t

t=t

Special cases
@ when t; is fixed and x(t;) is completely free we get

0¢ ' '
(0)(, + p/> dXj

@ when x(t) is fixed, x; = 0, and we get
9¢
<(‘3t — ]HI> ot
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Example: stimulated plant growth

Example 18.2 (Stimulated plant growth-1)
Plant growth problem:
@ market gardener wants to plants to grow as much as possible
within a fixed window of time [0, 1]
@ supplement natural growth with lights as before
@ growth rate dictates x =1+ u
@ cost of lights 1

44:/;fmm

0
@ value of crop is proportional to the height

o(t1,x(t)) = x(t).
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Plant growth problem statement

Example 18.2 (Stimulated plant growth-2)
Write as a minimization problem

1

JIx, u] = —x(t;) +/;u2dt
0

subject to x(0) = 0, and
x=1+u.

@ the terminal cost doesn’t affect the shape of the solution

@ but we need a natural end-point condition for t;.
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Plant growth: natural BC

Example 18.2 (Stimulated plant growth-3)
The problem is solved as before, but we write the natural boundary

condition at x = t; as
99
(a i "')

—1 +p|,:t1 =0.

=0, Vi
=t

which reduces to

Given p is constant, this sets p(t) = 1, and hence the control u = 1 (as
before).

v
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Autonomous problems

Autonomous problems have no explicit dependence on t.

@ time invariance symmetry
@ hence H is constant along the optimal trajectory

@ if the end-time is free (and the terminal cost is zero) then the
transversality conditions ensure H = 0 along the optimal trajectory.
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PMP example: Gout

Example 18.3 (Gout-1)
Optimal treatment of Gout:
@ disease characterized by excess of uric acid in blood

o define level of uric acid to be x(t)

e in absence of any control, tends to 1 according to
x=1-—x
@ drugs are available to control disease (control u)

x=1—-x—-u

e aim to reduce x to zero as quickly as possible

e drug is expensive, and unsafe (side effects)
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PMP example: Gout

Example 18.3 (Gout-2)
Formulation: minimize

t

J[u] = / % (K +?) o

0

given constant k that measures the relative importance of the drugs
cost vs the terminal time.

End-conditions are x(0) = 1, and we wish x(t;) = 0, with ¢ free. The
constraint equation is
XxX=1-x—-u,

Hamiltonian

H:—% (k2+u2)+p(1—x—u).

v
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PMP example: Gout

Example 18.3 (Gout-3)
Canonical equations

aﬂ—% and 8@—_@
op  dt ox  dt
) U
1-x—-u=x —-p=-p

LHS = system DE
RHS = p = phas solution p = ¢é'.
Now maximize H WRT the v, i.e., find stationary point

OH
%——u—p—o

So,u=—-p=—cyé.
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PMP example: Gout

Example 18.3 (Gout-4)
Note
@ this is an autonomous problem so H = const

@ this is a free end-time problem, so H = 0.
Substitute values of p and u into H for t = 0 (i.e. p = ¢y = —u, and

x(0) = 1), and we get

H:—% (k2+u2)+p(1—x—u)

and so ¢ = %K.
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PMP example: Gout

Example 18.3 (Gout-5)
Finally solve x = 1 — x — u where u = —ke' to get
kg ko .
x=1 5e +§e =1—ksinht

The terminal condition is x(t;) = 0, and so

t; = sinh~' (1/k)

@ when k is small the prime consideration is to use a small amount
of the drug, and as k — Othen {{ — oo

@ no optimal for k =0

@ when k is large, we want to get to a safe level as fast as possible,
soas k —oowegetty ~1/k.

v
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