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Purpose of Lesson

Purpose of Lesson:
@ To discuss catenary of fixed length.

@ Consider possible pathologic cases, discuss rigid extremals and
give interpretation of the Lagrange multiplier A

@ To solve the more general case of Dido’s problem with general
shape and parametrically described perimeter.
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Isoperimetric problems (continued) Catenary of fixed length

Example 5.1 (Catenary of fixed length)

@ In Example 2.2 we computed the shape of a suspended wire,
when we put no constraints on the length of the wire.

Picture: A hanging chain forms a catenary

@ What happens to the shape of the suspended wire when we fix
the length of the wire?
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Isoperimetric problems (continued) Catenary of fixed length

Example 5.1 (Catenary of fixed length)
@ As before we seek a minimum for the potential energy

Jly] = /y\/1 + (y’)2dx — min

but now we include the constraint that the lentgh of the wire is L,

e.g.
o= [ 1+ e =t
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Isoperimetric problems (continued) Catenary of fixed length

@ We seek extremals of the new functional

My = [+ 01+ ()20x

@ Notice that H(x, y,y’) = (¥ + \)v/1 + (¥')? has no explicit
dependence on x, and so we may compute

H—yH, _ Y
T+ ()2

@ Perform the change of variables u = y + A, and note that v’ = y’
so that the above can be rewritten as

\/W \/ U/ = C1 (5.1)

— (Y + A/ 1+ (¥)? = const
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Isoperimetric problems (continued) Catenary of fixed length

@ Itis easy to see that Eq. (5.1) reduces to

u? 5

IEnmeaet (5.2)

@ Eq. (5.2) is exactly the same equation (in u) as we had previously
for the catenary in y. So, the result is a catenary also, but shifted
up or down by an amount such that the length of the wire is L.

y=u—\= Cycosh <X_C‘2>—>\
C;

@ So, we have three constants to determine

@ we have two end points

@ we have the length constraint
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Isoperimetric problems (continued) Catenary of fixed length

@ As in Example 2.2 we put and consider the even solution
with xg = —1, y(x) =1, xy =1and y(1) = 1.

1 1

L:[\H + (y')2dx :[cosh (é:)dx
=G4 [sinh (é)]; = 2C; sinh (011)

@ Now we can calculate C; from the above equality.

@ Once we know C; we can calculate X to satisfy the end heights
y(=1)=y()=1.
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Isoperimetric problems (continued) Catenary of fixed length

Example 5.2 (cf. Example 5.1)

@ From Example 5.1 we know that a solution of the catenary
problem with length constraint has the form

y= Ccosh(%) -

and y satisfy the additional conditions

1

y(—1) = y(1) = 2, L:/\/1+(y’)2dx:203inh (%).
7

@ Using Maple we calculate y for the natural catenary (without
length constraint), as well as for L=2.05 L =2.9 and L = 5. See
Worksheet 1 for the detailed calculation.
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Isoperimetric problems (continued) Catenary of fixed length

@ All catenaries are valid, but one is natural

@ The red curve shows the natural catenary (without length
constraint), and the green, yellow and blue curves show other
catenaries with different lengths.
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Isoperimetric problems (continued) Pathologies

Pathologies

Note that in both cases ("simple Dido’s problem” and "catenary of fixed
length”)

@ the approach only works for certain ranges of L.
@ If Lis too small, there is no physically possible solution
e e.g., ifwirelength L < xq — Xg

e e.g., if oxhide length L < xq — xg

@ If Lis too large in comparison to y; = y(xy), the solution may have
our wire dragging on the ground.

v
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Isoperimetric problems (continued) Rigid Extremals

A particular problem to watch for are rigid extremals

@ Rigid extremals are extremals that cannot be perturbed, and stiil
satisfy the constraint.

Example 5.3
@ For example

1
Gyl :/\/1 + (y')2dx = V2
0

with the boundary constraints y(0) =0 and y(1) = 1.

@ The only possible y to satisfy this constraint is y(x) = x, so we
cannot perturb around this curve to find conditions for viable
extremals.
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Isoperimetric problems (continued) Rigid Extremals

@ Rigid extremals cases have some similarities to maximization of a
function, where the constraints specify a single point:

Example 5.4
Maximize f(x, y) = x + y, under the constraint that x> + y? = 0. J

@ In Example 5.3, the constraint, and the end-point leave only one
choice of function, y(x) = x.
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Isoperimetric problems (continued) Interpretation of A

Interpretation of \:

Consider again to finding extremals for

Hlyl = Jly] + A6lyl, (53)
where we include G to meet an isoperimetric constraint G[y] = L.

@ One way to think about ) is to think of (5.3) as trying to minimize
Jly] and G[y] — L.

@ ) is a tradeoff between J and G.
@ If )\ is big, we give a lot of weight to G.

@ If ) is small, then we give most weight to J.

@ So, A might be thought of as how hard we have to "pull” towards
the constraint in order to make it.
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Isoperimetric problems (continued) Interpretation of A

Interpretation of )\ (cont.)

For example,

@ in the catenary problem, the size of \ is the amount we have to
shift the cosh function up or down to get the right length.

@ when )\ = 0 we get the natural catenary,

i.e., in this case, we didn’t need to change anything to get the right
shape, so the constraint had no affect.
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Isoperimetric problems (continued) Interpretation of A

Interpretation of )\ (cont.)

Write the problem (including the constant) as minimize

Hly] = / F+ (G — k)dx,

L
for the constant kK = , then
J 1dx
OH
ok A

@ we can also think of \ as the rate of change of the value of the
optimum with respect to k.
@ when \ = 0, the functional H has a stationary point

e.g., in the catenary problem this is a local minimum
corresponding to the natural catenary.
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Isoperimetric problems (continued) Dido’s problem - traditional

Consider now the more general case of Dido’s problem:

@ a general shape,

@ without a coast,

so that the perimeter must be parametrically described.
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Isoperimetric problems (continued) Dido’s problem - traditional

Dido’s problem is usual posed as follows:

Problem 5-1 (Dido’s problem -traditional)

To find the curve of length L which encloses the largest possible area,

i.e., maximize

Area = / / 1dxdy
Q
j{1ds_L

o

subject to the constraint

Of course Problem 5-1 is not yet in a convinient form.
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Isoperimetric problems (continued) Green’s Theorem

Green’s Theorem converts an integral over the area 2 to a contour
integral around the boundary 052.

Green’s Theorem

9¢ 580) _ _
//< + dxdy ifgﬁdy pdx

for ¢, : Q@ — R such that ¢, ¢, ¢x and ¢, are continuous.

This converts an area integral over a region into a line integral around
the boundary.
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Isoperimetric problems (continued) Geometric representation of area

@ The area of a region is given by

Area = / / 1dxdy.
Q
Yy

X
> and ¢ = > so that we get

Area://1dxdy:1]{ xdy — ydx
Q 2 Joq

@ In Green’s theorem choose ¢ =

@ Previous approach to Dido, was to use y = y(x), but in more
general case where the boundary must be closed, we can’t define
y as a function of x (or visa versa).

@ So, we write the boundary curve parametrically as (x(t), y(t)).
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Isoperimetric problems (continued) Dido’s Problem

@ If the boundary 092 is represented parametrically by (x(t), y(t))

then
Area = //1dxdy
Q
1

=3 fxdy — ydx
0

:;%(xy—yk)dt
o9

@ So, now the problem is written in terms of

one independent variable =t
two dependent variables = (x, y).
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Isoperimetric problems (continued) Isoperimetric constraint

@ Previously we wrote the isoperimetric constraint as

g[y]:/ws:j\/mdxd

@ Now we must also modify the constraint using

-5+ (%)
G[y]=f1ds:]{\/mcﬁ:L

to get
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Isoperimetric problems (continued) Dido’s problem: Lagrange multiplier

@ Hence, we look for extremals of
1
B LI o oo
H[x, y] _?{<2(xy yX)+ M/ X2+ y ) at

@ So, H(t,x,y,X,y) = % (xy — yx) + A\\/X2 + y2, and there are two
dependent variables, with derivatives

oH _1. oH _ 1, X
ox 2 ox 2V iy
oH 1, OH 1 Ay

=X —— ==X+

ay 2 ay 2" \/x21y2
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Isoperimetric problems (continued) Dido’s problem: EL equations

@ Leading to the 2 Euler-Lagrange equations

af 1 a1

at | 27 VX2 £ y2 — 2
aft, w1,

dt |27 /x2 2| 2

@ Integrate
AX 1

= A

2T e 2T
X+ AY 1x—B
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Isoperimetric problems (continued) Dido’s problem: solution

@ After simplification we get

/)'(2_{_}',2
Aiy:_X_B

@ Now square the both equations, and add them to get

2 X2+ 2

X2+ 2 = (v + A+ (x + B)®

@ Or, more simply
(v + A+ (x + B)? = )2,

the equation os a circle with center (—B, —A) and radius |\|.
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Isoperimetric problems (continued) Dido’s problem: End-conditions

Remarks
@ Note, we can’t set value at end points arbitrarily.

e If x(f) = x(t1), and y(&) = y(t1), then we get a closed curve,
obviously a circle.

@ These conditions only amount to setting one constant, .
@ On the other hand, if we specify different end-points, we are really

solving a problem such as the simplified problem considered in
Lecture 4.
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