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Purpose of Lesson

Purpose of Lesson:

To consider several problems with inequality constraints
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Inequality constraints

§6. Inequality constraints
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Inequality constraints

We have considered problems with

integral constraints (Dido’s problem)

holonomic constraints (geodesics formulation)

non-holonomic constraints (problems with higher derivatives)

But we have not considered inequality constraints
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Inequality constraints Example: parking a car

Example 9.1: parking a car

Consider the following classic problem:

We want to drive a car/tank from point A to point B as quickly as
possible, and at point B the car should be stationary.

A	
  B	
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Inequality constraints Example: parking a car

Remark
Parking a car seems like a trivial problem:

in fact this problem appears in other contexts, e.g.

automatic positioning of components on a circuit board

has to be done frequently (so has to be fast)

speed limited by robot, and how delicate the components are

shortest-time problems are a case of a more general type of
problem as well.
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Inequality constraints Example: parking a car

http://www.expo21xx.com/automation77/news/2085−robot−mitsubishi/news−default.htm
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Inequality constraints Example: parking a car

Example 9.1: parking a car (cont.)

We want to drive a car/tank from point A to point B as quickly as
possible, and at point B the car should be stationary.

Newton’s law
force = u = mẍ

Choose force u that minimizes the time subject to ẋ = 0 at t = 0
and t = T , where T is not specified, but rather given by

T [u] =

B∫
A

dt

and it is the functional we wish to minimize.
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Inequality constraints Example: parking a car

Example 9.1: parking a car (cont.)

Note that ẋ(t) =
dx
dt

is the car’s velocity, so we can write

T [x ] =

B∫
A

dt =

xB∫
xA

1
ẋ

dx

We wish to minimize this functional, subject to the DE constraint
that

ẍ =
u(t)
m

where u(t) is the force that we exert, and also subject to

ẋ(0) = ẋ(T ) = 0

i.e., the car is stationary at the start and finish.
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Inequality constraints Example: parking a car

Example 9.1: parking a car (cont.)

Take y = ẋ , and we can rewrite the problem as minimize

T [y ] =

B∫
A

dt =

xB∫
xA

1
y

dx

We wish to minimize this extremal, subject to the DE constraint
that

ẏ =
u(t)
m

where u(t) is the control that we exert, and also subject to

y(xA) = y(xB) = 0.
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Inequality constraints Example: parking a car

Example 9.1: parking a car (cont.)
Including the non-holonomic constraint into the problem using a
Lagrange multiplier we get

H[y ,u] =

xB∫
xA

[
1
y

+ λ

(
ẏ − u(t)

m

)]
dx

subject to
y(xA) = y(xB) = 0.

The Euler-Lagrange equations are

d
dt
∂h
∂ẏ
− ∂h
∂y

= 0

d
dt
∂h
∂u̇
− ∂h
∂u

= 0
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Inequality constraints Example: parking a car

Example 9.1: parking a car (cont.)

d
dt
λ+

1
y2 = 0

λ

m
= 0

From the second equation λ = 0, and so we see that the only
viable solutions are y = ±∞
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Inequality constraints Example: parking a car

Example 9.1: parking a car (cont.)
Euler-Lagrange solutions:

solutions are y = ±∞

this requires u = ±∞ at some points in time

but in reality we can’t exert infinite force

i.e., force is bounded
|u| 6 umax

need to consider optimizing functionals with inequality constraints.

similar (in some respects) to min /max functions with inequality
constraints

min /max is in the interior, or on the boundary
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Inequality constraints Example: a shortest path around lake

Example 9.2: the shortest path
What is the shortest path, between A and B, avoiding an obstacle.

E.G. what is the shortest path around a lake?

A	
  

B	
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Inequality constraints Example: a shortest path around lake

Example 9.2: the shortest path (cont.)
Find extremals

J[y ] =

x1∫
x0

f (x , y , y ′)dx

sublect to y(0) = y0 and y(1) = y1 and

y(x) > g(x).

Enforce the constraint by taking

y(x) = g(x) + z2(x)

In other words introduce a ”slack function” z(x), and note that

y(x)− g(x) = z2(x) > 0.
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Inequality constraints Example: a shortest path around lake

Example 9.2: the shortest path (cont.)

We have slack function z(x), and constraint y(x) > g(x) and

y = z2 + g
y ′ = 2zz ′ + g′

Substitute these into the functional and we can change the
original functional J[y ] for a new one in terms of J[z]

J[y ] =

x1∫
x0

f (x , y , y ′)dx

J[z] =

x1∫
x0

f (x , z2 + g,2zz ′ + g′)dx
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Inequality constraints Example: a shortest path around lake

Example 9.2: the shortest path (cont.)
Given we look for the extremals of

J[z] =

x1∫
x0

f (x , z2 + g,2zz ′ + g′)dx

The Euler-Lagrange equations are

d
dx

∂f
∂z ′ −

∂f
∂z

= 0

d
dx

[
2z

∂f
∂y ′

]
− 2z

∂f
∂y
− 2z ′ ∂f

∂y ′ = 0

2z
d
dx

∂f
∂y ′ + 2z ′ ∂f

∂y ′ − 2z
∂f
∂y
− 2z ′ ∂f

∂y ′ = 0

z
[

d
dx

∂f
∂y ′ −

∂f
∂y

]
= 0
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Inequality constraints Example: a shortest path around lake

Example 9.2: the shortest path (cont.)
The Euler-Lagrange equations give

z
[

d
dx

∂f
∂y ′ −

∂f
∂y

]
= 0

for which there are two solutions

Euler areas: The Euler-Lagrange equations are satisfied

Boundary areas: z(x) = 0, so y(x) = g(x) and the curve lies on
the boundary

Analogy: a global minima of function on an interval can happen at
stationary point, or at the edges.

But we can mix the two along the curve y .
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Inequality constraints Example: a shortest path around a circular lake

Example 9.3: a shortest path around a circular lake
To find the shortest path around a circular lake (radius a, centered at
the origin), between the points (b,0) and (−b,0) (for b > a).

The conditions are

Euler areas: The Euler-Lagrange equations are satisfied, so the
curve is a straight line.

Boundary areas: z(x) = 0, so y(x) = g(x) and the curve lies on
the boundary of the circle.

We can mix the two along the curve y .
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Inequality constraints Example: a shortest path around a circular lake

Example 9.3: a shortest path around a circular lake (cont.)
Given the conditions, the solution must look like

-­‐b	
   b	
  

a	
  

P	
  

θ	
  

i.e.	
  straight	
  lines	
  joining	
  the	
  end-­‐points	
  to	
  a	
  circular	
  arc,	
  where	
  P,	
  
the	
  point	
  of	
  intersec7on	
  of	
  the	
  right-­‐hand	
  straight-­‐line,	
  and	
  the	
  
circle	
  is	
  at	
  	
  

€ 

acos(ϑ), asin(ϑ)( )
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Inequality constraints Example: a shortest path around a circular lake

Example 9.3: a shortest path around a circular lake (cont.)
The total distance of such a line is

d(ϑ) = 2
√

(b − a cosϑ)2 + a2 sin2 ϑ+ a (π − 2ϑ)

= 2
√

b2 − 2ab cosϑ+ a2 + a (π − 2ϑ)

We find the minimum of d(ϑ), by differentiating WRT ϑ, to get

d ′(ϑ) =
2ab sinϑ√

b2 − 2ab cosϑ+ a2
− 2a

= 0

So,
2ab sinϑ = 2a

√
b2 − 2ab cosϑ+ a2.
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Inequality constraints Example: a shortest path around a circular lake

Example 9.3: a shortest path around a circular lake (cont.)
Dividing both sides by 2a we get the condition

b sinϑ =
√

b2 − 2ab cosϑ+ a2

b2 sin2 ϑ = b2 − 2ab cosϑ+ a2

b2 − b2 cos2 ϑ = b2 − 2ab cosϑ+ a2

0 = b2 cos2 ϑ− 2ab cosϑ+ a2

0 = (b cosϑ− a)2

So the result is
cosϑ =

a
b
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Inequality constraints Example: a shortest path around a circular lake

Example 9.3: a shortest path around a circular lake (cont.)

-­‐b	
   b	
  

a	
  

P	
  

θ	
  

Think	
  of	
  what	
  we	
  would	
  get	
  if	
  we	
  stretch	
  an	
  elas4c	
  band	
  between	
  
the	
  two	
  points.	
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