UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 – MATHEMATIK

Prof. Dr. Ernst-Ulrich Gekeler Dipl.-Math. Michael Wernet

Übungen zur Vorlesung Analysis I

Sommersemester 2014

Blatt 2 Abgabetermin: 07.05.2014

Aufgabe 9

(4+4+2=10 Punkte)

(i) Sei X eine Menge. Zeigen Sie, dass die Relation \geq auf der Potenzmenge $\mathscr{P}(X)$, die durch

$$A \ge B \quad \Leftrightarrow \quad A \subset B$$

definiert wird, eine Ordnungsrelation ist.

(ii) (a) Zeigen Sie, dass die Relation \sim auf $\mathbb{Z}^2 \setminus \{(0,0)\}$, die durch

$$(a,b) \sim (c,d) \Leftrightarrow ad = bc$$

definiert wird, eine Äquivalenzrelation ist.

(b) Sei $\mathbb P$ die Menge der Äquivalenzklassen bezüglich \sim aus Teil (a). In welchem Zusammenhang steht $\mathbb P$ mit $\mathbb Q$?

Aufgabe 10

(4+4+4=12 Punkte)

Zeigen Sie durch vollständige Induktion nach n:

- (i) $3^{(2^n)} 1$ ist durch 2^n teilbar für alle $n \in \mathbb{N}$.
- (ii) Ist $n \in \mathbb{N}$ und X eine n-elementige Menge, so besitzt die Potenzmenge $\mathscr{P}(X)$ von X genau 2^n Elemente.
- (iii) Für $n \in \mathbb{N}$ ist die Summe der ersten n ungeraden natürlichen Zahlen gleich n^2 .

(Hinweis: Schreiben Sie die Behauptung zunächst unter geeigneter Verwendung des Summenzeichens auf.)

Aufgabe 11

(3+5=8 Punkte)

Seien $a, b \in \mathbb{Z}^*$ mit |a| > |b|. Setze $d_1 = a$ und $d_2 = b$. Für $i \ge 2$ wähle d_{i+1} in $\{0, \ldots, |d_i| - 1\}$ so, dass ein $q_i \in \mathbb{Z}$ existiert mit

$$d_{i-1} = q_i d_i + d_{i+1}.$$

Zeigen Sie:

- (i) Die Wahl von d_{i+1} und q_i ist eindeutig für jedes $i \geq 2$.
- (ii) Es gibt ein $n \in \mathbb{N}$ mit $d_n \neq 0 = d_{n+1}$. Es gilt $d_n = ggT(a,b)$ (größter gemeinsamer (positiver) Teiler von a und b).

(bitte wenden)

Zeigen Sie:

- (i) Sind $n, k \in \mathbb{N}^*$ so, dass kein $m \in \mathbb{N}$ existiert mit $n = m^k$, so ist $\sqrt[k]{n}$ irrational. (Hinweis: Nehmen Sie an die Aussage ist falsch und betrachten Sie alle vorkommenden Primteiler.)
- (ii) $\sqrt[n]{n}$ ist irrational für alle $n \in \mathbb{N}$ mit n > 1.

(Hinweis: Zeigen Sie $n < 2^n$ für alle $n \in \mathbb{N}$.)