Universität des Saarlandes

Fachrichtung 6.1, Mathematik

Prof. Dr. Ernst-Ulrich Gekeler

Dipl.-Math. Dominik Faas

Testat 2 vom 08.05.2008 zur MfN II

Name, Vorname:

Matrikelnummer:

Unter den folgenden Aussagen sind einige richtig und einige falsch. Kreuzen Sie die richtigen an!

Aussage 1. A und B seien $n \times n$ -Matrizen.

- a) Es gilt stets det(A + B) = det A + det B.
- b) Es gilt stets $det(A \cdot B) = det A \cdot det B$.
- c) Falls $det(A) \neq 0$ ist, hat das lineare Gleichungssystem

$$Ax = b$$

für jedes $\underline{b} \in \mathbb{R}^n$ eine eindeutige Lösung $\underline{x} \in \mathbb{R}^n$.

1a)	1b)	1c)
	X	X

Aussage 2. Es sei $\varphi : \mathbb{R}^n \to \mathbb{R}^m$ eine lineare Abbildung. arphi werde bzgl. der Standardbasis $\left(\underline{e}_1^{(n)},\dots,\underline{e}_n^{(n)}\right)$ von \mathbb{R}^n bzw. $\left(\underline{e}_1^{(m)},\dots,\underline{e}_m^{(m)}\right)$ von \mathbb{R}^m durch eine Matrix $A=(a_{i,j})\in\mathbb{R}^{m\times n}$ beschrieben.

a) Ist
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 1 \end{pmatrix}$$
 (d.h. $m = 2, n = 3$), so ist

$$\varphi\left(\underline{e}_2^{(3)} - \underline{e}_1^{(3)}\right) = \underline{e}_1^{(2)} + \underline{e}_2^{(2)}.$$

b) Ist
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & -1 \\ 0 & -4 & 2 \end{pmatrix}$$
, so ist φ surjektiv.
c) Ist $A = \begin{pmatrix} 2 & 3 \\ 3 & 4 \\ 1 & 1 \end{pmatrix}$, so ist φ injektiv.

c) Ist
$$A = \begin{pmatrix} 2 & 3 \\ 3 & 4 \\ 1 & 1 \end{pmatrix}$$
, so ist φ injektiv.

2a)	2b)	2c)
X		X

Aussage 3. Es sei $A \in \mathbb{R}^{m \times n}$, $\underline{b} \in \mathbb{R}^m$, und $A^* = (A|b) \in \mathbb{R}^{m \times (n+1)}$ liege in Zeilenstufenform vor. Für das Gleichungssystem

$$(*)$$
 $A\underline{x} = \underline{b}$

gilt:

a) Sei

$$A^* = \left(\begin{array}{ccc|c} 1 & 2 & 3 & 0 \\ 0 & 1 & 3 & -1 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

Dann besitzt (*) eine eindeutige Lösung.

b) Sei

$$A^* = \left(\begin{array}{ccc|ccc|c} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 1 & 2 \end{array}\right).$$

Die Lösungsmenge \mathbb{L} von (*) ist eindimensional und die Komponente x_3 eines Lösungsvektors $\underline{x} = (x_1, \dots, x_4)^t \in \mathbb{R}^4$ kann frei gewählt werden.

c) Sei

$$A^* = \left(\begin{array}{ccc|ccc|ccc} 2 & -3 & 1 & 1 & 4 \\ 0 & 2 & 3 & 4 & 2 \\ 0 & 0 & 0 & 1 & 3 \end{array}\right).$$

Die Lösungsmenge \mathbb{L} von (*) ist eindimensional und die Komponente x_3 eines Lösungsvektors $\underline{x} = (x_1, \dots, x_4)^t \in \mathbb{R}^4$ kann frei gewählt werden.

3a)	3b)	3c)
		X

Aussage 4. Es sei $A \in \mathbb{R}^{3 \times 3}$ eine symmetrische Matrix, $\varphi_A : \mathbb{R}^3 \to \mathbb{R}^3$ die durch A bzgl. der Standardbasis dargestellte lineare Abbildung $\varphi_A(\underline{x}) = A\underline{x}$ und $q_A : \mathbb{R}^3 \to \mathbb{R}$ die durch A dargestellte quadratische Form $q_A(\underline{x}) = \underline{x}^t A\underline{x}$.

- a) \mathbb{R}^3 besitzt eine Basis aus Eigenvektoren für φ_A .
- b) q_A kann stets bzgl. einer geeigneten Basis des \mathbb{R}^3 durch die Einheitsmatrix E_3 dargestellt werden.
- c) q_A kann stets bzgl. einer geeigneten Basis des \mathbb{R}^3 durch eine Diagonalmatrix dargestellt werden.

4a)	4b)	4c)
X		X