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Abstract

We present a Lyapunov centre theorem for an antisymplectically reversible Hamiltonian
system exhibiting a nondegenerate 1 : 1 or 1 : −1 semisimple resonance as a detuning pa-
rameter is varied. The system can be finite- or infinite dimensional (and quasilinear) and have
a non-constant symplectic structure. We allow the origin to be a ‘trivial’ eigenvalue arising
from a translational symmetry or, in an infinite-dimensional setting, to lie in the continuous
spectrum of the linearised Hamiltonian vector field provided a compatibility condition on its
range is satisfied.

As an application we show how Kirchgässner’s spatial dynamics approach can be used
to construct doubly periodic travelling waves on the surface of a three-dimensional body
of water (of finite or infinite depth) beneath a thin ice sheet (‘hydroelastic waves’). The
hydrodynamic problem is formulated as a reversible Hamiltonian system in which an arbi-
trary horizontal spatial direction is the time-like variable and the infinite-dimensional phase
space consists of wave profiles which are periodic (with fixed period) in a second, different
horizontal direction. Applying our Lyapunov centre theorem at a point in parameter space
associated with a 1 : 1 or 1 : −1 semisimple resonance yields a periodic solution of the
spatial Hamiltonian system corresponding to a doubly periodic hydroelastic wave.

1 Introduction

1.1 Resonant Hamiltonian systems
A linear dynamical system

v̇ = Lv

for which L ∈ R2n×2n has a pair of simple, purely imaginary eigenvalues ±iω has a periodic
orbit with frequency ω. The classical Lyapunov centre theorem asserts that a (smooth) nonlinear
perturbation

v̇ = Lv +N(v) (1.1)
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of this dynamical system has a family of small-amplitude periodic solutions with frequency near
ω provided that (i) it is Hamiltonian or reversible, and (ii) the non-resonance condition that inω
is not an eigenvalue for any integer n 6= ±1 is satisfied (see Kielhöfer [8, §§I.11.1–I.11.2]). The
theorem can be extended to infinite-dimensional, quasilinear systems under the nonresonance
condition that inω 6∈ σ(L) for n 6= ±1, and furthermore the condition that 0 6∈ σ(L) can also be
replaced by a compatibility condition on the range of L (see Iooss [7]).

In this article we consider a parameter-dependent evolutionary equation of the form

vt = Lµ1v +Nµ1(v)

which is both reversible and Hamiltonian; it may be finite- or infinite-dimensional (and quasi-
linear). The linear operator Lµ1 is supposed to have two pairs ±iκµ11 , ±iκµ12 of simple purely
imaginary eigenvalues which depend smoothly upon µ1 and collide with ‘non-zero speed’ at
µ1 = 0, that is

κ0
1 = κ0

2,
d

dµ1

(κµ11 − κµ12 )
∣∣∣
µ1=0
6= 0.

The collision is semisimple, that is at criticality the eigenvalues ±iκ, where κ = κ0
1 = κ0

2, are
geometrically and algebraically double. We assume the nonresonance condition inκ 6∈ σ(L0)
for n = ±2,±3, . . . but allow the origin to be a ‘trivial’ eigenvalue arising from a transla-
tional symmetry or, in an infinite-dimensional setting, to lie in the continuous spectrum of
L provided a compatibility condition on its range is satisfied. The result is a two-parameter
family {v(t1, t2), µ1(t1, t2)}0≤t1,t2<ε of 2π/(κ + µ2(t1, t2))-periodic reversible solutions, where
µ1(t1, t2), µ2(t1, t2)→ 0 along with the amplitude of the solutions as (t1, t2)→ (0, 0).

A classical Hamiltonian system with n degrees of freedom has the form

v̇ = J∇H(v), J =

(
0 I
−I 0

)
,

where the Hamiltonian H is a smooth real-valued function of v ∈ R2n and 0, I denote the n× n
zero and identity matrices; in the above notation L = J∇H2, where H2(v) = 1

2
d2H[0](v, v).

Examining a two-degree-of-freedom Hamiltonian system whose linearisation has two semisim-
ple eigenvalues ±iκ, one finds that H2(q1, q2, p1, p2) = 1

2
κ(q2

1 + p2
1) ± 1

2
κ(q2

2 + p2
2), the two

cases of which are referred to as a 1 : 1 and 1 : −1 resonance respectively. (This terminology
is also applied to higher-order Hamiltonian systems with no other eigenvalue resonances by re-
stricting to the eigenspaces corresponding to ±iκ.) Periodic solutions of two-degree-of-freedom
Hamiltonian systems with semisimple 1 : 1 and 1 : −1 resonances were studied by Kummer
[9, 10], while the corresponding non-semisimple ‘Hamiltonian-Hopf’ resonance (in which ±iκ
are geometrically simple and algebraically double eigenvalues) was studied by van der Meer
[15].

The dynamical system (1.1) is reversible if there exists an involutionR (the ‘reverser’) which
anticommutes with L andN . A reversible system has the property thatRu is a solution whenever
u is a solution; a solution u is termed reversible or symmetric if it is invariant underR. Reversible
Hamiltonian systems have the property that either H(Rv) = H(v) or H(Rv) = −H(v); these
cases are referred to as ‘antisymplectic’ and ‘symplectic’ respectively. Small-amplitude periodic
solutions of symplectically reversible, n-degree-of-freedom Hamiltonian systems which exhibit
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a semisimple 1 : −1 resonance were studied by Alomair & Montaldi [1] (see also Buzzi & Lamb
[4]) using Lyapunov-Schmidt reduction.

In the present paper we consider parameter-dependent, antisymplectically reversible Hamil-
tonian systems of the form

vt = Jµ1(v)∇Hµ1(v) (1.2)

which exhibit a semisimple 1 : 1 or 1 : −1 resonance in the eigenvalues ±iκ when µ1 = 0. The
system may be finite- or infinite-dimensional, and Jµ1(v) is an invertible linear operator which
is skew-symmetric with respect to a suitable inner product 〈· , ·〉 and, as the notation indicates, is
not necessarily constant (see below for a precise statement). We look for periodic solutions of
(1.2) with frequency near κ by writing

v(t) = u(τ), τ = (κ+ µ2)t

and seeking 2π-periodic solutions of the transformed equation. For this purpose we use varia-
tional Lyapunov-Schmidt reduction, seeking critical points of the functional

S(u, µ1, µ2) =
1

2π

∫ 2π

0

{
− (κ+ µ2)〈αµ1(u), uτ 〉 −Hµ1(u)

}
dτ,

where αµ1(v) is an anti-derivative of Jµ1(v), in a suitable ‘loop space’. A precise statement of
our theorem is given in Section 1.2 below; the proof is presented in Section 2.

Hamiltonian formalism

Let X , Z be real Hilbert spaces, where X is continuously and densely embedded in Z, and Z
is equipped with an additional continuous inner product 〈· , ·〉 which does not necessarily induce
its strong topology. Let Λ1 × U be a neighbourhood of the origin in R × X . We regard U as
a manifold domain of Z by extending elements of the tangent space TX|v ∼= X∗ ∼= X of X
at the point v ∈ U to elements of the tangent space TZ|v ∼= Z∗ ∼= Z of Z at this point. The
derivative dF µ1 [v] ∈ X∗ of a smooth real-valued function F µ1(v) of (µ1, v) ∈ Λ1 × U has
a unique extension d̃F µ1 [v] ∈ Z∗. We use the same notation for smooth functions F µ1(v) of
(µ1, v) with values in X , so that d̃F µ1 [v] ∈ L(Z), and occasionally assume that there exists an
adjoint operator d̃F µ1 [v]∗ ∈ L(Z) such that

〈d̃F µ1 [v]∗(v1), v2〉 = 〈v1, d̃F
µ1 [v](v2)〉

for all (µ1, v) ∈ Λ1 × U and v1, v2 ∈ Z. Both d̃F µ1 [v] and d̃F µ1 [v]∗ are assumed to depend
smoothly upon (µ1, v) ∈ Λ1 × U .

Using this framework we make the following definitions and assumptions.

(i) A (parameter-dependent) k-form on U is an alternating, bounded, k-linear mapping
Zk → R which depends smoothly upon (µ1, v) ∈ Λ1 × U . An exact symplectic 2-form
Ωµ1|v on U is a 2-form given by

Ωµ1 |v(v1, v2) = 〈Jµ1(v)v1, v2〉,

3



where Jµ1(v) is an invertible, skew-symmetric linear mapping in L(Z) which depends
smoothly upon (µ1, v) ∈ Λ1 × U . Furthermore Ωµ1|v is the exterior derivative of a 1-form
ωµ1|v given by

ωµ1|v(w) = 〈αµ1(v), w〉,
where αµ1(v) is an element of Z which depends smoothly upon (µ1, v) ∈ Λ1×U ; in other
words

Ωµ1 |v(v1, v2) = 〈d̃αµ1 [v](v1), v2〉 − 〈v1, d̃α
µ1 [v](v2)〉,

so that
Jµ1(v) = d̃αµ1 [v]− d̃αµ1 [v]∗

(ii) A (parameter-dependent) Hamiltonian on U is a smooth real-valued function Hµ1(v) of
(µ1, v) ∈ Λ1×U which satisfiesHµ1(0) = 0 and dHµ1 [0] = 0 for all µ1 ∈ Λ1. We assume
that its gradient, that is the element∇Hµ1(v) of Z with

d̃Hµ1 [v](w) = 〈∇Hµ1(v), w〉

for all w ∈ Z, exists for all v in a dense subset DH of Λ1 × U and extends to a smooth
function of (µ1, v) ∈ Λ1 × U .

(iii) The Hamiltonian vector field vµ1H of a Hamiltonian system (Z,Ωµ1 , Hµ1), where Ωµ1 is an
exact symplectic 2-form and Hµ1 is a Hamiltonian on U , is given by

vµ1H (v) = Jµ1(v)−1∇Hµ1(v), (µ1, v) ∈ DH;

it yields the unique element vµ1H (v) of Z such that

Ωµ1|v(vµ1H (v), w) = d̃Hµ1 [v](w)

for all w ∈ Z. Hamilton’s equations

vt = vµ1H (v), (µ1, v) ∈ DH,

determine the orbits generated by the Hamiltonian vector field.

1.2 The main result
Let X , Z be real Hilbert spaces, where X is continuously and densely embedded in Z, and
consider the autonomous evolutionary equation

vt = Lµ1v +Nµ1(v), (1.3)

where (µ1, v) 7→ Nµ1(v) is a smooth mapping from a neighbourhood Λ1 × U of the origin in
R×X into Z which satisfies Nµ1(0) = 0 and dNµ1 [0] = 0 for all µ1 ∈ Λ1, and Lµ1 : X ⊆ Z →
Z is a closed linear operator which depends smoothly upon µ1. We study equation (1.3) under
the following hypotheses.
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(H1) Equation (1.3) represents Hamilton’s equations

vt = vµ1H (v)

for a Hamiltonian system (Z,Ωµ1 , Hµ1) with DH = Λ1 × U (in the above nomenclature),
so that

Lµ1(v) +Nµ1(v) = Jµ1(v)−1∇Hµ1(v)

and in particular
Lµ1v = Jµ1(0)−1∇Hµ1

2 (v),

where Hµ1
2 (v) = 1

2
d2Hµ1 [0](v, v) (the part of Hµ1 which is homogeneous of degree 2 in

v).

(H2) Equation (1.3) is reversible: both Lµ1 and Nµ1 anticommute with an involution R ∈
L(X) ∩ L(Z). This reverser R satisfies

Hµ1(Rv) = Hµ1(v), R∗αµ1(Rv) = −αµ1(v), R∗Jµ1(Rv)R = −Jµ1(v)

for all (µ1, v) ∈ Λ1 × U .

There are also spectral hypotheses on Lµ1 .

(H3) The linear operator Lµ1 has two pairs ±iκµ11 , ±iκµ12 of purely imaginary eigenvalues with
linearly independent eigenvectors eµ11 , ēµ11 , eµ12 , ēµ12 , all of which depend smoothly upon
µ1. Furthermore ē0

1 = Re0
1, ē0

2 = Re0
2 and

κ0
1 = κ0

2,
d

dµ1

(κµ11 − κµ12 )
∣∣∣
µ1=0
6= 0.

For notational simplicity we henceforth abbreviate L0, e0
1 and e0

2 to respectively L, e1 and
e2, and define κ := κ0

1 = κ0
2.

(H4) The origin is one of
(i) a point of the resolvent set of L,

(ii) a point of the continuous spectrum of L,

(iii) a geometrically simple, algebraically double eigenvalue of L with eigenvector f1

and generalized eigenvector f2 (possibly embedded in continuous spectrum), where
Rf1 = −f1 and Rf2 = f2.

Here (ii) and (iii) entail further spectral hypotheses (see (H7) and (H8) below).

(H5) The imaginary number ikκ belongs to the resolvent set of L for each k ∈ Z\{0,−1, 1}.

(H6) The linear operator L satisfies∥∥(ikκI − L)−1
∥∥
Z→Z .

1

|k| ,
∥∥(ikκI − L)−1

∥∥
Z→X . 1

for all k ∈ Z\{0,−1, 1}.
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(H7) The zero eigenvalue (if present) is ‘trivial’ in the following sense: writing u ∈ U as
u = qf1 + w with w ∈ {f1}⊥, one finds that Jµ1(u) and Hµ1(u) do not depend upon q.

(H8) Suppose that the equation

Lu† = J0(0)−1(I − Π0)N?(u, µ1, µ2),

where

N?(u, µ1, µ2) =
1√
2π

∫ 2π

0

(
Jµ1(u)

(
(κ+µ2)Jµ1(u)uτ−Lµ1u−Nµ1(u)

)
+J0(0)Lu

)
dτ,

has a unique solution u† ∈ (I −Π0)X which depends smoothly upon u ∈ U , µ1 ∈ Λ1 and
µ2 ∈ Λ2, where Π0 is the orthogonal projection of X onto span{f1, f2} and

U = {u ∈ H1
per(R, Z) ∩ L2

per(R, X) : u(τ) ∈ U for all τ ∈ R}.

Remark 1.1.

(i) Hypothesis (H8) is meaningful only if the origin lies in the continuous spectrum of L or is
an eigenvalue embedded in continuous spectrum, since it is automatically satisfied if the
origin lies in the resolvent set of L or is an isolated eigenvalue of L.

(ii) If Jµ1(u) is constant and Π0 = 0, then

N?(u, µ1, µ2) = − 1√
2π

∫ 2π

0

Nµ1(u) dτ,

so that hypothesis (H8) reduces to the condition used by Iooss [7].

Theorem 1.2. Under hypotheses (H1)–(H8) there exist ε > 0 and a smooth, two-parameter
branch {v(t1, t2), µ1(t1, t2)}0≤t1,t2<ε of 2π/(κ+µ2(t1, t2))-periodic reversible solutions to equa-
tion (1.3) in H1

loc(R, Z)∩L2
loc(R, X). The rescaled function v(t) = u(τ), τ = (κ+µ2)t satisfies

‖u(t1, t2)‖Z → 0, while µ1(t1, t2), µ2(t1, t2)→ 0 as (t1, t2)→ (0, 0).

Theorem 1.2 is proved in Section 2.

1.3 Hydroelastic waves
In Section 3 we introduce the hydrodynamic problem for travelling waves on the surface of a
three-dimensional body of water beneath a thin ice sheet modelled using the Cosserat theory of
hyperelastic shells (Plotnikov & Toland [14]). The fluid is bounded below by a rigid horizontal
bottom {x2 = −h} (the cases h < ∞ and h = ∞ are referred to as ‘finite depth’ and ‘infinite
depth’) and above by a free surface {x2 = η(x1, x3)} (in a frame of reference following the
wave with constant speed c in the x1 direction); there is no cavitation between this surface and
the ice sheet. The hydrodynamic problem is formulated in terms of η and an Eulerian velocity

6



potential φ in dimensionless form in Section 3; the govering equations (3.1)–(3.4) depend upon
two dimensionless parameters

β =

(
D

ρgh4

)1/4

≥ 0, γ =

(
c8ρ

Dg3

)1/8

> 0,

where D, ρ and g are respectively the coefficient of flexural rigidity for the ice sheet, the density
of the fluid and the acceleration due to gravity (see Guyenne and Parau [6]). The dimensionless
fluid domain is {− 1

β
< x2 < η(x1, x2)}, so that the limit β → 0 corresponds to ‘infinite depth’.

We consider waves which are periodic with periods p1 and p2 in two arbitrary horizontal
directions x and z which form (different) angles θ1, θ2 ∈ [0, π) with the x1-axis respectively, so
that

x = csc(θ2 − θ1)(x1 sin θ2 − x3 cos θ2), z = csc(θ1 − θ2)(x1 sin θ1 − x3 cos θ1)

(see Figure 1). To this end we seek solutions of the governing equations of the form

η(x1, x3) = η̃(x̃, z̃),

where
x̃ = x1 sin θ2 − x3 cos θ2, z̃ = ν(x1 sin θ1 − x3 cos θ1)

with ν = 2π/p2 and η̃ is 2π-periodic in z̃. We proceed by formulating the hydroelastic problem
as a reversible Hamiltonian system in which the horizontal spatial direction x̃ plays the role
of the time-like variable (‘spatial dynamics’), working in a phase space of functions which are
2π-periodic in z̃. By construction a periodic (in ‘time’) solution of the evolutionary system,
corresponds to a surface wave which is periodic in both x̃ and z̃ and is found using a Lyapunov
centre theorem (although care is required in interpreting such solutions; see below).

To formulate the hydroelastic equations as an evolutionary system, we exploit the observa-
tion that they follow from a variational principle (a modified version of the classical variational
principle for water waves introduced by Luke [12]). We treat the variational functional as an
action functional in which a density is integrated over the x̃ direction and perform a Legendre
transform (which is actually higher order due to the presence of second-order derivatives in the
density) to derive a formulation of the hydrodynamic problem as an infinite-dimensional, re-
versible Hamiltonian system in which x̃ is the time-like variable. Although this procedure is
formal, it delivers a candidate for a formulation of the hydrodynamic problem as an evolutionary
system whose mathematical correctness is readily confirmed a posteriori; full details are given in
Section 3. Finally, we introduce a bifurcation parameter µ1 by writing ν = ν0 +µ1, where ν0 is a
reference value for ν (see below) and use a change of variable to linearise a nonlinear boundary
condition emerging from the Legrendre transform. The result is a system of the form

v̂x = Lµ1 v̂ +Nµ1(v̂) (1.4)

which is amenable to Theorem 1.2, satisfying (H1) and (H2) by construction.
A purely imaginary eigenvalue is of L := L0 with corresponding eigenvector in the kth

Fourier mode (where (k, s) 6= (0, 0)) corresponds to a linear hydroelastic wave of the form
η(x̃, z̃) = ηs,ke

i`1x̃+i`2z̃ with

`1 = s sin θ2 + ν0k sin θ1, (1.5)
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Direction of

wave propagation

'Time-like'

direction
'Space-like'

direction

Figure 1: In the spatial dynamics formulation of the hydrodynamic problem the x and z directions are
treated as respectively ‘time-like’ and ‘space like’.

`2 = −s cos θ2 − ν0k cos θ1, (1.6)

and a solution of this kind exists if and only if `1 and `2 satisfy the dispersion relation

D(`1, `2) := (1 + (`2
1 + `2

2)2)
√
`2

1 + `2
2 tanh

(
β−1
√
`2

1 + `2
2

)
− γ2`2

1 = 0.

A mode k purely imaginary eigenvalue is therefore corresponds to an intersection in the (`1, `2)-
plane of the dispersion curve

Cdr = {(`1, `2) ∈ R2 \ {(0, 0)} : D(`1, `2) = 0}

with the straight line Sk defined by equations (1.5), (1.6). (The solution (`1, `2) = (0, 0) of
D(`1, `2) = 0 is excluded since it corresponds to (k, s) = (0, 0).) The dispersion curve is
sketched in Figure 2(a). The (β, γ)-parameter plane is divided into three regions in whichCdr has
respectively zero, one, and two nontrivial bounded branches; the delineating curves D1 and D2

are given explicitly in Section 4.1. The central region is in fact each divided into two subregions,
at the mutual boundary of which the qualitative shape of the branches changes, namely, from
convex to nonconvex.

A point of intersection of Sk and Cdr corresponds to a purely imaginary mode k eigenvalue
is; its imaginary part is the value of the parameter s at the point of intersection, that is, the value
of S0 in the (S0, T )-coordinate system at the intersection, where

T = {(`1, `2) ∈ R2 : `1 = sin θ1 a, `2 = − cos θ1 a, a ∈ R}

(see Figure 2(b)). The geometric multiplicity of the eigenvalue is is given by the number of
distinct lines in the family {Sk} which intersect Cdr at this parameter value, and a tangent inter-
section between Sk and Cdr indicates that each eigenvector in mode k has an associated Jordan
chain of length at least 2. Notice that the sets Sk ∩ Cdr and S−k ∩ Cdr have the same cardinal-
ity: the purely imaginary number is is a mode k eigenvalue if and only if the purely imaginary
number −is is a mode −k eigenvalue.
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Figure 2: (a) Shape of the dispersion curve Cdr in the (β, γ)-parameter plane. (b) Position of the lines Sk
and the dispersion curve Cdr in the (`1, `2)-plane; the lines S0 and T form rangles θ2 and θ1 respectively
with the positive `2 axis, and the line Sk intersects the line T at the point Pk.

Let us now consider how to apply a Lyapunov centre theorem to equation (1.4). A first
attempt might be to choose β, γ and θ2 such that S0 does not intersect Cdr and θ1 such that S1 and
S−1 intersect Cdr in points with coordinates (s, ν0), (t, ν0) and (−s, ν0), (−t, ν0) in the (S0, T )-
coordinate system respectively, while Sk does not intersect Cdr for k = ±2, ±3, . . . (see Figure
2(b)). In this configuration L has simple mode 1 eigenvalues is, it with eigenvectors v̂1,se

iz,
v̂1,te

iz and mode −1 eigenvalues −is, −it with eigenvectors v̂−1,se
−iz, v̂−1,te

−iz. Assuming that
0 < t < s (and neglecting any spectrum at the origin for the moment), one finds that the purely
imaginary eigenvalues ±is satisfy the non-resonance condition in a standard Lyapunov centre
theorem, an infinite-dimensional version of which therefore gives a periodic solution of (1.4)
with period near 2π/s. However this approach does not yield a genuinely three-dimensional
wave: at the linear level the solution takes the form v̂ = Re(v̂1,se

isxeiz) = Re(v̂1,se
i(sx+z)),

which depends upon the single spatial direction sx + z. Note that Groves & Haragus [5] and
Bagri & Groves [2], while correctly elucidating the use of spatial dynamics and Lyapunov centre
theory to construct doubly periodic water waves, actually detect waves of this kind, often referred
to as ‘21

2
-dimensional waves’.

A more promising approach is to choose β, γ and θ2 such that S0 does not intersect Cdr

and ν0 and θ1 such that S1 and S−1 each intersect Cdr in points with coordinates (±s, ν0) and
(±s,−ν0) in the (S0, T )-coordinate system, while Sk does not intersect Cdr for k = ±2, ±3,
. . . (see Figure 3). In this configuration L exihibits a 1 : 1 or 1 : −1 resonance: it has two mode 1
eigenvalues ±is, two mode −1 eigenvalues ±is, so that ±is are geometrically and algebraically
double eigenvalues of L with eigenvectors v̂1,se

iz, v̂−1,se
−iz and v̂1,−se

iz, v̂−1,−se
−iz. Under the

assumption that the other hypotheses are satisfied, Theorem 1.2 gives a periodic solution of (1.4)
with period near 2π/s which yields a genuinely three-dimensional wave: at the linear level the
solution takes the form v̂ = (v̂1,se

isxeiz + v̂1,−se
−isxe−iz), which cannot be reduced to a function

of a single spatial direction. (One can of course apply this idea in any mode, assuming that
±is are both mode k and mode −k eigenvalues which do not resonate with any other purely
imaginary eigenvalues.)

In Section 4 we apply Theorem 1.2 to the spatial dynamics formulation (1.4) of the hydro-
elastic problem in the eigenvalue scenarios shown in Figure 3, studying the purely imaginary
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Figure 3: Scenarios of interest.

spectrum of L in detail in Section 4.1. Hypotheses (H3), (H5) and (H6) are readily verified,
while (H4)(iiii) (the origin is a double eigenvalue of L) and (H4)(ii) (the origin is a point of the
continuous spectrum of L) arise in the cases β > 0 and β = 0 respectively. In the former case
we find that the zero eigenvalue is trivial in the sense of (H7) and an isolated spectral point of L,
so that (H8) is also satisfied. The additional verification of (H8) in the case β = 0 is undertaken
in Section 4.3. Altogether we establish the following result.

Theorem 1.3. Choose β, γ and θ2 such that S0 does not intersect Cdr and ν0 and θ1 such that
S1 and S−1 each intersect Cdr in points with coordinates (±s, ν0) and (±s,−ν0) in the (S0, T )-
coordinate system, while Sk does not intersect Cdr for k = ±2,±3, . . . (see Figure 3). There exist
ε > 0 and a two-parameter branch {(φ, η)(t1, t2)}0≤t1,t2<ε of doubly periodic solutions of (3.1)–
(3.4) with periods 2π/(s+ µ2(t1, t2)), 2π/(ν0 + µ1(t1, t2)) in the variables x1 sin θ2 − x3 cos θ2

and x1 sin θ1 − x3 cos θ1 respectively.

We also derive the following ‘inverse’ result which shows that (under a nonresonance con-
dition) one can find a family of doubly periodic solutions which are small perturbations of any
given periodic cell; these solutions have a fixed dimensionless wave speed γ and fixed periodic
directions.

Theorem 1.4. Choose β, s, ν0 and θ2− θ1 arbitrarily. There exist θ1 and γ such that S1 and S−1

each intersect Cdr in points with coordinates (±s, ν0) and (±s,−ν0) in the (S0, T )-coordinate
system, so that Theorem 1.3 holds under the additional hypothesis that Sk does not intersect Cdr

for k 6= ±1 .

2 Proof of the main result
In this section we prove Theorem 1.2, working in the framework set out in Section 1.2 and under
the hypotheses (H1)–(H8) given there. We look for periodic solutions of (1.3) with frequency
near κ by writing

v(t) = u(τ), τ = (κ+ µ2)t,
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where µ2 lies in a neighbourhood Λ2 of the origin in R, and seeking 2π-periodic solutions of the
transformed equation

(κ+ µ2)uτ = Lµ1u+Nµ1(u). (2.1)

To this end we introduce the function spaces

X := H1
per(R, Z) ∩ L2

per(R, X),

Z := L2
per(R, Z),

equipping Z with the continuous scalar product

(· , ·) =
1

2π

∫ 2π

0

〈· , ·〉

and noting that elements w ∈ Z can be expanded in Fourier series

w(τ) =
1√
2π

∑
k∈Z

[w]ke
ikτ , [w]k =

1√
2π

∫ 2π

0

w(τ)e−ikτ dτ ∈ Z.

We seek 2π-periodic solutions of (2.1) by studying the function F : U × Λ1 × Λ2 7→ Z
defined by

F (u, µ1, µ2) = (κ+ µ2)Jµ1(u)uτ −∇Hµ1(u),

where
U = {u ∈ X : u(τ) ∈ U for all τ ∈ R}.

The equation
F (u, µ1, µ2) = 0, (2.2)

has a variational characterisation.

Proposition 2.1. Equation (2.2) is the Euler-Lagrange equation for the action functional
S : U × Λ1 × Λ2 → R given by

S(u, µ1, µ2) =
1

2π

∫ 2π

0

{
− (κ+ µ2)〈αµ1(u), uτ 〉 −Hµ1(u)

}
dτ.

Furthermore S is invariant with respect to the translation Tθ : u(τ) 7→ u(τ + θ) and reversing
operation T : u(τ) 7→ (Ru)(−τ).

Proof. The first assertion follows from the calculation

d1S[u, µ1, µ2](v)

=
1

2π

∫ 2π

0

{
− (κ+ µ2)

(
〈d̃αµ1 [u](v), uτ 〉+ 〈αµ1(u), vτ 〉

)
− 〈∇Hµ1(u), v〉

}
dτ

=
1

2π

∫ 2π

0

{
− (κ+ µ2)

(
〈d̃αµ1 [u](v), uτ 〉 − 〈v, d̃αµ1 [u](uτ )〉

)
− 〈∇Hµ1(u), v〉

}
dτ

=
1

2π

∫ 2π

0

〈(κ+ µ2)Jµ1(u)uτ −∇Hµ1(u), v〉 dτ

= (F (u, µ1, µ2), v)

for v ∈ X , while the second is a consequence of the periodicity of u and hypothesis (H2).
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The next step is a Lyapunov-Schmidt reduction. Define

W1 = {u0 + Ae1eiτ +Be2eiτ + Āē1e−iτ + B̄ē2e−iτ , A,B ∈ C, u0 ∈ Z},
W2 = {u ∈ Z : [u]0 = 0, Πiκ[u]1 = Π−iκ[u]−1 = 0},

where Π±iκ are the orthogonal projections onto the eigenspaces Eiκ = span{e1, e2} and E−iκ =
span{ē1, ē2}, so that

Z =W1 ⊕W2,

X = (W1 ∩ X )⊕ (W2 ∩ X )

and the decompositions are orthogonal. Let Π̃W1 be the projection ofZ ontoW1 alongW2, write
u ∈ U as

u = Π̃W1u︸ ︷︷ ︸
=: uW1

+ (I − Π̃W1)u︸ ︷︷ ︸
=: uW2

and equation (2.2) as

Π̃W1F (uW1 + uW2 , µ1, µ2) = 0, (2.3)

(I − Π̃W1)F (uW1 + uW2 , µ1, µ2) = 0. (2.4)

To solve equation (2.4) (for uW2 as a function of uW1 , µ1 and µ2) it is necessary to examine
the solvability conditions for the equations

(±iκI − L)u = J0(0)−1f (2.5)

and
Lu = J0(0)−1f, (2.6)

where f is a given function in Z. Normalise eµ11 , eµ12 such that

Ωµ1|0(eµ11 , ē
µ1
1 ) = ±i, Ωµ1|0(eµ12 , ē

µ1
2 ) = ±i, Ωµ1 |0(eµ11 , e

µ1
2 ) = 0, Ωµ1|0(eµ11 , ē

µ1
2 ) = 0

and f1, f2 such that
Ω0|0(f1, f2) = 1,

where Ωµ1|0 is extended bilinearly to the complexification of Z. Observing that L is the Hamil-
tonian vector field for the linear Hamiltonian system (Z,Ω0|0, H0

2 ), we find that the spectral
projections P±iκ and P0 onto the eigenspaces Eiκ = span{e1, e2}, E−iκ = span{ē1, ē2} and
generalised eigenspace E0 = span{f1, f2} are given by

Piκu =
2∑
i=1

siΩ
0|0(u, ēi)ei =

2∑
i=1

si〈J0(0)(u), ei〉ei

P−iκu = −
2∑
i=1

siΩ
0|0(u, ei)ēi = −

2∑
i=1

si〈J0(0)(u), ēi〉ēi,
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where si = −Ωµ1|0(eµ1i , ē
µ1
i ), and

P0u = Ω0|0(u, f2)f1 − Ω0|0(u, f1)f2,

= 〈J0(0)(u), f2〉f1 − 〈J0(0)(u), f1〉f2

(see Mielke [13, §3.1]); here 〈· , ·〉 is extended sesquilinearly to the complexification of Z. This
observation shows in particular that the (necessary and sufficient) solvability condition for (2.5),
namely that the spectral projection of its right-hand side onto E±iκ vanishes, is equivalent to the
requirement that the orthogonal projection Π±iκf of f onto E±iκ vanishes. In this case it has a
unique solution in the orthogonal complement ofE±iκ inX which depends continuously upon f .
Similarly, equation (2.6) is solvable if the orthogonal projection Π0f of f onto E0 vanishes (note
that this is merely a sufficient condition), and in this case has a unique solution in the orthogonal
complement of E0 in X which depends continuously upon f . In the following analysis we use
the convention that f1 = f2 = 0 and hence P0 = Π0 = 0 if 0 is not an eigenvalue of L.

Proposition 2.2. The linear operator

(I − Π̃W1)d1F [0, 0, 0] : (W2 ∩ X )→W2

is an isomorphism.

Proof. The equation
(I − Π̃W1)d1F [0, 0, 0](v) = w (2.7)

with w ∈ W2 is equivalent to

(iκkI − L)[v]k = J0(0)−1[w]k, k ∈ Z \ {0},
with [w]k ∈ Z, k 6∈ {0,−1, 1} and [w]1 ∈ E⊥iκ, [w]−1 ∈ E⊥−iκ (in X). By assumption (H5) the
operator iκkI − L : X → Z is an isomorphism for k /∈ {0,−1, 1} and we have established that
the equations

(iκI − L)[v]1 = J0(0)−1[w]1,

(−iκI − L)[v]−1 = J0(0)−1[w]−1

have unique solutions [v]1 ∈ E⊥iκ, [v]−1 ∈ E⊥−iκ (in X) which depend continuously upon [w]1,
[w]−1. It follows that

‖v‖2
L2
per(R,X) =

∑
k∈Z\{0,−1,1}

‖[v]k‖2
X + ‖[v]1‖2

X + ‖[v]−1‖2
X

=
∑

k∈Z\{0,−1,1}

∥∥(iκkI − L)−1J0(0)−1[w]k
∥∥2

X
+ ‖[v]1‖2

X + ‖[v]−1‖2
X

.
∑

k∈Z\{0,−1,1}

‖[w]k‖2
Z + ‖[w]1‖2

Z + ‖[w]−1‖2
Z

≤ ‖w‖2
Z

and similarly
‖v‖H1

per(R,Z) . ‖w‖Z
(by assumption (H6)), so that v lies in X . We conclude that equation (2.7) has a unique solution
v ∈ W2 ∩ X which depends continuously upon w ∈ W2.
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Lemma 2.3. There exist neighbourhoods U1 and U2 of the origin in respectivelyW1 andW2 and
a reduction function uW2 : U1×Λ1×Λ2 → U2 such that equation (2.4) admits the unique solution
(uW1 , uW2(uW1 , µ1, µ2)) in U1 × U2. Furthermore uW1(0, 0, 0) = 0 and duW1 [0, 0, 0] = 0.

Proof. This result follows from the implicit-function theorem and Proposition 2.2.

The next step is to further decompose the reduced equation

Π̃W1F (uW1 + uW2(uW1 , µ1, µ2), µ1, µ2) = 0 (2.8)

by introducing the orthogonal projection Π̃ of Z onto

W1,1 = {qf1 + pf2 + Ae1eiτ +Be2eiτ + Āē1e−iτ + B̄ē2e−iτ , q, p ∈ R, A,B ∈ C},

which is given by
Π̃u = Π0[u]0 + eiτΠiκ[u]1 + e−iτΠ−iκ[u]−1,

so that
W1 =W1,1 ⊕W1,2,

whereW1,2 = (I − Π̃)W1. Writing uW1 ∈ U1 as

uW1 = Π̃uW1︸ ︷︷ ︸
=: u1

+ (I − Π̃)uW1︸ ︷︷ ︸
=: u2

,

we find that (2.8) is equivalent to

Π̃G(u1, u2, µ1, µ2) = 0, (2.9)

(I − Π̃)G(u1, u2, µ1, µ2)︸ ︷︷ ︸
= (I − Π0)[G(u1, u2, µ1, µ2)]0

= 0, (2.10)

where
G(u1, u2, µ1, µ2) = F (u1 + u2 + uW2(u1 + u2, µ1, µ2), µ1, µ2).

We proceed with a further reduction of Lyapunov-Schmidt type. Solving equation (2.10) for u2

in terms of u1, µ1 and µ2 requires hypothesis (H8) if the origin lies in the continuous spectrum
of L or is an eigenvalue embedded in the continuous spectrum.

Lemma 2.4. There exist neighbourhoods U1,1 and U1,2 of the origin in respectively W1,1 and
W1,2 and a reduction function u2 : U1,1 × Λ1 × Λ2 → U1,2 such that equation (2.10) admits the
unique solution (u1, u2(u1, µ1, µ2)) in U1,1×U1,2. Furthermore u1(0, 0, 0) = 0 and du1[0, 0, 0] =
0.

Proof. Equation (2.10) is equivalent to

Lu2 = J0(0)−1(I − Π0)N?(u1 + u2 + uW2(u1 + u2, µ1, µ2), µ1, µ2),
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Let v(u1, u2, µ1, µ2) be the unique solution of the equation

Lv = J0(0)−1(I − Π0)N?(u1 + u2 + uW2(u1 + u2, µ1, µ2), µ1, µ2)

and define Υ : (U1 ∩W1,1)× (U1 ∩W1,2)× Λ1 × Λ2 →W1,2 by

Υ(u1, u2, µ1, µ2) = u2 − v(u1, u2, µ1, µ2).

Observing that Υ(0, 0, 0, 0) = 0, d2Υ[0, 0, 0, 0] = I , one therefore obtains the result from the
implicit-function theorem.

The reduced equation
Π̃G(u1, u2(u1, µ1, µ2), µ1, µ2) = 0

is conveniently written as
f(u1, µ1, µ2) = 0, (2.11)

where
f(u1, µ1, µ2) = Π̃F (u1 + h(u1, µ1, µ2), µ1, µ2)

and the new reduction function h : U1,1 × Λ1 × Λ2 → (I − Π̃)X is given by

h(u1, µ1, µ2) = u2(u1, µ1, µ2) + uW2(u1 + u2(u1, µ1, µ2), µ1, µ2).

Note again that h(0, 0, 0) = 0 and d1h[0, 0, 0] = 0.
Equation (2.11) inherits the variational structure of (2.2).

Proposition 2.5. Equation (2.11) is the Euler-Lagrange equation for the reduced action func-
tional s : U1,1 × Λ1 × Λ2 → R given by

s(u1, µ1, µ2) = S(u1 + h(u1, µ1, µ2), µ1, µ2),

that is
d1s[u1, µ1, µ2](v1) = (f(u1, µ1, µ2), v1) (2.12)

for all v1 ∈ Π̃X .

Proof. This result follows from the calculation

d1s[u1, µ1, µ2](v1) = d1S[u1 + h(u1, µ1, µ2), µ1, µ2](v1 + d1h[u1, µ1, µ2](v1))

= (F (u1 + h(u1, µ1, µ2), µ1, µ2), µ1, µ2), d1h[u1, µ1, µ2](v1) + v1)

= (Π̃F (u1 + h(u1, µ1, µ2), µ1, µ2), d1h[u1, µ1, µ2](v1) + v1)

= (Π̃F (u1 + h(u1, µ1, µ2), µ1, µ2), v1)

= (f(u1, µ1, µ2), v1),

where the second line follows from the first by Proposition 2.1, the third follows from the second
because

(I − Π̃)F (u1 + h(u1, µ1, µ2), µ1, µ2) = 0

by construction, and the fourth follows from the third because h(u1, µ1, µ2) (and hence all its
derivatives) lies in (I − Π̃)X̃ .
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Introducing coordinates

u1 = qf1 + pf2 + Ae1eiτ +Be2eiτ + Āē1e−iτ + B̄ē2e−iτ ,

one finds that the reduced equation (2.11) is given by

∂Ās = 0, (2.13)
∂B̄s = 0, (2.14)
∂ps = 0 (2.15)

(recall that s does not depend upon q by hypothesis (H7)). The reduced action functional s
remains invariant under the symmetries Tθ and T , whose actions onW1,1 are given by

Tθ(A,B, Ā, B̄, q, p) = (Aeiθ, Beiθ, Āe−iθ, B̄e−iθ, q, p),

T (A,B, Ā, B̄, q, p) = (Ā, B̄, A,B,−q, p).

It follows that s is a real-valued function of the real quantities |A|2, |B|2, i
2
(ĀB − AB̄),

1
2
(AB̄ + ĀB), p, µ1 and µ2 which is even with respect to i

2
(ĀB − AB̄). Restricting to A = r1,

B = ir2, where r1 and r2 are real (so that i
2
(ĀB−AB̄) = r1r2, 1

2
(AB̄+ ĀB) = 0), we find that

s(A,B, Ā, B̄, p, µ1, µ2) = s̃(r2
1, r

2
2, r1r2, p, µ1, µ2),

where the right-hand side is even in its third argument, so that in fact, with a slight abuse of
notation,

s(A,B, Ā, B̄, q, µ1, µ2) = s̃(r2
1, r

2
2, p, µ1, µ2).

Equations (2.13)–(2.15) therefore reduce to

r1∂1s̃(r
2
1, r

2
2, p, µ1, µ2) = 0,

r2∂2s̃(r
2
1, r

2
2, p, µ1, µ2) = 0,

∂3s̃(r
2
1, r

2
2, p, µ1, µ2) = 0,

and further to

∂1s̃(r
2
1, r

2
2, p, µ1, µ2) = 0, (2.16)

∂2s̃(r
2
1, r

2
2, p, µ1, µ2) = 0, (2.17)

∂3s̃(r
2
1, r

2
2, p, µ1, µ2) = 0 (2.18)

for solutions with non-zero r1 and r2 components.

Lemma 2.6. The quadratic parts of s̃ which are respectively independent of (µ1, µ2), indepen-
dent of µ2 and linear in µ1, and independent of µ1 and linear in µ2 are given by

s̃00
2 = s̃00

002p
2,

s̃10
2 = s̃10

200µ1r
2
1 + s̃10

020µ1r
2
2 + s̃10

002µ1p
2,

s̃01
2 = −s1µ2r

2
1 − s2µ2r

2
2,
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where

s̃00
002 = −1

2
,

s̃10
200 = Ω0

0(∂µ1L
0e1, ē1),

s̃10
020 = Ω0

0(∂µ1L
0e2, ē2),

s̃10
002 = 1

2
Ω0

0(∂µ1L
0f2, f2).

Proof. We begin by recording the formulae

d2
1S[0, 0, 0](v1, v2) = (J0(0)(κv1τ − Lv1), v2),

d2
1d2S[0, 0, 0](v1, v2, 1) = (∂µ1J

0(0)(κv1τ − Lv1) + J0(0)∂µ1L
0v1, v2),

d2
1d3S[0, 0, 0](v1, v2, 1) = (J0(0)v1τ , v2)

for v1, v2 ∈ X , which are obtained by differentiating the identity

d1S[u, µ1, µ2](v) =
(
Jµ1(u)

(
(κ+ µ2)uτ − Lµ1u−Nµ1(u)

)
, v
)

for (u, µ1, µ2) ∈ U × Λ1 × Λ2 and v ∈ X (see Proposition 2.1).
These formulae show that

s̃00
2 = s̃00

200r
2
1 + s̃00

020r
2
2 + s̃00

002p
2,

where

s̃00
200 = d2

1S[0, 0, 0](eiτe1, e
−iτ ē1) = (J0(0)(iκI − L)eiτe1, e

iτe1) = 0,

s̃00
020 = d2

1S[0, 0, 0](eiτe2, e
−iτ ē2) = (J0(0)(iκI − L)eiτe2, e

iτe2) = 0,

s̃00
002 = 1

2
d2

1S[0, 0, 0](f2, f2) = −1
2
(J0(0)Lf2, f2) = −1

2
Ω0

0(f1, f2) = −1
2
.

Similarly, denoting the part of h(u1, µ1, µ2) which is homogeneous of degree i, j, k, `, n1 and
n2 in respectively A, B, Ā, B̄, µ1 and µ2 by hn1n2

ijk` A
iBjĀkB̄`µn1

1 µ
n2
2 , we find that

s̃10
2 = s̃10

200µ1r
2
1 + s̃10

020µ1r
2
2 + s̃10

002µ1p
2,

s̃01
2 = s̃01

200µ2r
2
1 + s̃01

020µ2r
2
2 + s̃01

002µ2p
2,

where

s̃10
200 = d2

1d2S[0, 0, 0](eiτe1, e
−iτ ē1, 1) + d2

1S[0, 0, 0](eiτe1, h
10
00100) + d2

1S[0, 0, 0](e−iτ ē1, h
10
10000),

= (J0(0)∂µ1L
0(eiτe1), eiτe1)

= Ω0
0(∂µ1L

0(e1), ē1),

s̃10
020 = d2

1d2S[0, 0, 0](eiτe2, e
−iτ ē2, 1) + d2

1S[0, 0, 0](eiτe2, h
10
00010) + d2

1S[0, 0, 0](e−iτ ē1, h
10
01000)

= (J0(0)∂µ1L
0(eiτe2), eiτe2)

= Ω0
0(∂µ1L

0(e2), ē2),

s̃10
002 = 1

2
d2

1d2S[0, 0, 0](f2, f2, 1) + d2
1S[0, 0, 0](f2, h

10
00001)
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= 1
2
(J0(0)∂µ1L

0f2, f2)

= 1
2
Ω0

0(∂µ1L
0f2, f2)

and

s̃01
200 = d2

1d3S[0, 0, 0](eiτe1, e
−iτ ē1, 1) + d2

1S[0, 0, 0](eiτe1, h
01
00100) + d2

1S[0, 0, 0](e−iτ ē1, h
01
10000)

= i(J0(0)eiτe1, e
iτe1)

= iΩ0
0(e1, ē1)

= −s1,

s̃01
020 = d2

1d3S[0, 0, 0](eiτe2, e
−iτ ē2, 1) + d2

1S[0, 0, 0](eiτe2, h
01
00100) + d2

1S[0, 0, 0](e−iτ ē2, h
01
01000)

= i(J0(0)eiτe2, e
iτe2)

= iΩ0
0(e2, ē2)

= −s2,

s̃01
002 = 1

2
d2

1d3S[0, 0, 0](f2, f2, 1) + d2
1S[0, 0, 0](f2, h

10
00001)

= 0.

Note that the second derivatives are extended bilinearly to the complexification of Z while (· , ·)
is extended sesquilinearly.

Corollary 2.7. One has the formulae

s̃10
200 = ∂µ1κ

0
1, s̃01

200 = ∂µ1κ
0
2.

Proof. Observe that

Ωµ1
0 (Lµ1eµ1i , ē

µ1
i ) = iκµ1i Ωµ1

0 (eµ1i , ē
µ1
i ) = −siκµ1i .

Differentiating this formula with respect to µ1 and evaluating the result at µ1 = 0 yields

−si∂µ1κ0
i

∣∣
µ1=0

= Ω0
0(∂µ1L

0ei, ēi) + Ω1
0(Lei, ēi) + Ω0

0(L∂µ1e
µ1
i , ēi) + Ω0

0(Lei, ∂µ1 ē
µ1
i )
∣∣∣
µ1=0

= Ω0
0(∂µ1L

0ei, ēi) + Ω1
0(Lei, ēi)− Ω0

0(∂µ1e
µ1
i , Lēi) + Ω0

0(Lei, ∂µ1 ē
µ1
i )
∣∣∣
µ1=0

= Ω0
0(∂µ1L

0ei, ēi) + iκ
(
Ω1

0(ei, ēi) + Ω0
0(∂µ1e

µ1
i , ēi) + Ω0

0(ei, ∂µ1 ē
µ1
i )
)∣∣∣
µ1=0

= Ω0
0(∂µ1L

0ei, ēi) + iκ∂µ1 Ωµ1
0 (eµ1i , ∂µ1 ē

µ1
i )︸ ︷︷ ︸

= si

∣∣∣
µ1=0

= Ω0
0(∂µ1L

0ei, ēi).

Finally, we solve equations (2.16)–(2.18) using the information given by Lemma 2.6 and
Corollary 2.7, thus completing the proof of Theorem 1.2.
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Lemma 2.8. There exist ε > 0 and functions p? : Bε(0)→ R, µ?1 : Bε(0)→ R, µ?2 : Bε(0)→ R
such that the solution set of (2.16)–(2.18) in U1,1 × Λ1 × Λ2 coincides with

{(r2
1, r

2
2, p

?(r2
1, r

2
2), µ?1(r2

1, r
2
2), µ?2(r2

1, r
2
2) : |(r2

1, r
2
2)| < ε}.

Proof. Since (
∂1s̃(0, 0, 0, 0, 0)
∂2s̃(0, 0, 0, 0, 0)

)
=

(
0
0

)
and

det

(
∂1∂4s̃(0, 0, 0, 0, 0) ∂1∂5s̃(0, 0, 0, 0, 0)
∂2∂4s̃(0, 0, 0, 0, 0) ∂2∂5s̃(0, 0, 0, 0, 0)

)
= −s2s̃

10
200 + s1s̃

01
020

= −s1s2∂µ1(κ
0
1 − κ0

2)

6= 0,

we can solve equations (2.16), (2.17) locally for µ1 = µ1(r2
1, r

2
2, p), µ2 = µ2(r2

1, r
2
2, p) using the

implicit-function theorem. Inserting this solution into (2.18) yields

t̃(r2
1, r

2
2, p) = 0, (2.19)

where
t̃(r2

1, r
2
2, p) = ∂3s̃(r

2
1, r

2
2, p, µ1(r2

1, r
2
2, p), µ2(r2

1, r
2
2, p)).

Furthermore
t̃(0, 0, 0) = ∂3s̃(0, 0, 0, µ1(0, 0, 0), µ2(0, 0, 0)) = 0

and similarly

∂3t̃(0, 0, 0) = ∂2
3 s̃(0, 0, 0, 0, 0) + ∂3µ1(0, 0, 0)∂3∂4s̃(0, 0, 0, 0, 0) + ∂3µ2(0, 0, 0)∂3∂5s̃(0, 0, 0, 0, 0)

= 2s̃00
002

= −1.

We can therefore solve equation (2.18) locally for p = p(r2
1, r

2
2) using the implicit-function

theorem.
The assertion follows by setting p?(r2

1, r
2
2) = p(r2

1, r
2
2), µ?1(r2

1, r
2
2) = µ1(r2

1, r
2
2, p(r

2
1, r

2
2)) and

µ?2(r2
1, r

2
2) = µ2(r2

1, r
2
2, p(r

2
1, r

2
2)).

3 Hydroelastic waves
In this section we introduce the hydrodynamic problem for travelling waves on the surface of a
three-dimensional body of water beneath a thin ice sheet modelled using the Cosserat theory of
hyperelastic shells (Plotnikov & Toland [14]). The fluid is bounded below by a rigid horizontal
bottom {x2 = −h} (the cases h < ∞ and h = ∞ are referred to as ‘finite depth’ and ‘infinite
depth’) and above by a free surface {x2 = η(x1, x3)} (in a frame of reference following the
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wave with constant speed c in the x1 direction); there is no cavitation between this surface and
the ice sheet. Working in a dimensionless coordinates with unit length (D/ρg)1/4 and unit speed
(ρ/Dg3)1/8, one finds that the hydrodynamic problem is to find an Eulerian velocity potential φ
which satisfies the equations

φx1x1 + φx2x2 + φx3x3 = 0, − 1
β
< x2 < η(x1, x3), (3.1)

φx2 = 0, x2 = − 1
β
, (3.2)

φx2 + γηx1 − φx1ηx1 − φx3ηx3 = 0, x2 = η(x1, x3), (3.3)
− γφx1 + 1

2
(φ2

x1
+ φ2

x2
+ φ2

x3
) + η + U(η) = 0, x2 = η(x1, x3), (3.4)

where

U(η) = 2

(
1√
Q(η)

[
∂x1

(
1 + η2

x3√
Q(η)

P (η)x1

)
− ∂x1

(
ηx1ηx3√
Q(η)

P (η)x3

)
− ∂x3

(
ηx1ηx3√
Q(η)

P (η)x1

)
+ ∂x3

(
1 + η2

x1√
Q(η)

P (η)x3

)]
+ 2P (η)3 − 2K(η)P (η)

)
,

Q(η) = 1 + η2
x1

+ η2
x3
,

P (η) =
1

2Q(η)3/2

[
(1 + η2

x3
)ηx1x1 − 2ηx1x3ηx1ηx3 + (1 + η2

x1
)ηx3x3

]
,

K(η) =
1

Q(η)2
(ηx1x1ηx3x3 − η2

x1x3
),

and

β =

(
D

ρgh4

)1/4

≥ 0, γ =

(
c8ρ

Dg3

)1/8

> 0,

where D, ρ and g are respectively the coefficient of flexural rigidity for the ice sheet, the density
of the fluid and the acceleration due to gravity (see Guyenne and Parau [6]).

We consider waves which are periodic with periods p1 and p2 in two arbitrary horizontal
directions x and z which form (different) angles θ1, θ2 ∈ [0, π) with the x1-axis respectively, so
that

x = csc(θ2 − θ1)(x1 sin θ2 − x3 cos θ2), z = csc(θ1 − θ2)(x1 sin θ1 − x3 cos θ1)

(see Figure 1). To this end we seek solutions of the governing equations of the form

η(x1, x3) = η̃(x̃, z̃), φ(x1, x2, x3) = φ̃(x̃, x2, z̃),

where
x̃ = x1 sin θ2 − x3 cos θ2, z̃ =

2π

p2

(x1 sin θ1 − x3 cos θ1)

and η̃, φ̃ are 2π-periodic in z̃ (the requirement that they are also periodic in x̃ is applied later).
The governing equations become

φxx + φx2x2 + ν2φzz + 2ν cos(θ1 − θ2)φxz = 0, − 1
β
< x2 < η,

(3.5)
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φx2 = 0, x2 = − 1
β
, (3.6)

φx2 = −γ(sin θ2ηx + ν sin θ1ηz) + ηxφx + ν2ηzφz

+ ν cos(θ1 − θ2)(ηxφz + ηzφx), x2 = η, (3.7)
− γ(sin θ2φx + ν sin θ1φz)

+ 1
2
(φ2

x + φ2
x2

+ ν2φ2
z + 2ν cos(θ1 − θ2)φxφz) + γη + U(η) = 0, x2 = η, (3.8)

where

U(η) = 2

(
1√
Q(η)

[
∂x

(
1 + ν2 sin2(θ1 − θ2)η2

z√
Q(η)

P (η)x

)
+ ν2∂z

(
1 + sin2(θ1 − θ2)η2

x√
Q(η)

P (η)z

)
+ ν cos(θ1 − θ2)

(
∂x

(
P (η)z√
Q(η)

)
+ ∂z

(
P (η)x√
Q

))
− ν2 sin2(θ1 − θ2)

(
∂x

(
ηxηz√
Q(η)

P (η)z

)
+ ∂z

(
ηxηz√
Q(η)

P (η)x

)]
+ 2P (η)3 − 2K(η)P (η)

)
,

Q(η) = 1 + η2
x + ν2η2

z + 2ν cos(θ1 − θ2)ηxηz,

P (η) =
1

2Q(η)
3
2

[
ηxx + ν2ηzz + 2ν cos(θ1 − θ2)ηxz + ν2 sin2(θ1 − θ2)(ηxxη

2
z − 2ηxzηxηz + ηzzη

2
x)

]
,

K(η) =
1

Q(η)2
ν2 sin2(θ1 − θ2)(ηxxηzz − η2

xz),

the tildes have been dropped for notational simplicity, and ν = 2π/p2.
We proceed by formulating equations (3.5)–(3.8) as a Hamiltonian system in which the hori-

zontal spatial direction x plays the role of the time-like variable (‘spatial dynamics’). Our starting
point is the observation that these equations follow from the formal variational principle

δ

∫ ∫ 2π

0

{∫ η

− 1
β

1

2

(
φ2
x + φ2

x2
+ ν2φ2

z + 2ν cos(θ1 − θ2)φxφz
)

dx2

+ 2
√
Q(η)P (η)2 + 1

2
η2 + γ(ηx sin θ2 + νηz sin θ1)φ|x2=η

}
dz dx = 0, (3.9)

in which the variations are taken over η and φ (a modified version of the classical variational
principle introduced by Luke [12]). Because of the difficulty in performing analysis on a variable
domain, we use the change of variable

φ(x, x2, z) = Φ(x, y, z), x2 =

y + (1 + βy)η, β > 0,

y + eyη, β = 0,

to map the variable fluid domain {− 1
β
< x2 < η(x, z)} to the fixed domain {− 1

β
< y < 0}. The

variational principle (3.9) is transformed into

δL = 0, L =

∫
L(η, ηx, ηxx,Φ,Φx) dx,
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in which

L(η, ηx, ηxx,Φ,Φx)

=

∫ 2π

0

{∫ 0

− 1
β

1

2K2(η)

(
(Φx −K1(η)ηxΦy)

2 +K2(η)2Φ2
y + ν2(Φz −K1(η)ηzΦy)

+ 2ν cos(θ1 − θ2)(Φx −K1(η)ηxΦy)(Φz −K1(η)ηzΦy)

)
dy

+ 2
√
Q(η)P (η)2 + 1

2
η2 + γ(ηx sin θ2 + νηz sin θ1)Φ|y=0

}
dz

and

K1(η) =


1 + βy

1 + βη
, β > 0,

ey

1 + eyη
, β = 0,

K2(η) =


1

1 + βη
, β > 0,

1

1 + eyη
, β = 0.

The next step is to perform a formal Legendre transformation (see Lanczos [11, Appendix
I]) by introducing the new coordinate

ρ = ηx

and momenta

ζ =
δL

δηx
− d

dx

(
δL

δηxx

)
= −

∫ 0

− 1
β

K1(η)

K2(η)

(
(Φx −K1(η)ηxΦy)Φy + ν cos(θ1 − θ2)(Φz −K1(η)ηzΦy)Φy

)
dy

− 10
P (η)2√
Q(η)

(ηx + ν cos(θ1 − θ2)ηz)

+
4P (η)

Q(η)
ν2 sin2(θ1 − θ2)(−ηxzηz + ηzzηx) + γ sin θ2Φ|y=0

− d

dx

(
2P (η)

Q(η)
(1 + ν2 sin2(θ1 − θ2)η2

z)

)
,

ξ =
δL

δηxx

=
2P (η)

Q(η)
(1 + ν2 sin2(θ1 − θ2)η2

z),

Ψ =
δL

δΦx

=
1

K2(η)
(Φx −K1(η)ηxΦy) +

1

K2(η)
ν cos(θ1 − θ2)(Φz −K1(η)ηzΦy),

and defining the Hamiltonian by

H(η, ρ,Φ, ζ, ξ,Ψ)

22



=

∫
S

ζηx dz +

∫
S

ξηxx dz +

∫
Σ

ΨΦx dy dz − L(η, ηx, ηxx,Φ,Φx)

=

∫
Σ

{
K2(η)

2
(Ψ2 − Φ2

y)−
1

2K2(η)
ν2 sin2(θ1 − θ2)(Φz −K1(η)ηzΦy)

2

+K1(η)ρΦyΨ− ν cos(θ1 − θ2)(Φz −K1(η)ηzΦy)Ψ

}
dy dz

+

∫
S

{
ζρ− 1

2
η2 − γ(ρ sin θ2 + νηz sin θ1)Φ|y=0 +

Q(η, ρ)5/2ξ2

2(1 + ν2 sin2(θ1 − θ2)η2
z)

2

+
ξ

1 + ν2 sin2(θ1 − θ2)η2
z

(
−(1 + sin2(θ1 − θ2)ρ2)ν2ηzz

+ 2ν2 sin2(θ1 − θ2)ρρzηz − 2ν cos(θ1 − θ2)ρz
)}

dz,

(3.10)

where S = (0, 2π), Σ = (− 1
β
, 0)× (0, 2π) and

Q(η, ρ) = 1 + ρ2 + ν2η2
z + 2ν cos(θ1 − θ2)ρηz.

Hamilton’s equations are

ηx =
δH

δζ

= ρ, (3.11)

ρx =
δH

δξ

=
Q(η, ρ)5/2ξ

(1 + ν2 sin2(θ1 − θ2)η2
z)

2
− (1 + sin2(θ1 − θ2)ρ2)ν2ηzz

1 + ν2 sin2(θ1 − θ2)η2
z

− 2ν cos(θ1 − θ2)ρz
1 + ν2 sin2(θ1 − θ2)η2

z

+
2ν2 sin2(θ1 − θ2)ρρzηz
1 + ν2 sin2(θ1 − θ2)η2

z

, (3.12)

Φx =
δH

δΨ
= K2(η)Ψ +K1(η)ρΦy − ν cos(θ1 − θ2)(Φz −K1(η)ηzΦy), (3.13)

−ζx =
δH

δη

=

∫ 0

− 1
β

{
− K2(η)2K3

2
(Ψ2 − Φ2

y)−
K3

2
ν2 sin2(θ1 − θ2)(Φz −K1(η)ηzΦy)

2

−K1(η)K2(η)K3ρΦyΨ− ν2 sin2(θ1 − θ2)K1(η)K3ηzΦy(Φz −K1(η)ηzΦy)

− ν cos(θ1 − θ2)K1(η)K2(η)K3ηzΦyΨ− [ν cos(θ1 − θ2)K1(η)ΦyΨ]z

−
[
K1(η)

K2(η)
ν2 sin2(θ1 − θ2)(Φz −K1(η)ηzΦy)Φy

]
z

}
dy
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+

[
2ν2 sin2(θ1 − θ2)Q(η, ρ)5/2ξ2ηz

(1 + ν2 sin2(θ1 − θ2)η2
z)

3

]
z

−
[

5ν2Q(η, ρ)3/2ξ2ηz
2(1 + ν2 sin2(θ1 − θ2)η2

z)
2

]
z

−
[

5ν cos(θ1 − θ2)Q(η, ρ)3/2ξ2ρ

2(1 + ν2 sin2(θ1 − θ2)η2
z)

2

]
z

+

[
2ν sin2(θ1 − θ2)ξηz

(1 + ν2 sin2(θ1 − θ2)η2
z)

2

(
−(1 + sin2(θ1 − θ2)ρ2)ν2ηzz

+ 2ν2 sin2(θ1 − θ2)ρρzηz − 2ν cos(θ1 − θ2)ρz
)]
z

−
[

(1 + sin2(θ1 − θ2)ρ2)ν2ξ

1 + ν2 sin2(θ1 − θ2)η2
z

]
zz

−
[

2ν2 sin2(θ1 − θ2)ρρzξ

1 + ν2 sin2(θ1 − θ2)η2
z

]
z

− η + γν sin θ1Φz|y=0,

(3.14)

−ξx =
δH

δρ

= ζ − γ sin θ2Φ|y=0 +

∫ 0

− 1
β

K1(η)ΨΦy dy +
5Q(η, ρ)3/2ξ2ρ

2(1 + ν2 sin2(θ1 − θ2)η2
z)

2

+
5ν cos(θ1 − θ2)Q(η, ρ)3/2ξ2ηz

2(1 + ν2 sin2(θ1 − θ2)η2
z)

2
− 2ν2 sin2(θ1 − θ2)ξρηzz

1 + ν2 sin2(θ1 − θ2)η2
z

−
[

2ν2 sin2(θ1 − θ2)ξηz
1 + ν2 sin2(θ1 − θ2)η2

z

]
z

ρ+

[
2ν cos(θ1 − θ2)ξ

1 + ν2 sin2(θ1 − θ2)η2
z

]
z

, (3.15)

−Ψx =
δH

δΦ
(3.16)

= (K2(η)Φy)y − (K1(η)Ψρ)y −
(
K1(η)

K2(η)
ν2 sin2(θ1 − θ2)(Φz −K1(η)ηzΦy)ηz

)
y

+

[
1

K2(η)
ν2 sin2(θ1 − θ2)(Φz −K1(η)ηzΦy)

]
z

+ ν cos(θ1 − θ2)Ψz − ν cos(θ1 − θ2)(K1(η)ηzΨ)y, (3.17)

where

K3 =


β, β > 0,

ey, β = 0,

with boundary conditions

−K2(η)Φy = 0, y = − 1
β
, (3.18)

−K2(η)Φy +K1(η)Ψρ+
K1(η)

K2(η)
ν2 sin2(θ1 − θ2)(Φz −K1(η)ηzΦy)ηz

+ ν cos(θ1 − θ2)K1(η)ηzΨ− γ(ρ sin θ2 + νηz sin θ1) = 0, y = 0. (3.19)

We also introduce a bifurcation parameter µ1 by writing ν = ν0 + µ1, where ν0 is a reference
value for ν to be chosen later.
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To place equations (3.11)–(3.19) on a rigorous footing, we introduce the spaces

Hm
per(S) = {w ∈ Hm

loc(R) : w(z + 2π) = w(z) for all z ∈ R},
Hm

per(Σ) = {w ∈ Hm
loc((− 1

β
, 0)× R) : w(y, z + 2π) = w(y, z) for all (y, z) ∈ (− 1

β
, 0)× R}

for m ∈ N0; recall that H1
per(S) and H2

per(Σ) are Banach algebras, while the formulae w 7→
w|y=0 and w 7→ w|y=− 1

β
(for β > 0) define bounded linear mappings Hm(Σ) → Hm−1(S) for

m ∈ N. The following proposition relates to mappings appearing in the above equations (see
Bagri & Groves [2, Proposition 2.1] for parts (i), (ii) and Buffoni & Toland [3] for parts (iii),
(iv)).

Proposition 3.1.

(i) The formula (w1, w2) 7→ w1w2 defines bounded bilinear mappingsL2
per(Σ)×H1

per(S)→
L2

per(Σ), H1
per(Σ)× L2

per(S)→ L2
per(Σ) and H1

per(Σ)×H1
per(S)→ H1

per(Σ).

(ii) The formula

(w1, w2) 7→
∫ 0

− 1
β

w1(·, y)w2(·, y) dy

defines bounded bilinear mappings L2
per(Σ)×H1

per(Σ)→ L2
per(S), H1

per(Σ)×L2
per(Σ)→

L2
per(S) and H1

per(Σ)×H1
per(Σ)→ H1

per(S).

(iii) The formulae η 7→ (1 + βη)−1 − 1 (for β > 0) and η 7→ (1 + eyη)−1 − 1 (for
β = 0) yield mappings H3

per(S) → H3
per(S) and H3

per(S) → H3
per(Σ) respectively which

are defined and analytic in a neighbourhood of the origin.

(iv) For each n ∈ N the formula η 7→ (1+(ν0 +µ)2 sin2(θ1−θ2)η2
z)
−n−1 yields a mapping

R×H3
per(S)→ H2

per(S) which is defined and analytic in a neighbourhood of the origin.

(v) For each n ∈ N the formula (η, ρ) 7→ Q(η, ρ)
n
2 yields a mapping H3

per(S)×H2
per(S)→

H2
per(S) which is defined and analytic in a neighbourhood of the origin.

Let us now define

X={v=(η, ρ,Φ, ζ, ξ,Ψ)∈ H3
per(S)×H2

per(S)×H2
per(Σ)×H1

per(S)×H2
per(S)×H1

per(Σ)},
Z={v=(η, ρ,Φ, ζ, ξ,Ψ)∈ H2

per(S)×H1
per(S)×H1

per(Σ)× L2
per(S)×H1

per(S)× L2
per(Σ)}.

The following lemma, which is a consequence of the previous proposition, shows that the right-
hand sides of equations (3.11)–(3.17) define an analytic mapping vµ1H : Λ1 × U → Z, where U
is a neighbourhood of the origin of X . In the notation of the lemma, these equations define a
quasilinear evolutionary system

vx = vµ1H (v) (3.20)

with nonlinear boundary conditions given by

Φy = F µ1(η, ρ,Φ, ζ, ξ,Ψ), y = − 1
β
, (3.21)

Φy + γ(ρ sin θ2 + ν0ηz sin θ1) = F µ1(η, ρ,Φ, ζ, ξ,Ψ), y = 0, (3.22)

25



where

F µ1(η, ρ,Φ, ζ, ξ,Ψ)

= K2(η)K3ηΦy +K1(η)Ψρ+ (ν0 + µ1) cos(θ1 − θ2)K1(η)ηzΨ

+
K1(η)

K2(η)
(ν0 + µ1)2 sin2(θ1 − θ2)(Φz −K1(η)ηzΦy)ηz −

K1(η)

K2(η)
γµ1ηz sin θ1,

and we note for later use that

dF µ1 [η, ρ,Φ, ζ, ξ,Ψ](η̃, ρ̃, Φ̃, ζ̃, ξ̃, Ψ̃)

= −K2(η)2K2
3ηΦyη̃ +K2(η)K3(Φyη̃ + ηΦ̃y)−K1(η)K2(η)K3Ψρη̃ +K1(η)(Ψρ̃+ ρΨ̃)

+ (ν0 + µ1) cos(θ1 − θ2)
(
−K1(η)K2(η)K3ηzΨη̃ +K1(η)(Ψη̃z + ηzΨ̃)

)
+
K1(η)

K2(η)
(ν0 + µ1)2 sin2(θ1 − θ2)

×
(
(Φz−K1(η)ηzΦy)η̃z+ηz

(
Φ̃z+K1(η)K2(η)K3ηzΦyη̃−K1(η)(Φyη̃z+ηzΦ̃y)

))
− K1(η)

K2(η)
γµ1 sin θ1η̃z.

This system is reversible; the reverser is given by

R
(
η(z), ρ(z),Φ(y, z), ζ(z), ξ(z),Ψ(y, z)

)
=
(
η(−z),−ρ(−z),−Φ(y,−z),−ζ(−z), ξ(−z),Ψ(y,−z)

)
.

Lemma 3.2. There exist neighbourhoods U and Λ1 of the origin in respectively X and R with
the following properties.

(i) The formula (µ1, v) 7→ vµ1H (v), where vµ1H (v) is defined by the right-hand sides of (3.11)–
(3.17) (with ν = ν0 + µ1), defines an analytic mapping Λ1 × U → Z.

(ii) The formula (µ1, v) 7→ F µ1(v) defines an analytic mapping Λ1 × U → H1(Σ).

(iii) The derivative dF µ1 [v] ∈ L(X,H1(Σ)) has a unique extension d̃F µ1 [v] ∈ L(Z,L2(Σ))
which depends analytically upon (µ1, v) ∈ Λ1 × U .

It remains to confirm that (3.20) has a Hamiltonian structure; for this purpose we use the
following lemma, which is proved by direct calculations and Proposition 3.1.

Lemma 3.3.

(i) The formula (µ1, v) 7→ Hµ1(v), whereHµ1(v) is defined by the right-hand side of (3.10)
(with ν = ν0 + µ1), defines an analytic mapping Λ1 × U → R.

(ii) The derivative dHµ1 [v] ∈ X∗ has a unique extension d̃Hµ1 [v] ∈ Z∗ which depends
analytically upon (µ1, v) ∈ Λ1 × U .
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(iii) The formula
d̃Hµ1 [v](w) = 〈Jvµ1H (v), w〉,

where 〈· , ·〉 denotes the (L2
per(S))6 inner product and

J(η, ρ,Φ, ζ, ξ,Ψ) = (−ζ,−ξ,−Ψ, η, ρ,Φ),

holds for all (µ1, v) ∈ DH and w ∈ Z, where

DH = {(µ1, v) ∈ Λ1 × U : (3.21), (3.22) are satisfied},
so that the gradient∇Hµ1(v) exists (and equals Jvµ1H (v)) for all (µ1, v) ∈ DH and extends
to an analytic function of (µ1, v) ∈ Λ1 × U .

Altogether we conclude that vµ1H (v) = J−1∇Hµ1(v) for (µ1, v) ∈ DH defines the Hamilto-
nian vector field for the Hamiltonian system (Z,Ω, Hµ1), where Ω : Z2 → R is the constant
symplectic 2-form

Ω
(
(η1, ρ1,Φ1, ζ1, ξ1,Ψ1), (η2, ρ2,Φ2, ζ2, ξ2,Ψ2)

)
= 〈J(η1, ρ1,Φ1, ζ1, ξ1,Ψ1), (η2, ρ2,Φ2, ζ2, ξ2,Ψ2)〉

=

∫
S

(ζ2η1 − η2ζ1 + ξ2ρ1 − ρ2ξ1) dz +

∫
Σ

(Ψ2Φ1 − Φ2Ψ1) dy dz.

Note that Ω is the exterior derivative of the parameter-independent 1-form ω|v given by

ω|(η,ρ,Φ,ζ,ξ,Ψ)(η̃, ρ̃, Φ̃, ζ̃, ξ̃, Ψ̃) =

∫
S

(ηζ̃ + ρξ̃) dz +

∫
Σ

ΦΨ̃ dy dz

= 〈α(η, ρ,Φ, ζ, ξ,Ψ), (η̃, ρ̃, Φ̃, ζ̃, ξ̃, Ψ̃)〉,
where

α(η, ρ,Φ, ζ, ξ,Ψ) = (0, 0, 0, η, ρ,Φ).

The system (3.20)–(3.22) is unsuitable for analysis due to its nonlinear boundary conditions.
We proceed by replacing Φ with the new variable

Γ = Φ− ∂y∆−1F µ1(η, ρ,Φ, ζ, ξ,Ψ),

where ∆ is the Dirichlet Laplacian in Σ. In the notation of the following lemma we find that for
(η, ρ, ζ, ξ,Ψ) ∈ W and µ1 ∈ Λ1 the variable Φ ∈ V1 satisfies (3.21), (3.22) if and only if the
variable Γ ∈ V2 satisfies

Γy = 0, y = − 1
β
, (3.23)

Γy + γ(ρ sin θ2 + ν0ηz sin θ1) = 0, y = 0, (3.24)

because

Γy = Φy − ∂yy∆−1F µ1(η, ρ,Φ, ζ, ξ,Ψ)

= Φy − ∂yy∆−1F µ1(η, ρ,Φ, ζ, ξ,Ψ)− ∂zz∆−1F µ1(η, ρ,Φ, ζ, ξ,Ψ)︸ ︷︷ ︸
= 0

= Φy − F µ1(η, ρ,Φ, ζ, ξ,Ψ)

for y = 0 and y = − 1
β

.
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Lemma 3.4.

(i) There exist neighbourhoods V1, V2 of the origin in H2
per(R) and W of the origin in

X0 = {(η, ρ, ζ, ξ,Ψ)∈ H3
per(S)×H2

per(S)×H1
per(S)×H2

per(S)×H1
per(Σ)}

such that Φ 7→ Γ(Φ, (η, ρ, ζ, ξ,Ψ), µ1) is an analytic diffeomorphism V1 → V2 which,
together with its inverse, depends analytically upon (η, ρ, ζ, ξ,Ψ) ∈ W and µ1 ∈ Λ1.

(ii) The derivative d1Γ[Φ, (η, ρ, ζ, ξ,Ψ), µ1] ∈ L(H2
per(Σ)) extends to an isomorphism in

L(H1
per(Σ)) which, together with its inverse, depends analytically upon Φ ∈ V1,

(η, ρ, ζ, ξ,Ψ) ∈ W and µ1 ∈ Λ1.

Proof. (i) This result follows by applying the implicit-function theorem to the equation

g(Φ,Γ, (η, ρ, ζ, ξ,Ψ), µ1) := Γ− Γ(Φ, (η, ρ, ζ, ξ,Ψ), µ1) = 0.

Here we note that g maps (a neighbourhood of the origin in) H2
per(Σ) × H2

per(Σ) × X0 × R
into H2

per(Σ) (by Lemma 3.2(ii) and the fact that ∆−1 belongs to L(H1
per(Σ), H3

per(Σ))), and that
g(0, 0, 0, 0) = 0 and d1g[0, 0, 0, 0] = −I .

(ii) It follows from Lemma 3.2(iii) and the fact that ∆−1 belongs to L(L2
per(Σ), H2

per(Σ))

that d1Γ[Φ, (η, ρ, ζ, ξ,Ψ), µ1] ∈ L(H2
per(Σ)) extends to an element d̃1Γ[Φ, (η, ρ, ζ, ξ,Ψ), µ1] of

L(H1
per(Σ)) which depends analytically upon Φ ∈ V1, (η, ρ, ζ, ξ,Ψ) ∈ W and µ1 ∈ Λ1. Obvi-

ously d̃1Γ[0, 0, 0, 0] = I is an isomorphism, which is an open property. The analyticity of d̃1Γ[·]
implies the analyticity of its inverse.

It follows from the above lemma that the formula

Gµ1(η, ρ,Φ, ζ, ξ,Ψ) = (η, ρ,Γ, ζ, ξ,Ψ)

defines a valid change of variable: it is an analytic diffeomorphism from U to a neighbourhood
Û of the origin in X , the operator dGµ1 [u] ∈ L(X) extends to an isomorphism d̃Gµ1 [u] ∈ L(Z),
and Gµ1 , d̃Gµ1 [u] and their inverses depend analytically upon (u, µ1) ∈ U × Λ1. The system
(3.20)–(3.22) is transformed into

v̂x = v̂µ1H (v̂), (3.25)

where
v̂µ1H (v̂) = d̃Gµ1 [(Gµ1)−1(v̂)](vµ1H ((Gµ1)−1(v̂)))

with linear boundary conditions (3.23), (3.24). Note also that Gµ1 and (Gµ1)−1 both commute
with the reverser R, so that (3.25) inherits the reversibility of equation (3.20).

Writing (Gµ1)−1 as Kµ1 , one finds that the change of variable transforms (Z,Ω, Hµ1) into
the new Hamiltonian system (Z, Ω̂µ, Ĥµ), where

Ω̂µ1|v̂(v̂1, v̂2) = 〈Ĵµ1(v̂)v̂1, v̂2〉 (3.26)

with
Ĵµ1(v̂) = d̃Kµ1 [v̂]∗J d̃Kµ1 [v̂]
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and
Ĥµ1(v̂) = Hµ1(Kµ1(v̂)) (3.27)

for (µ1, v̂) ∈ Λ1 × Û . In particular

v̂µ1H (v̂) = Ĵµ1(v̂)∇Ĥµ1(v̂)

for (µ1, v̂) ∈ D̂H, where

D̂H = {(µ1, v̂) ∈ Λ1 × Û : (3.23), (3.24) are satisfied}.

Note further that Ω̂µ1|v̂ is the exterior derivative of the 1-form ω̂µ1|v̂ given by

ω̂µ1|v̂(ŵ) = 〈α̂µ1(v̂), ŵ〉

with
α̂µ1(v̂) = d̃Kµ1 [v̂]∗(α(Kµ1(v̂))).

The validity of these calculations relies upon the existence of the adjoint operator d̃Kµ1 [v̂]∗, and
this assumption is verified in the following result.

Proposition 3.5. The adjoint operators d̃Gµ1 [v]∗, d̃Kµ1 [v̂]∗ ∈ L(Z) exist and depend analyti-
cally upon (µ1, v) ∈ Λ1 × U and (µ1, v̂) ∈ Λ1 × Û .

Proof. The existence of the adjoint d̃Gµ1 [v]∗ ∈ L(Z) follows by a direct calculation; its compo-
nents are given by

(d̃Gµ1 [v]∗(ṽ))η = η̃ +

∫ 0

− 1
β

{(
−K2(η)2K2

3ηΦy +K2(η)K3Φy

−K1(η)K2(η)K3Ψρ− (ν0 + µ1) cos(θ1 − θ2)K1(η)K2(η)K3ηzΨ

+
K1(η)

K2(η)
(ν0 + µ1)2 sin2(θ1 − θ2)ηzK1(η)K2(η)K3ηzΦy

)
∆−1(Γ̃y)

−
((

(ν0 + µ1) cos(θ1 − θ2)K1(η)Ψ

+
K1(η)

K2(η)
(ν0 + µ1)2 sin2(θ1 − θ2)(Φz −K1(η)ηzΦy)

− K2
1(η)

K2(η)
(ν0 + µ1)2 sin2(θ1 − θ2)ηzΦy

− K1(η)

K2(η)
γµ1 sin θ1

)
∆−1(Γ̃y)

)
z

}
dy,

(d̃Gµ1 [v]∗(ṽ))ρ = ρ̃+

∫ 0

− 1
β

K1(η)Ψ∆−1(Γ̃y) dy,

(d̃Gµ1 [v]∗(ṽ))Γ = Γ̃−
((

K2(η)K3η −
K2

1(η)

K2(η)
(ν0 + µ1)2 sin2(θ1 − θ2)η2

z

)
∆−1(Γ̃y)

)
y

,

29



−
(
K1(η)

K2(η)
(ν0 + µ1)2 sin2(θ1 − θ2)ηz∆

−1(Γ̃y)

)
z

,

(d̃Gµ1 [v]∗(ṽ))ζ = ζ̃ ,

(d̃Gµ1 [v]∗(ṽ))ξ = ξ̃,

(d̃Gµ1 [v]∗(ṽ))Ψ = Ψ̃ +

(
K1(η)ρ+ (ν0 + µ1) cos(θ1 − θ2)K1(η)ηz

)
∆−1(Γ̃y),

from which the analyticity of d̃Gµ1 [v] also follows by Proposition 3.1. (Note that the formula
(∆−1)∗ = ∆−1 has been used in this calculation.)

Observe that d̃Gµ1 [v]∗ is an isomorphism because d̃G0[0]∗ = I is obviously an isomorphism,
which is an open property. Furthermore the analytic dependence of d̃Gµ1 [v]∗ upon (µ1, v) ∈
Λ1 × U implies the same of its inverse, and the calculation

〈d̃Gµ1 [v]−1(v1), v2〉 = 〈d̃Gµ1 [v]−1v1, d̃G
µ1 [v]∗(d̃Gµ1 [v]∗)−1(v2)〉

= 〈d̃Gµ1 [v]d̃Gµ1 [v]−1(v1), (d̃Gµ1 [v]∗)−1(v2)〉
= 〈v1, (d̃G

µ1 [v]∗)−1(v2)〉

shows that (d̃Gµ1 [v]−1)∗ exists and equals (d̃Gµ1 [v]∗)−1. The proof is completed by noting that
d̃Kµ1 [v̂] = d̃Gµ1 [v]−1 with v = (Gµ1)−1(v̂).

4 Application of Lyapunov centre theory to hydroelastic waves
In this section we apply Theorem 1.2 to the spatial dynamics formulation

v̂x = v̂µ1H (v̂)

for hydroelastic waves derived in Section 3. For this purpose we define

X={v̂=(η, ρ,Γ, ζ, ξ,Ψ)∈ H3
per(S)×H2

per(S)×H2
per(Σ)×H1

per(S)×H2
per(S)×H1

per(Σ) :

Γy
∣∣
y=− 1

β

= 0, Γy
∣∣
y=0

+ γ(ρ sin θ2 + ν0ηz sin θ1) = 0},
Z={v=(η, ρ,Γ, ζ, ξ,Ψ)∈ H2

per(S)×H1
per(S)×H1

per(Σ)× L2
per(S)×H1

per(S)× L2
per(Σ)}

(note the modification to the space X) and consider v̂µ1H as the Hamiltonian vector field for
the Hamiltonian system (Z, Ω̂µ1 , Ĥµ1), where Ω̂µ1 and Ĥµ1 are defined in equations (3.26) and
(3.27) and DH = Λ1 × Û is a neighbourhood of the origin in R × X . Defining Lµ1 = dv̂µ1H [0]
and Nµ1(v̂) = v̂µ1H (v̂)− Lµ1 v̂, one can write Hamilton’s equations as

v̂x = Lµ1 v̂ +Nµ1(v̂), (4.1)
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where in particular L := L0 is given by the explicit formula

L


η
ρ
Γ
ζ
ξ
Ψ

 =



ρ

ξ − ν2
0ηzz − 2ν0 cos(θ1 − θ2)ρz

Ψ− ν0 cos(θ1 − θ2)Γz

ν2
0ξzz + η − γν0 sin θ1Γz|y=0

−ζ + γ sin θ2Γ|y=0 − 2ν0 cos(θ1 − θ2)ξz

−Γyy − ν2
0 sin2(θ1 − θ2)Γzz − ν0 cos(θ1 − θ2)Ψz


,

which is readily calculated from (3.11)–(3.17) since the change of variable used to linearise the
boundary condition is near-identity. Equation (4.1) evidently satisfies hypothesis (H1).

Furthermore, the reverser R clearly satisfies R∗ = R and

Hµ1(Rv) = Hµ1(v), R∗αµ1(Rv) = −αµ1(v), R∗Jµ1(Rv)R = −Jµ1(v)

for all (µ1, v) ∈ Λ1 × U ; since R commutes with Gµ1 and Kµ1 we conclude that

Ĥµ1(Rv̂) = Ĥµ1(v̂), R∗α̂µ1(Rv̂) = −α̂µ1(v̂), R∗Ĵµ1(Rv̂)R = −Ĵµ1(v̂)

for all (µ1, v̂) ∈ Λ1 × Û . Hypothesis (H2) is therefore also satisfied.

4.1 Purely imaginary spectrum
The next step is to examine the purely imaginary spectrum of the linear operator L. This task is
readily accomplished by using Fourier-series representations

v̂(y, z) =
∑
k∈Z

v̂k(y)eikz, v̂?(y, z) =
∑
k∈Z

v̂?k(y)eikz

for v̂ ∈ X and v̂? ∈ Z and examining the resulting decoupled spectral problems for each Fourier
mode. We begin with the following lemma, which is proved by well-established methods for
spatial dynamics problems (see Groves & Haragus [5], Bagri & Groves [2] and the references
therein).

Lemma 4.1.

(i) Suppose that s ∈ R and k ∈ Z are not both zero. The imaginary number is is a mode k
eigenvalue of L if and only if

(1 + σ4
k)σk −

γ2(kν0 sin θ1 + s sin θ2)2

tanh(β−1σk)
= 0, (4.2)

where
σ2
k = s2 + 2kν0s cos(θ1 − θ2) + k2ν2

0 > 0,
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and in this case the corresponding eigenvector is v̂k,seikz, where

v̂k,s =



iγbk
1 + σ4

k

− sγbk
1 + σ4

k

1
2e
−σky(1− tk) + 1

2e
σky(1 + tk)

γ sin θ2 −
γσ2

ka2kbk
1 + σ4

k

− iγσ2
kbk

1 + σ4
k

1
2 iak

(
e−σky(1− tk) + eσky(1 + tk)

)



(4.3)

and

tk = tanh(β−1σk), ak = s+ kν0 cos(θ1 − θ2), bk = kν0 sin θ1 + s sin θ2 > 0.

This eigenvalue has a Jordan chain of length at least 2 with generalised eigenvector
ŵk,se

ikz, where

ŵk,s =



γ sin θ2

1 + σ4
k

− 2γakbk

(
2σ2

k

(1 + σ4
k)

2
+

ck
2σ2

k(1 + σ4
k)

)
iγbk

1 + σ4
k

+
isγ sin θ2

1 + σ4
k

− 2iγsakbk

(
2σ2

k

(1 + σ4
k)

2
+

ck
2σ2

k(1 + σ4
k)

)
iak
2σk

(
(1− tk)ye−σky − (1 + tk)ye

σky
)
+

ickak
2σ2

k

(e−σky + eσky)

i

(
ckak
σ2
k

+
σ2
ka2k

1 + σ4
k

)
γ sin θ2 +

iγσ2
kbk

1 + σ4
k

− 2iγaka2kbk

(
2σ4

k

(1 + σ4
k)

2
+

ck − 2

2(1 + σ4
k)

)
− σ2

k

1 + σ4
k

γ sin θ2 + 2γakbk

(
2σ4

k

(1 + σ4
k)

2
+

ck − 2

2(1 + σ4
k)

)
(

1
2(1− tk)−

cka
2
k

2σ2
k

− (1− tk)a2
k

2σk
y

)
e−σky +

(
1
2(1 + tk)−

cka
2
k

2σ2
k

+
(1 + tk)a

2
ky

2σk

)
eσky


and

ck = 2β−1σk cosech(2β−1σk),

if either

(a) β > 0, s = aβ, ν0 = ν̃0β, (5 + c̃k)ãkb̃k − 2 sin θ2σ̃
2
k 6= 0 and (β, γ) lies on a point of

the curve
Ck = {(βk(a), γk(a)) : a ∈ (0,∞)},

where

β4
k(a) =

1

σ̃4
k

· 2 sin θ2σ̃
2
k − (1 + c̃k)ãkb̃k

(5 + c̃k)ãkb̃k − 2 sin θ2σ̃2
k

,
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γ2
k(a) =

(1 + β4
k(a)σ̃4

k)σ̃k tanh(σ̃k)

βk(a)b̃2
k

and

σ̃2
k = a2 + 2kν̃0a cos(θ1 − θ2) + k2ν̃2

0 ,

ãk = a+ kν̃0 cos(θ1 − θ2),

b̃k = a sin θ2 + kν̃0 sin θ1,

c̃k = 2σ̃k cosech(2σ̃k);

(b) β > 0, s = aβ, ν0 = ν̃0β and (5 + c̃k)ãkb̃k − 2 sin θ2σ̃
2
k = 0, which implies that

θ2 = 0 and a = −kν̃0 cos(θ1);

(c) β = 0 and

2 sin θ2 −
4σ2

kakbk
1 + σ4

k

=
akbk
σ2
k

.

(ii) Suppose β > 0. Zero is a mode 0 eigenvalue of L with a Jordan chain of length 2 if
γ−2 6= β sin2 θ2 and length 4 if γ−2 = β sin2 θ2; the generalised eigenvectors are

f̂1 =


0
0
1

γ sin θ2

0
0

 , f̂2 =


γ sin θ2

0
0
0
0
1

 , f̂3 =


0

γ sin θ2

−1
2
y2 − β−1y

0
0
0

 , f̂4 =


0
0
0
0

γ sin θ2

−1
2
y2 − β−1y

 ,

where Lf̂1 = 0, Lf̂2 = f̂1 and Lf̂3 = f̂2, Lf̂4 = f̂3 if γ−2 = β sin2 θ2.

(iii) Suppose β = 0 and that s = 0 does not solve (4.2) for any k ∈ Z \ {0} (so that zero
is not a mode k eigenvalue for any k ∈ Z \ {0}). Zero is not a mode 0 eigenvalue of L,
which instead has essential spectrum at the origin. More precisely, the equation Lv̂ = v̂?

has a unique solution for each v̂? ∈ Z which satisfies the regularity requirement∫ y

−∞

∫ t

−∞
Ψ?

0(s) ds dt,

∫ y

−∞
Ψ?

0(t) dt ∈ L2(−∞, 0)

and compatibility condition ∫ 0

−∞
Ψ?

0(t) dt− γ sin θ2η
?
0 = 0.

This solution satisfies the estimate

‖v̂ − [[v̂]]0‖X . ‖v̂?‖Z
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and its 0th Fourier component is given by the formula

η̂0

ρ̂0

Γ̂0

ζ̂0

ξ̂0

Ψ̂0


=



ζ?0
η?0

−
∫ y
−∞

∫ t
−∞Ψ?

0(s) ds dt

−ξ?0 − γ sin θ2

∫ 0

−∞

∫ t
−∞Ψ?

0(s) ds dt

ρ?0
Γ?0

 .

(iv) Suppose that s ∈ R \ {0} does not satisfy (4.2) for any k ∈ Z. The imaginary number
is belongs to the resolvent set of L.

(v) The resolvent estimates

‖(isI − L)−1‖Z→X . 1, ‖(isI − L)−1‖Z→Z .
1

|s|

hold uniformly over all sufficiently large values of |s|.

We proceed by interpreting equation (4.2) geometrically. Let

`1 = s sin θ2 + ν0k sin θ1, (4.4)
`2 = −s cos θ2 − ν0k cos θ1, (4.5)

and note that `2
1 + `2

2 = σ2
k, so that (4.2) can be written as

D(`1, `2) := (1 + (`2
1 + `2

2)2)
√
`2

1 + `2
2 tanh

(
β−1
√
`2

1 + `2
2

)
− γ2`2

1 = 0. (4.6)

A mode k purely imaginary eigenvalue is (with (k, s) 6= (0, 0)) therefore corresponds to an
intersection in the (`1, `2)-plane of the dispersion curve

Cdr = {(`1, `2) ∈ R2 \ {(0, 0)} : D(`1, `2) = 0}

with the straight line Sk defined by equations (4.4), (4.5). (The solution (`1, `2) = (0, 0) of
D(`1, `2) = 0 is excluded since it corresponds to (k, s) = (0, 0).)

The dispersion curve Cdr is described parametrically by

Cdr :=
{

(`1, `2) ∈ R2 : `2
1 =

(1 + a4)a

γ2
tanh(β−1a), `2

2 = a2− (1 + a4)a

γ2
tanh(β−1a), a > 0

}
;

its shape is shown in Figure 2 (a, insets) in the indicated regions of the (β, γ)-parameter plane.
The delimiting curves are

D1 = {(β0(a), γ0(a))
∣∣
k=0, θ2=π

2

: a ∈ (0,∞)},
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at each point of which the equation D(aβ, 0) = 0 has double roots ±a, and

D2 = {(β, β−1/2) : β ≥ 0},

at each point of which the equation D(`1, 0) = 0 has a double zero root. We find that Cdr = ∅
in the region below the curve D1. In the region between the curves D1 and D2 the equation
D(`1, 0) = 0 has two pairs of simple nonzero roots ±`(1)

1 , ±`(2)
1 ; the branches of Cdr intersect

the `1 axis vertically at the points (±`(1)
1 , 0) and (±`(2)

1 , 0). Notice the qualitative difference in
the shape of Cdr in the two subregions. In the upper subregion the portion C+

dr of Cdr in the
positive quadrant has two points of inflection (it is concave to the left of the first and to the right
of the second and convex in between); passing into the lower subregion, one finds that the two
points of inflection merge and disappear, so that C+

dr becomes concave. The points (±`(1)
1 , 0)

approach the origin as one passes through D2 from below to above, as does the left point of
inflection on C+

dr. In the region above D2 the branches of Cdr intersect the `1 axis vertically at
the points (±`(2)

1 , 0), while in a neighbourhood of (0, 0) they have the limiting behaviour

`2
2 ∼

(
γ2β − 1

)
`2

1

as `1 → 0 and therefore make angles ± arctan
√
γ2β − 1 with the `1 axis at the origin. The

subcurve C+
dr has a single point of inflection, to the left and right of which it is respectively

convex and concave.
For given ν, θ1 and θ2 the lines Sk in the (`1, `2)-plane are parallel, equidistant and form an

angle θ2 with the positive `2-axis. They intersect the line

T = {(`1, `2) ∈ R2 : `1 = sin θ1 a, `2 = − cos θ1 a, a ∈ R}

(which passes through the origin and makes an angle θ1 with the positive `-axis) at the points
Pk = (sin θ1 kν0,− cos θ1 kν0), k ∈ Z (see Figure 2(b)). The number of points in the set S0∩Cdr

depends only upon (β, γ), which determines the shape ofCdr, and θ2, which determines the slope
of each line Sk. Furthermore, for fixed β, γ and θ2 the number of points in the sets Sk ∩ Cdr,
k = ±1,±2, . . . depends only upon ν0, which determines the distance between the lines Sk. At
each fixed point of the (β, γ)-parameter plane the number of purely imaginary eigenvalues of
the linear operator L therefore depends upon the two parameters θ2 and ν0; the third parameter
θ1, which specifies the slope of the line T , influences only the values of these eigenvalues and
their relative positions on the imaginary axis: the imaginary part of a purely imaginary eigenvalue
corresponding to an intersection of Sk and Cdr is the value of S0 in the (S0, T )-coordinate system
at the intersection (the signed distance between the intersection and the point Pn). The geometric
multiplicity of the eigenvalue is is given by the number of distinct lines in the family Sk that
intersect Cdr at this parameter value, and a tangent intersection between Sk and Cdr indicates that
each eigenvector in mode k has an associated Jordan chain of length at least 2. Finally, notice
that the sets Sk ∩ Cdr and S−k ∩ Cdr have the same cardinality: the purely imaginary number is
is a mode k eigenvalue if and only if the purely imaginary number−is is a mode−k eigenvalue.

Figure 4 illustrates how the purely imaginary mode 0 eigenvalues depend upon (β, γ), nonzero
pairs ±is of which satisfy

(1 + s4)|s| − γ2 sin2 θ2s
2

tanh(β−1|s|) = 0.
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Figure 4: Mode 0 eigenvalues in the (β, γ)-parameter plane. Solid dots, crosses and hollow dots represent
eigenvalues with Jordan chains of length 1, 2 and 4; the zero eigenvalue becomes essential spectrum at
β = 0.

The delimiting curves are C0 and {(β, β−1/2 cosec θ2) : β > 0}, points of which are associated
with respectively non-zero eigenvalues ±iaβ0(a) with a Jordan chain of length 2 and a zero
eigenvalue with a Jordan chain of length 4.

4.2 Parameter selection
We now choose β, γ and θ2 such that S0 does not intersect Cdr (so that (β, γ) lies in the region
above the curve C0 in Figure 4), and ν0 and θ1 such that S1 and S−1 each intersect Cdr in
points with coordinates (±s, ν0) and (±s,−ν0) in the (S0, T )-coordinate system, while Sk does
not intersect Cdr for k = ±2, ±3, . . . (see Figure 3). In this configuration L has two mode 1
eigenvalues ±is, two mode −1 eigenvalues ±is, so that ±is are geometrically and algebraically
double eigenvalues of L with eigenvectors v̂1,se

iz, v̂−1,se
−iz and v̂1,−se

iz, v̂−1,−se
−iz, and, for

β > 0, a mode 0 zero eigenvalue with a Jordan chain f̂1, f̂2 of length 2. Note that Lµ1 has two
mode 1 eigenvalues isµ11 , −isµ1−1 and two mode −1 eigenvalues isµ1−1, −isµ11 which satisfy

g(sµ1±1, ν0 + µ1,±1) = 0, (4.7)

where

g(t, ν,±1) = (1 + (σ±1)4)σ±1 −
γ2(±ν2 sin θ1 + t sin θ2)2

tanh(β−1σ±1)
,

(σ±1)2 = t2 ± 2νt cos(θ1 − θ2) + ν2

and s0
±1 = s (the corresponding eigenvectors are given by dG[0](v1,±sµ1±

) and dG[0](v−1,±sµ1±
),

where v1,±sµ1±
, v−1,±sµ1±

are defined by the right-hand side of equation (4.3) with ν0 replaced by
ν0 + µ1). Differentiating (4.7) with respect to µ1, we obtain the formulae

d

dµ1

sµ1±1 = −gν(s
µ
±1, ν0 + µ,±1)

gt(s
µ
±1, ν0 + µ,±1)

which imply that

d

dµ
(sµ11 − sµ1−1)|µ1=0 = −gν(s, ν0, 1)

gt(s, ν0, 1)
+
gν(s, ν0,−1)

gt(s, ν0,−1)
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=
1

gt(s, ν0, 1)gt(s, ν0,−1)

∣∣∣∣ gt(s, ν0, 1) gt(s, ν0,−1)
gν(s, ν0, 1) gν(s, ν0,−1)

∣∣∣∣ .
It follows that d

dµ
(sµ1 − sµ−1)|µ=0 = 0 if and only if ∇g(s, ν0, 1), ∇g(s, ν0,−1) are parallel, in

other words if and only if the solution curves of

g(t, ν,1) = 0,

g(t, ν,−1) = 0,

intersect tangentially at the point (s, ν0) in the (t, ν)-plane. This observation indicates that gener-
ically d

dµ
(sµ1 − sµ−1)|µ=0 6= 0.

Noting that

v̂1,−se
iz = v̂−1,se−iz = R(v̂−1,se

−iz), v̂−1,−se
−iz = v̂1,seiz = R(v̂1,se

iz)

and Rf̂1 = −f̂1, Rf̂2 = f̂2, we find that there exists parameters such that hypotheses (H3)–(H6)
are satisfied (with (H4)(ii) for β = 0 and (H4)(iii) for β > 0). Hypothesis (H7) follows from the
observations that (Gµ1)−1(f̂1) = f̂1 and that Ĵµ1(v̂), Ĥµ1(v̂) depend upon Γ and ζ only through
Γy and ζ − γ sin θ1Γ|y=0, while hypothesis (H8) is verified in Section 4.3 below.

Applying Theorem 1.2 thus yields a family of doubly periodic waves whose periodic cells are
small perturbations of the basic periodic cell defined by the periods 2π/ν0, 2π/s and angle θ2−θ1

between the periodic directions. The following lemma shows that it is in fact possible to choose
the basic periodic cell (and value of β) arbitrarily and adjust the value of γ and the angle θ1 to
ensure that Theorem 1.2 applies in this configuration (under the additional hypothesis that Sk
does not intersect Cdr for k 6= ±1) .

Lemma 4.2. Choose β, s, ν0 and θ2−θ1. There exist θ1 and γ such that S1 and S−1 each intersect
Cdr in points with coordinates (±s, ν0) and (±s,−ν0) in the (S0, T )-coordinate system.

Proof. The lines S1 and S−1 intersect Cdr at respectively (s, ν0) and (s,−ν0) if and only if

γ2b2
1 = tanh(β−1σ1)(1 + σ4

1)σ1,

γ2b2
−1 = tanh(β−1σ−1)(1 + σ4

−1)σ−1,

and in this case they also intersect Cdr at respectively (−s,−ν0) and (−s, ν0) (see the remarks at
the end of Section 4.1). Let ex, ez and i be unit vectors in the x, z and x1 directions (see Figure
1) and set

`1 = sez + ν0ex `2 = −sez + ν0ex, (4.8)

so that σ2
1 = |`1|2, σ−1 = |`2|2, i · `1 = b1, i · `2 = b−1; in this notation our task is to find a

solution of the equations

(v · `1)2 = tanh(β−1|`1|)(1 + |`1|4)|`1|, (4.9)
(v · `2)2 = tanh(β−1|`2|)(1 + |`2|4)|`2|, (4.10)

of the form v = γi. Let ψ denote the angle between `1 and `2; equation (4.8) shows that rotating
ex and ez through the same angle θ, that is changing θ1 and θ2 by θ, causes `1 and `2 to rotate
through θ and thus does not change ψ.
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Observe that the equations

v · n1 = ±α1,

v · n2 = ±α2,

where n1, n2 ∈ R2 are linearly independent and α1, α2 > 0, represent two pairs of parallel lines
which intersect in four points. Each of these points v satisfies

|v| = |α2n1 ± α1n2|
|n1||n2|

,

so that |v| depends only upon α1, α2, |n1|, |n2| and the angle between n1 and n2. Using this
result we find that the solution set to equations (4.9), (4.10) consists of four points. Let v be one
of these points, and note that |v| depends only upon |`1|, |`2| and ψ (since the right-hand sides
of (4.9), (4.10) depend only upon |`1| and |`2|.) By rotating `1 and `2 through a suitably chosen
angle θ, that is changing θ1 and θ2 by θ, we can arrange that v = |v|i and hence v = γi by setting
γ = |v|.

4.3 Verification of hypothesis (H8)
It remains to verify that hypothesis (H8) is satisfied when β = 0. The condition is that the
equation

Lv† = Ĵ0(0)−1[Ĵµ1(v̂)
(
(κ0 + µ2)v̂τ − v̂µ1H (v̂)

)
+ Ĵ0(0)Lv̂]0, (4.11)

has a unique solution v† ∈ X which depends smoothly upon (v̂, µ1, µ2) ∈ U × Λ1 × Λ2. Since

Ĵ0(0)−1[Ĵ0(0)Lv̂]0 = L[v̂]0

one can rewrite equation (4.11) as

L
(
v† − [v̂]0

)
= Ĵ0(0)−1[Ĵµ1(v̂)

(
(κ0 + µ2)v̂τ − v̂µ1H (v̂)

)
]0. (4.12)

In view of equation (4.12) and Lemma 4.1(iii) our task is to show that

(v̂, µ1, µ2) 7→
∫ y

−∞
[[[ŵΓ]0]]0, (v̂, µ1, µ2) 7→

∫ y

−∞

∫ t

−∞
[[[ŵΓ]0]]0 ds dt, (4.13)

where
ŵ = Ĵµ1(v̂)

(
(κ0 + µ2)v̂τ − v̂µ1H (v̂)

)
,

are smooth mappings U × Λ1 × Λ2 → L2(−∞, 0) and that∫ 0

−∞
[[[ŵΓ]0]]0 dy = −[[[ŵζ ]0]]0γ sin θ2 (4.14)

for each (v̂, µ1, µ2) ∈ U×Λ1×Λ2. Here we use the symbols [·]0 and [[·]]0 to denote the projections
onto the 0th Fourier modes in the τ and z variables respectively. This task is accomplished in
Lemma 4.4 below with the help of the following auxiliary result.
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Proposition 4.3. The formulae

(v, µ1) 7→
∫ y

−∞
[[[(vµ1H (v))Ψ]0]]0 dt, (v, µ1) 7→

∫ y

−∞

∫ t

−∞
[[[(vµ1H (v))Ψ]0]]0 ds dt

define analytic mapppings U × Λ1 → L2(−∞, 0) and∫ 0

−∞
[[[(vµ1H (v))Ψ]0]]0 dy = [[[(vµ1H (v))η]0]]0γ sin θ2

for each (v, µ1) ∈ U × Λ1.

Proof. It follows from (3.17) that

[[[(vµ1H (v))Ψ]0]]0 = [[[(gµ10 (v))y]0]]0,

where

gµ10 (v) = Φy −K1(η)ηΦy −K1(η)Ψρ− K1(η)

K2(η)
(ν0 + µ1)2 sin2(θ1 − θ2)(Φz −K1(η)ηzΦy)ηz

− (ν0 + µ1) cos(θ1 − θ2)K1(η)ηzΨ

= Φy −
(
K2(η)ηΦy −K2(η)Ψρ− (ν0 + µ1)2 sin2(θ1 − θ2)(Φz −K1(η)ηzΦy)ηz

− (ν0 + µ1) cos(θ1 − θ2)K2(η)ηzΨ
)

ey

and v = (η, ρ,Φ, ζ, ξ,Ψ). Observing that (v, µ1) 7→ gµ10 (v) maps U × Λ1 analytically into
L2(−∞, 0) (see Proposition 3.1) and the same is true of (v, µ1) 7→

∫ y
−∞ g

µ1
0 (v) dt because

u 7→
∫ y
−∞ u(t)et dt belongs toL(L2(−∞, 0)), we conclude that (v, µ1) 7→

∫ y
−∞[[[(vµ1H (v))Ψ]0]]0 dt

and (v, µ1) 7→
∫ y
−∞

∫ t
−∞[[[(vµ1H (v))Ψ]0]]0 ds dt map U × Λ1 analytically into L2(−∞, 0). Finally∫ 0

−∞
[[[(vµ1H (v))Ψ]0]]0 dy = [[[ρ]0]]0γ sin θ2 = [[[(vµ1H (v))η]0]]0γ sin θ2

because of (3.18), (3.19) and (3.11).

Lemma 4.4. The formulae (4.13) define analytic mappings U ×Λ1×Λ2 → L2(−∞, 0) and the
formula (4.14) is satisfied for each (v̂, µ1, µ2) ∈ U × Λ1 × Λ2.

Proof. We first note that

d̃Gµ1 [v]∗(ŵ) = J
(
(κ0 + µ2)vτ − vµ1H (v)

)
, (4.15)

where v = Kµ1(v̂), and using the explicit formulae for d̃Gµ1 [v]∗ appearing in the proof of
Proposition 3.5, we find that the ζ- and Γ-components of equation (4.15) are

ŵζ = (κ0 + µ2)
d

dτ
vη − (vµ1H (w))η , (4.16)

39



ŵΓ − (gµ11 (v, ŵ))y − (g2(v, ŵ))z = −(κ0 + µ2)
d

dτ
vΨ + (vµ1H (v))Ψ , (4.17)

where

gµ11 (v, ŵ) =

(
K2(vη)K3vη −

K2
1(vη)

K2(vη)
(ν0 + µ1)2 sin2(θ1 − θ2)(vη)

2
z

)
∆−1((ŵΓ)y)

=

(
K2(vη)vη −K1(vη)(ν0 + µ1)2 sin2(θ1 − θ2)(vη)

2
z

)
ey∆−1((ŵΓ)y),

g2(v, ŵ) =

(
K1(vη)

K2(vη)
(ν0 + µ1)2 sin2(θ1 − θ2)(vη)z

)
∆−1((ŵΓ)y);

note in particular that (v̂, µ1) 7→ gµ11 (v, ŵ) maps Û×Λ1 analytically into L2(−∞, 0) (see Propo-
sition 3.1) and the same is true of (v̂, µ1) 7→

∫ y
−∞ g

µ1
1 (v, ŵ) dt because u 7→

∫ y
−∞ u(t)et dt

belongs to L(L2(−∞, 0)).
Equation (4.17) implies that

[[[ŵΓ]0]]0 = [[[(gµ11 (v, ŵ))y]0]]0 + [[[(vµ1H (v))Ψ]0]]0,

and it follows from this identity and Proposition 4.3 that (v̂, µ1, µ2) 7→
∫ y
−∞[[[ŵΓ]0]]0 dt and

(v̂, µ1, µ2) 7→
∫ y
−∞

∫ t
−∞[[[ŵΓ]0]]0 ds dt map U × Λ1 × Λ2 analytically into L2(−∞, 0). Further-

more, the calculation∫ 0

−∞
[[[ŵΓ]0]]0 dy =

[
[[[gµ11 (w, ŵ)]0]]0

]0
−∞︸ ︷︷ ︸

= 0

+

∫ 0

−∞
[[[(vµ1H (w))Ψ]0]]0 dy

= [[(vµ1H (w))η]0]]0γ sin θ2

= −[[[ŵζ ]0]]0γ sin θ2,

shows that (4.14) is also satisfied; here we have used Proposition 4.3 and the facts that

[[[ŵζ ]0]]0 = −[[[(vµ1H (w))η]0]]0

(see equation (4.16)) and ∆−1((ŵΓ)y)
∣∣
y=0

= 0.
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