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Abstract
The KP-I equation arises as a weakly nonlinear model equation for gravity-capillary waves with Bond number
V > 1/3, also called strong surface tension. This equation has recently been shown to have a family of nondegenerate,
symmetric ‘fully localised’ or ‘lump’ solitary waves which decay to zero in all spatial directions. The full-dispersion
KP-I equation is obtained by retaining the exact dispersion relation in the modelling from the water-wave problem.
In this paper we show that the FDKP-I equation also has a family of symmetric fullly localised solitary waves
which are obtained by casting it as a perturbation of the KP-I equation and applying a suitable variant of the
implicit-function theorem.

1. Introduction
1.1. The KP and FDKP equations
The full-dispersion Kadomtsev–Petviashvili (FDKP) equation

DC + <(D)DG + 2DDG = 0, (1.1)

where the Fourier multiplier < is given by
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⇣
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with D = �i(mG , mH), was introduced by Lannes (2013) (see also Lannes and Saut (2014)) as an
alternative to the classical Kadomtsev–Petviashvili (KP) equation

(ZC � 2Z ZG + 1
2 (V � 1

3 )ZGGG)G � ZHH = 0, (1.2)

which arises as a weakly nonlinear approximation for three-dimensional gravity-capillary water waves.
The parameter V > 0 measures the relative strength of surface tension; the case V >

1
3 for strong

surface tension is termed KP-I, while the case V <
1
3 for weak surface tension is KP-II. The analogous

convention is used for the full-dispersion FDKP equation, giving us an FDKP-I equation for the strong
surface tension case studied in this paper.
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An FDKP solitary wave is a nontrivial, evanescent solution of (1.1) of the form D(G, H, C) = D(G�2C, H)
with wave speed 2 > 0, that is, a localised solution of the equation

� 2D + <(D)D + D2 = 0. (1.3)

Similarly, a KP solitary wave is a nontrivial, evanescent solution of (1.2) of the form
Z (G, H, C) = Z (G � 2̃C, H) with wave speed 2̃ > 0, that is, a localised solution of the equation

(2̃ � 1)Z + <̃(D)Z + Z2 = 0, (1.4)

where

<̃(D) = 1 +
⇡

2
2

⇡
2
1

+ 1
2 (V � 1

3 )⇡
2
1.

Let us emphasise that these waves are fully localised, that is, decaying in all spatial directions. The KP
equation allows a scaling, such that the wave speed 2̃ can be normalised to unity by the transformation
Z (G, H) 7! 2̃Z (2̃ 1

2 G, 2̃H), which converts (1.4) into the equation

<̃(D)Z + Z2 = 0. (1.5)

While it is known that the KP-II equation does not admit any solitary waves (de Bouard and
Saut 1997), the situation is rather di�erent for the KP-I equation. Letting Z (G, H) = Z (G̃, H̃) with
(G̃, H̃) = ( 1

2 (V � 1
3 ))

1
2 (G, H), one can write the KP-I equation in the alternative form

m
2
G
(�m2

G
Z + Z + Z2) + m2

H
Z = 0, (1.6)

in which we have dropped the tildes for notational simplicity. This equation has a family of explicit
symmetric ‘lump’ solutions of the form

Z
¢

:
(G, H) = �6m2

G
log g¢

:
(G, H), : = 1, 2, . . . , (1.7)

where g¢
:

is a polynomial of degree : (: + 1) with g¢
:
(G, H) = g¢

:
(�G, H) = g¢

:
(G,�H) for all (G, H) 2 R2;

the first two members of the family are

g
¢

1 (G, H) = G2 + H2 + 3,

g
¢

2 (G, H) = G6 + 3G4
H

2 + 3G2
H

4 + H6 + 25G4 + 90G2
H

2 + 17H4 � 125G2 + 475H2 + 1875.

Note that the KP lump solutions Z¢
:

are smooth, decaying rational functions, so that the same is true of
their derivatives of all orders. The functions Z¢1 and Z¢2 are sketched in Figure 1.

The following result was established by Liu and Wei (2019) and Liu, Wei and Yang (2024a, 2024b);
see also the comments below the lemma.

Lemma 1.1.
(i) Every smooth, algebraically decaying solution of the KPI equation (1.6) has the form

Z (G, H) = �6m2
G

log g(G, H), for some polynomial g of degree : (: + 1) with : 2 N and satisfies
|Z (G, H) | . (1 + G2 + H2)�1 for all (G, H) 2 R2.

(ii) There is a unique symmetric solution Z¢
:

of the form (1.7) for each : 2 N with : (: + 1)  600.
(iii) The solutions Z¢1 , Z¢2 are nondegenerate: the only smooth evanescent solution of the linearised

equation

m
2
G
(�m2

G
F + F + 2Z¢

:
F) + m2

H
F = 0

for : = 1, 2 that is also invariant under F(G, H) 7! F(�G, H) and F(G, H) 7! F(G,�H) is
F(G, H) = 0.
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Figure 1. The KP lumps Z¢1 (left) and Z¢2 (right).

It is conjectured that part (ii) actually holds for all : 2 N (Liu, Wei and Yang 2024b); furthermore
a sketch of the proof of the nondegeneracy of Z¢

:
for : � 3 was given by Liu, Wei and Yang (2024a),

and here we accept the validity of this result. The existence of a solitary-wave solution to the FDKP-I
equation was proved in Ehrnström and Groves (2018) using a variational method, and in this paper
we considerably improve our previous result by using a perturbation argument in place of constrained
minimisation to prove the following theorem, which establishes the existence of FDKP solitary waves
‘close’ to Z¢

:
for all : for which (iii) holds.

Theorem 1.2. For each : 2 N and each su�ciently small value of Y > 0 the FDKP-I equation (1.3)
posesses a smooth fully localised solitary-wave solution D¢

:
of wave speed 2 = 1 � Y2, which satisfies

D
¢

:
(G, H) = D¢

:
(�G, H) = D¢

:
(G,�H)

for all (G, H) 2 R2 and

D
¢

:
(G, H) = Y2

Z
¢

:
(YG, Y2

H) + >(Y2) (1.8)

uniformly over (G, H) 2 R2.

Theorem 1.2 is proved in Sections 2–4 below.

1.2. The method

c

1

k1

Figure 2. FKDP-I dispersion relation for two-dimensional wave trains.

To motivate our method it is instructive to review the formal derivation of the steady KP equation
(1.5) from the steady FDKP equation (1.3). We begin with the linear dispersion relation for the time-
dependent FDKP equation (1.1) with V >

1
3 : the speed 2 and wave number :1 of a two-dimensional

sinusoidal travelling wave train satisfy
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2 =
⇣
1 + V |:1 |2

⌘ 1
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✓
tanh |:1 |
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2

.

The function :1 7! 2(:1), :1 � 0 has a unique global minimum at :1 = 0 with 2(0) = 1 (see Figure 2).
Bifurcations of nonlinear solitary waves are expected whenever the linear group and phase speeds are
equal, so that 20(:1) = 0 (see Dias and Kharif (1999, §3)), and one therefore expects bifurcation of
small-amplitude solitary waves from uniform flow with unit speed. Furthermore, observing that < is an

analytic function of :1 and :2
:1

(note that |k|2 = :2
1 +

:
2
2

:
2
1
:

2
1 for k = (:1, :2)), one finds that

<(k) = <̃(k) +$ ( | (:1,
:2
:1
) |4) (1.9)

as (:1,
:2
:1
) ! 0. The variables (:1,

:2
:1
) are intrinsic to the steady KP equation (1.5), and corresponding

to them is the scaling

D(G, H) = Y2
Z (YG, Y2

H). (1.10)

Substituting the Ansatz (1.10) with assumed wave speed

2 = 1 � Y2

into the steady FDKP equation (1.3), one finds that, to leading order, Z also satisfies the normalised KP
equation (1.5). We henceforth assume that 2 = 1 � Y2 for 0 < Y < Y0, where Y0 is taken small enough
for all our arguments to be valid.

k1

k2

Figure 3. The cone ⇠ = {k 2 R2 : |:1 |  X, | :2
:1
|  X}.

In the rigorous theory we seek solutions of (1.3) in a suitable function space - and identify a
corresponding phase space / for this equation. These spaces, which are defined precisely in Section 2,
satisfy - ✓ / ✓ !

2 (R2). The relationship (1.9) between the symbols< and <̃ suggests that the spectrum
of a solitary wave D is concentrated in the region |:1 |, | :2

:1
| ⌧ 1. We therefore decompose !2 (R2), and

hence also - and / , into the direct sum of subspaces of functions whose spectra are supported in the
region

⇠ =
⇢
k 2 R2 : |:1 |  X,

���� :2

:1

����  X
�

(1.11)

and its complement, where X is a small but fixed positive number (see Figure 3), so that

- = j(D)-|  {z  }
= -1

� (1 � j(D))-|          {z          }
= -2

, / = j(D)/|  {z  }
= /1

� (1 � j(D))/|          {z          }
= /2

,
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in which j is the characteristic function of ⇠. Observing that -1, /1 both coincide with j(D)!2 (R2),
we equip /1 with the !2 (R2) norm and -1 with the equivalent scaled norm

|D1 |2Y =
π
R2

✓
|D |2 + Y2 |⇡1D |2 + Y2

����D2

D1
D

����
2 ◆

dG dH, (1.12)

and employ a method akin to the Lyapunov–Schmidt reduction to determine D2 2 -2 as a function of
D1 2 -1. With = = < � 1, the result is the equation

Y
2
D1 + =(D)D1+j(D) (D1 + D2 (D1))2 = 0,

for D1 in the unit ball

* = {D1 2 -1 : |D1 |Y  1},

of -1.
Applying the KP scaling

D1 (G, H) = Y2
Z (YG, Y2

H)

so that the spectrum of Z lies in the set

⇠Y =
⇢
k 2 R2 : |:1 | 

X

Y

,

���� :2

:1

����  X

Y

�
,

one obtains the reduced equation

Y
�2
=Y (D)Z + Z + jY (D)Z2 + (Y (Z) = 0, (1.13)

where

=Y (k) = =(Y:1, Y
2
:2), jY (k) = j(Y:1, Y

2
:2).

The remainder term (Y : ⌫" (0) ✓ jY (D).1 ! jY (D)!2 (R2) satisfies the estimates

|(Y (Z) |!2 . Y2 |Z |3
.

1 , |d(Y [Z] |L(. 1
,!

2 (R2)) . Y
2 |Z |2

.
1

(see Section 3), where

.
1 = {D 2 !2 (R2) : |D |

.
1 < 1}, |D |2

.
1 =

π
R2

✓
|D |2 + |⇡1D |2 +

����D2

D1
D

����
2 ◆

dG dH

is the natural energy space for the KP-I equation (de Bouard and Saut 1997); the constant " > 1 is
chosen large enough so that Z¢

:
2 ⌫" (0), while the requirement that ⌫" (0) is contained in the range

of the isomorphism D1 7! Z requires Y . "�2. In the formal limit Y ! 0 the subspace jY (D).1 ‘fills
out’ all of .1 and equation (1.13) reduces to the KP equation (1.5).

We demonstrate in Theorem 4.2 that equation (1.13) has solutions Z Y
:

which satisfy Z
Y

:
! Z

¢

:

as Y ! 0 in a suitable subspace of .1, and deduce our main Theorem 1.2 by tracing back the
steps in the reduction procedure. One of the key arguments is based upon the nondegeneracy result
given in Lemma 1.1(iii), which allows one to apply a variant of the implicit-function theorem. For
this purpose we exploit the fact that the reduction procedure preserves the invariance of equation
(1.3) under D(G, H) 7! D(�G, H) and D(G, H) 7! D(G,�H), so that equation (1.13) is invariant under
Z (G, H) 7! Z (�G, H) and Z (G, H) 7! Z (G,�H). It is necessary to use a low regularity version of the
implicit-function theorem since the reduction in Section 3 is performed using the Y-dependent norm
| · |Y and thus does not yield information concerning the smoothness of D1 as a function of Y.
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Ehrnström and Groves (2018) use a variational version of the reduction procedure outlined above
to reduce a variational principle for equation (1.3) to a variational principle for (1.13) and proceed by
finding critical points of the reduced variational functional by the direct methods of the calculus of
variations. Here, with some amendments, we use their functional-analytic setting and follow the steps
in their reduction (see Sections 2 and 3 below), but study the reduced equation (1.13) in Section 4 in an
entirely di�erent manner, arriving at a much more comprehensive conclusion. Note that the perturbation
argument in Section 4 has also been applied to the Whitham equation by Stefanov and Wright (2020)
and moreover to the full water-wave problem, namely by Groves (2021) for two-dimensional gravity-
capillary solitary water waves and by Bu�oni et al (2022) for three-dimensional gravity-capillary solitary
waves on water of infinite depth.

2. Function spaces
In this section we introduce the Banach spaces used in our theory and state their main properties; the
proofs of most of these results are given by Ehrnström and Groves (2018, §2). We use the familiar scale
{�A (R2), | · |�A }A �0 of Sobolev spaces together with the anisotropic spaces

- = {D 2 !2 (R2) : |D |- < 1}, |D |2
-
=

π
R2

✓
1 +

:
2
2

:
2
1

+
:

4
2

:
2
1

+ |k|2B
◆
|D̂(k) |2 dk,

/ = {D 2 !2 (R2) : |D |/ < 1}, |D |2
/
=

π
R2

⇣
1 + |k| + :2

1 |k|2B�3
⌘
|D̂(k) |2 dk,

in which the Sobolev index B > 3
2 is fixed and D 7! D̂ denotes the unitary Fourier transform on !2 (R2).

We also use the scale {. A , | · |. A }A �0, where

.
A = {D 2 !2 (R2) : |D |. A < 1}, |D |2

.
A =

π
R2

✓
1 + :2

1 +
:

2
2

:
2
1

◆
A

|D̂(k) |2 dk. (2.1)

Note that .0 = !2 (R2) while .1 is the natural energy space for the KP-I equation (de Bouard and Saut
1997). Ehrnström and Groves (2018) use only the space.1, there called .̃ , but the proof of the following
proposition is a straightforward variant of the proof of Lemma 2.1(i) in that reference.

Proposition 2.1. One has the continuous embeddings

- õ! .
A

õ! !
2 (R2), �

B� 1
2 (R2) õ! / õ! !

2 (R2), - õ! �
B (R2)

for all A 2 [0, B], and in particular - õ! ⇠b (R2), the space of bounded, continuous functions on R2.

Proposition 2.2. The space .1 (and hence . A for each A � 1) is

(i) continuously embedded in ! ? (R2) for 2  ?  6,
(ii) compactly embedded in ! ?loc (R2) for 2  ? < 6.

Proposition 2.3. The space . A is continuously embedded in ⇠b (R2) for each A > 3
2 .

Proof. Note that

|D |1 .
π
R2

|D̂(k) | dk =
π
R2

✓
1 + :2

1 +
:

2
2

:
2
1

◆� 1
2 A

✓
1 + :2

1 +
:

2
2

:
2
1

◆1
2 A

|D̂(k) | dk  |D |. A �
1
2 ,
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where, with a change of variables,

� =
π
R2

✓
1 + :2

1 +
:

2
2

:
2
1

◆�A
dk =

π
R2
(1 + |k|2)�A :1 dk < 1.

The continuity of D follows from a standard dominated convergence argument with D̂ as dominating
function. ⇤

Proposition 2.4.
(i) The Fourier multiplier <(D) maps - continuously onto / .
(ii) The formula D 7! D

2 maps - smoothly into / .

We decompose D 2 !2 (R2) into the sum of functions D1 and D2 whose spectra are supported in the
region ⇠ defined in (1.11) and its complement (see Figure 3) by writing

D1 = j(D)D, D2 = (1 � j(D))D,

where j is the characteristic function of ⇠. Since they are subspaces of !2 (R2), the Fourier multiplier
j(D) induces the orthogonal decomposition - = -1 � -2 with -1=j(D)- , -2=(1 � j(D))- and
analogous decompositions of the spaces. A and / . We write / = /1 � /2, but retain the explicit notation
j(D). A and j(D)!2 (R2). The spaces -1, /1 and j(D). A all coincide with j(D)!2 (R2), and | · |

!
2 ,

| · |- , | · |. A and | · |/ are all equivalent norms for these spaces. We do however make specific choices
in the theory in below; we equip /1 and j(D). A with | · |

!
2 and | · |. A respectively, and -1 with the

equivalent scaled norm

|D1 |2Y =
π
R2

✓
1 + Y�2

:
2
1 + Y�2 :

2
2

:
2
1

◆
|D̂1 (k) |2 dk

(see equation (1.12)) in anticipation of the KP scaling (:1, :2) 7! (Y:1, Y
2
:2).

Proposition 2.5. The mapping =(D), where = = < � 1, is an isomorphism -2 ! /2.

Proposition 2.6. The estimates

|m<1
G
m
<2
H
D1 |1 . Y |D1 |Y , <1,<2 � 0,

and

|D1E |/ . Y |D1 |Y |E |- , |EF |/ . |E |- |F |-

hold for all D1 2 -1 and E,F 2 - .

Finally, we introduce the space. A
Y
= jY (D). A , where jY (:1, :2) = j(Y:1, Y

2
:2) (with norm | · |. A ),

noting the relationship

|D |2
Y
= Y |Z |2

.
1 , D(G, H) = Y2

Z (YG, Y2
H)

for Z 2 .1
Y
. Observe that . A

Y
coincides with jY (D)- , jY (D)/ and jY (D)!2 (R2) for Y > 0, and with

j(D). A in the limit Y ! 0.
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3. Reduction
We proceed by making the Ansatz 2 = 1 � Y2 and studying equation (1.3) in its phase space / . Note
that D = D1 + D2 2 -1 � -2 satisfies this equation if and only if

Y
2
D1 + =(D)D1+j(D) (D1 + D2)2 = 0, in /1, (3.1)

Y
2
D2 + =(D)D2+(1 � j(D)) (D1 + D2)2 = 0, in /2. (3.2)

The first step is to solve (3.2) for D2 as a function of D1 using the following result, which is proved by a
straightforward application of the contraction mapping principle.

Theorem 3.1. Let W1, W2 be Banach spaces,  be a continuous function ⌫1 (0) ✓ W1 ! [0,1) and
F : ⌫1 (0) ⇥W2 ! W2 be a smooth function satisfying

|F (F1, 0) |W2  1
2 (F1), |d2F [F1,F2] |L(W2 ,W2)  1

3

for all (F1,F2) 2 ⌫1 (0) ⇥ ⌫ (F1) (0). The fixed-point equation

F2 = F (F1,F2)

has for each F1 2 ⌫1 (0) a unique solution F2 = F2 (F1) 2 ⌫
 (F1) (0). Moreover F2 is a smooth

function of F1 and satisfies

|dF2 [F1] |L(W1 ,W2) . |d1F [F1,F2 (F1)] |L(W1 ,W2) .

Write (3.2) as

D2 = F (D1, D2), (3.3)

where

F (D1, D2) = �=(D)�1 (1 � j(D))
⇣
Y

2
D2 + (D1 + D2)2

⌘
; (3.4)

the following mapping property of F follows from Propositions 2.4(ii) and 2.5.

Proposition 3.2. Equation (3.4) defines a smooth mapping F : -1 ⇥ -2 ! -2.

Lemma 3.3. Define* = {D1 2 -1 : |D1 |Y  1}. Equation (3.3) defines a map

* 3 D1 7! D2 (D1) 2 -2

which satisfies

|D2 (D1) |-2 . Y |D1 |2Y , |dD2 [D1] |L(-1 ,-2) . Y |D1 |Y .

Proof. We apply Theorem 3.1 to equation (3.3) with W1 = (-1, | · |Y), W2 = (-2, | · |- ). Note that

d1F [D1, D2] (E1) = �=(D)�1 (1 � j(D)) (2(D1 + D2)E1),
d2F [D1, D2] (E2) = �=(D)�1 (1 � j(D)) (Y2

E2 + 2(D1 + D2)E2)

and

| (=(D))�1 (1 � j(D))D |- . |D |/ ,

by Proposition 2.5. Using Proposition 2.6, we therefore find that

|F (D1, 0) |- = |D2
1 |/ . Y |D1 |Y |D1 |- . Y |D1 |Y |D1 |!2  Y |D1 |2Y
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and

|d2F [D1, D2] (E2) |- . Y2 |E2 |/ + |D1E2 |/ + |D2E2 |/
. (Y2 + Y |D1 |Y + |D2 |- ) |E2 |- .

To satisfy the assumptions of Theorem 3.1, we choose  (D1) = fY |D1 |2Y for a su�ciently large value of
f > 0, so that

|D2 |- . 1
2 (D1), |d2F [D1, D2] |L(-2 ,-2) . Y

for (D1, D2) 2 * ⇥ ⌫
 (D1) (0). The lemma asserts the existence of a unique solution D2 (D1) 2 ⌫ (D1) (0)

of (3.3) for each D1 2 * which satisfies

|D2 (D1) |- . Y |D1 |2Y

and

|dD2 [D1] (E1) |- . |d1F [D1, D2 (D1)] (E1) |-
. |D1E1 |/ + |D2 (D1)E1 |/
. Y( |D1 |- + |D2 (D1) |- ) |E1 |Y
. Y( |D1 |Y + Y |D1 |2Y) |E1 |Y ,

where we have used Proposition 2.6. ⇤

Our next result shows in particular that D = D1 + D2 (D1) belongs to �1 (R2) =
1—
9=1
�
9 (R2) for each

D1 2 *1.

Proposition 3.4. Any function D = D1 + D2 2 -1 � -2 which satisfies (3.3) belongs to �1 (R2).
Proof. Obviously D1 2 �1 (R2), and to show that D2 is also smooth we abandon the fixed regularity
index in the spaces - and / and state it explicitly as a variable parameter. Since �B (R2) is an algebra

for B > 3
2 and -B2 õ! (1 � j(⇡))�B (R2) õ! /

B+ 1
2

2 (see Proposition 2.1), the mapping

-1 � -B2 3 (D1, D2) 7! �(1 � j(D))
⇣
Y

2
D2 + (D1 + D2)2

⌘
2 / B+

1
2

2

is continuous. It follows that D2 2 -

B+ 1
2

2 , because =(D) is an isomorphism -

B+ 1
2

2 ! /

B+ 1
2

2 by
Proposition 2.5. Bootstrapping this argument yields D2 2 -B2 ⇢ �

B (R2) for any B 2 R. ⇤

The next step is to substitute D2 = D2 (D1) into equation (3.1) to obtain the reduced equation

Y
2
D1 + =(D)D1+j(D) (D1 + D2 (D1))2 = 0

for D1. We can write this equation as

Y
2
D1 + =(D)D1+j(D)D2

1 + 'Y (D1) = 0,

where

'Y (D1) = j(D)
�
2D1D2 (D1) + D2 (D1)2�

. (3.5)

Proposition 3.5. The function 'Y : * ✓ -1 ! /1 satisfies the estimates

|'Y (D1) |!2 . Y2 |D1 |3Y , |d'Y [D1] |L(-1 ,!
2 (R2)) . Y

2 |D1 |2Y .
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Proof. By using Proposition 2.6 and Lemma 3.3 it follows from (3.5) that

|'Y (D1) |!2 . |D1D2 (D1) |/ + |D2 (D1)2 |/
. Y |D1 |Y |D2 (D1) |- + |D2 (D1) |2-
. Y2 |D1 |3Y ,

and from

d'Y [D1] (E1) = j(D)
�
2E1D2 (D1) + D1dD2 [D1] (E1) + 2D2 (D1)dD2 [D1] (E1)

�
that

|d'Y [D1] (E1) |!2 . |E1D2 (D1) |/ + |D1dD2 [D1] (E1) |/ + |D2 (D1)dD2 [D1] (E1) |/
. Y |E1 |Y |D2 (D1) |- + Y |D1 |Y |dD2 [D1] (E1)) |- + |D2 (D1) |- |dD2 [D1] (E1) |-
. Y2 |D1 |2Y |E1 |Y . ⇤

The reduction is completed by introducing the KP scaling

D1 (G, H) = Y2
Z (YG, Y2

H),

noting that � : D1 7! Z is an isomorphism -1 ! .
1
Y

and /1 ! .
0
Y

and choosing " > 1 large enough
so that Z¢

:
2 ⌫" (0) (and Y > 0 small enough so that ⌫" (0) ✓ .

1
Y

is contained in � [*]). Here we
have replaced (/1, | · |!2 ) by the identical space (.0

Y
, | · |

.
0 ) in order to work exclusively with the scales

{. A , | · |. A }A �0 and {. A
Y
, | · |. A }A �0 of function spaces. We find that Z 2 ⌫" (0) ✓ .1

Y
satisfies the equation

Y
�2
=Y (D)Z + Z + jY (D)Z2 + (Y (Z) = 0, (3.6)

which now holds in .0
Y
, where

=Y (k) = =(Y:1, Y
2
:2)

and (Y : ⌫" (0) ✓ .1
Y
! .

0
Y

satisfies the estimates

|(Y (Z) |. 0 . Y |Z |3
.

1 , |d(Y [Z] |L(. 1
,.

0) . Y |Z |2
.

1 . (3.7)

Note that |D1 |2Y = Y |Z |2
.

1 and that the change of variables from (G, H) to (YG, Y2
H) introduces a further

factor of Y
3
2 in the remainder term.

Finally, observe that the FDKP equation

Y
2
D + =(D)D + D2 = 0

is invariant under D(G, H) 7! D(�G, H) and D(G, H) 7! D(G,�H) and the reduction procedure preserves
this invariance: equation (3.6) is invariant under Z (G, H) 7! Z (�G, H) and Z (G, H) 7! Z (G,�H).

4. Solution of the reduced equation
In this section we construct solitary-wave solutions of the reduced equation (3.6), noting that in the
formal limit Y ! 0 it reduces to the KP equation (1.5), which has explicit (symmetric) solitary-
wave solutions Z¢

:
. For this purpose we use a perturbation argument, rewriting (3.6) as a fixed-point

equation and applying the following variant of the implicit-function theorem. It is necessary to use a
low regularity version of the implicit-function theorem since the reduction in Section 3 is performed
using the Y-dependent norm | · |Y and thus does not yield information concerning the smoothness of D1

as a function of Y.
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Theorem 4.1. Let W be a Banach space,,0 and ⇤0 be open neighbourhoods of respectively F¢ in W
and the origin in R, and G : ,0 ⇥⇤0 ! W be a function which is di�erentiable with respect to F 2 ,0

for each _ 2 ⇤0. Furthermore, suppose that G(F¢, 0) = 0, d1G[F¢, 0] : W ! W is an isomorphism,

lim
F!F

¢
|d1G[F, 0] � d1G[F¢, 0] |L(W,W) = 0

and

lim
_!0

|G(F, _) � G(F, 0) |W = 0, lim
_!0

|d1G[F, _] � d1G[F, 0] |L(W,W) = 0

uniformly over F 2 ,0.
There exist open neighbourhoods, ✓ ,0 of F¢ in W and ⇤ ✓ ⇤0 of the origin in R, and a uniquely

determined mapping ⌘ : ⇤ ! , with the properties that

(i) ⌘ is continuous at the origin with ⌘(0) = F¢,
(ii) G(⌘(_), _) = 0 for all _ 2 ⇤,
(iii) F = ⌘(_) whenever (F, _) 2 , ⇥ ⇤ satisfies G(F, _) = 0.

Our main result is the following theorem, which is proved by reformulating equation (3.6) in an
appropriately chosen function space and verifying that it satisfies the assumptions of Theorem 4.1
through a series of auxiliary results.

Theorem 4.2. Fix \ 2 ( 1
2 , 1). For each su�ciently small value of Y > 0 equation (3.6) has a small-

amplitude, symmetric solution Z Y
:

in .1+\
Y

with |Z Y
:
� Z¢

:
|
.

1+\ ! 0 as Y ! 0.

The first step in the proof of Theorem 4.2 is to write (3.6) as the fixed-point equation

Z + Y2 �
=Y (D) + Y2��1 �

jY (D)Z2 + (Y (Z)
�
= 0 (4.1)

and use the following results to ‘replace’ Y2 �
=Y (D) + Y2��1

with <̃(D)�1.

Proposition 4.3. The inequality
���� Y

2

Y
2 + =Y (k)

� 1
<̃(k)

���� . Y�
1 + |(:1,

:2
:1
) |2

�1/2

holds uniformly over |:1 |, | :2
:1
| < X

Y
.

Proof. Recall that V >
1
3 . Clearly

���� Y
2

Y
2 + =Y (k)

� 1
<̃(k)

���� =
���=Y (k) � (V � 1

3 )Y2
:

2
1 � Y2 :

2
2

:
2
1

���
(Y2 + =Y (k))

⇣
1 + (V � 1

3 ):2
1 +

:
2
2

:
2
1

⌘ .

Furthermore, since =(B) is an analytic function of B1 and B2
B1

, we have that

�����=(B) �
✓
V � 1

3

◆
B

2
1 �

B
2
2

B
2
1

����� .
����
✓
B1,

B2

B1

◆����
3

for | (B1, B2
B1
) |  X, and by the definition of = that

=(B) &
����
✓
B1,

B2

B1

◆����
2
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for all (B1, B2
B1
) 2 R2. It follows that

���� Y
2

Y
2 + =Y (k)

� 1
<̃(k)

���� . Y | (:1,
:2
:1
) |3

(1 + |(:1,
:2
:1
) |2)2

uniformly over |:1 |, | :2
:1
| < X

Y
. ⇤

Corollary 4.4. For each \ 2 [0, 1] the inequality
���� Y

2

Y
2 + =Y (k)

� 1
<̃(k)

���� . Y
1�\

(1 + |(:1,
:2
:1
) |2) 1

2 (1+\)

holds uniformly over |:1 |, | :2
:|
| < X

Y
.

Proof. This result follows from Proposition 4.3 and the observation that Y . X(1 + |(:1,
:2
:2
) |2)� 1

2 for

|:1 |, | :2
:1
| < X

Y
. ⇤

Using Corollary 4.4, one can write equation (4.1) as

Z + �Y (Z) = 0, (4.2)

in which

�Y (Z) = <̃(D)�1
jY (D)Z2 + )1,Y (Z) + )2,Y (Z)|                {z                }

= )Y (Z)

and

)1,Y (Z) =
⇣
Y

2 �
=Y (D) + Y2��1 � <̃(D)�1

⌘
jY (D)Z2

, )2,Y (Z) = Y2 �
=Y (D) + Y2��1

(Y (Z).

Proposition 4.5. Fix \ 2 [0, 1]. The mapping )Y : ⌫" (0) ✓ .1
Y
! .

1+\
Y

satisfies

|)Y (Z) |. 1+\ . Y1�\ |Z |2
.

1 , |d)Y [Z] |L(. 1
,.

1+\ ) . Y
1�\ |Z |

.
1

for all Z 2 .1+\
Y

.

Proof. The result for )1,Y follows from the calculation
���⇣Y2 �

=Y (D) + Y2��1� <̃(D)�1
⌘
jY (D)Z d

���
.

1+\
. Y1�\ |Z d |0 . Y1�\ |Z |

!
4 |d |

!
4 . Y1�\ |Z |

.
1+\ |d |

.
1+\

for all Z , d 2 .1+\
Y

(see Corollary 4.4 and Proposition 2.2(i)). Corollary 4.4 (with \ = 1) also yields

Y
2

=Y (k) + Y2
.

 
1 + :2

1 +
:

2
2

:
2
1

!�1

,

and the result for )2,Y follows from this estimate and (3.7). ⇤

Remark 4.6. We can also consider )Y as a mapping )Y : ⌫" (0) ✓ .
1+\
Y

! .
1+\
Y

with identical
estimates since {. A

Y
, | · |. A }A �0 is a scale of Banach spaces.

It is convenient to replace equation (4.2) with

Z + ⌧ Y (Z) = 0,
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where ⌧ Y (Z) = �Y (jY (D)Z), and study it in the fixed space .1+\ for \ 2 ( 1
2 , 1) (the solution sets of

the two equations evidently coincide); we choose \ >
1
2 so that .1+\ is embedded in ⇠b (R2) and \ < 1

so that )Y (Z) vanishes in the limit Y ! 0. Note that the regularity index B for the space - must be taken
larger than A = 1+ \ to preserve the embedding - õ! .

A (see Lemma 2.1); in fact all desired properties
are satisfed for 3

2 < 1 + \ < B < 2. We establish Theorem 4.2 by applying Theorem 4.1 with

W = .1+\
e = {Z 2 .1+\ : Z (G, H) = Z (�G, H) = Z (G,�H) for all (G, H) 2 R2}, (4.3)

,0 = ⌫" (0) ✓ .1+\
e , ⇤0 = (�Y0, Y0) for a su�ciently small value of Y0, and

G(Z , Y) = Z + ⌧ |Y | (Z), (4.4)

where Y has been replaced by |Y | to have G(Z , Y) defined for Y in a full neighbourhood of the origin in R.
We begin by verifying that the functions Z¢

:
belong to .1+\

e .

Proposition 4.7. Each KP lump solution Z¢
:

belongs to .2.

Proof. First note that (Z¢
:
)2 belongs to !

2 (R2) = .
0 because |Z¢

:
(G, H) | . (1 + G2 + H2)�1 for all

(G, H) 2 R2 (see Proposition 1.1(i)). Since Z¢
:

satisfies

Z
¢

:
+ <̃(D)�1 (Z¢

:
)2 = 0

and <̃(D)�1 is a lifting operator of order 2 for the scale {. A , | · |. A }A �0, one finds that Z¢
:
2 .2. ⇤

Observe that G(·, Y) is a continuously di�erentiable function ⌫" (0) ✓ .1+\
e ! .

1+\
e for each fixed

Y � 0, so that

lim
Z!Z

¢
:

|d1G[Z , 0] � d1G[Z¢
:
, 0] |L(. 1+\

,.
1+\ ) = 0.

The facts that

lim
Y!0

|G(Z , Y) � G(Z , 0) |
.

1+\ = 0, lim
Y!0

|d1G[Z , Y] � d1G[Z , 0] |L(. 1+\
,.

1+\ ) = 0

uniformly over Z 2 ⌫" (0) ✓ .1+\
e are obtained from the equation

G(Z , Y) � G(Z , 0) = <̃(D)�1
⇣
jY (D) (jY (D)Z)2 � Z2

⌘
+ )|Y | (Z)

using Proposition 4.5 and Corollary 4.10 below, which is a consequence of the next two lemmas.

Lemma 4.8. Fix \ >
1
2 . The estimate

|<̃(D)�1
jY (D)

�
((jY (D) + �)Z) ((jY (D) � �)d)

�
|
.

1+\ . Y |Z |
.

1+\ |d |
.

1+\

holds for all Z , d 2 .1+\ .

Proof. Recall that <̃(D)�1 is a lifting operator of order 2 for the scale {. A , | · |. A }A �0 and that jY (D)
is a bounded projection on all subspaces of !2 (R2). It follows that

|<̃(D)�1
jY (D)

�
((jY (D) + �)Z) ((jY (D) � �)d)

�
|
.

1+\

 |jY (D)
�
((jY (D) + �)Z) ((jY (D) � �)d)

�
|
!

2

 | ( (jY (D) + �)Z) ((jY (D) � �)d) |
!

2

 |Z |1 | (jY (D) � �)d |
!

2

 |Z |
.

1+\ | (jY (D) � �)d |
!

2 ,
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where the last line follows by the embedding .1+\
õ! ⇠

1
b (R2). To estimate |jY (D) � �)Z |

!
2 , note that

R2 \ ⇠Y ⇢
⇢
(:1, :2) : |:1 | >

X

Y

�
|                     {z                     }

= ⇠1
Y

[
⇢
(:1, :2) :

���� :2

:1

���� > X

Y

�
|                      {z                      }

= ⇠2
Y

,

so that

| (jY (D) � �)Z |2
!

2 =
π
R2\⇠Y

| Ẑ |2 dk


π
⇠

1
Y

| Ẑ |2 dk +
π
⇠

2
Y

| Ẑ |2 dk

 Y
2

X
2

π
⇠

1
Y

:
2
1 | Ẑ |2 dk + Y

2

X
2

π
⇠

2
Y

:
2
2

:
2
1

| Ẑ |2 dk

 2Y2

X
2
|Z |2
.

1 . ⇤

Lemma 4.9. Fix \ 2 (0, 1). The estimate

|<̃(D)�1 (jY (D) � �) (Z d) |
.

1+\ . Y
1�\

2 |Z |
.

1 |d |
.

1  Y 1�\
2 |Z |

.
1+\ |d |

.
1+\ ,

holds for all Z , d 2 .1+\ .

Proof. For a 2 {:1,
:2
:1
} we find that

✓
1 + :2

1 +
:

2
2

:
2
1

◆1+\ ✓
1 + :2

1 +
:

2
2

:
2
1

◆�2 ✓
Y

X

|a |
◆1�\

=
⇣
Y

X

⌘1�\
 

|a |

1 + :2
1 +

:
2
2

:
2
1

!1�\

 1
2

⇣
Y

X

⌘1�\
,

so that

|<̃(D)�1 (jY (D) � �)Z d |2
.

1+\

.
π
⇠

1
Y[⇠2

Y

 
1 + :2

1 +
:

2
2

:
2
1

!1+\  
1 + :2

1 +
:

2
2

:
2
1

!�2

|F [Z d] |2 dk

.
⇣
Y

X

⌘1�\ π
⇠

1
Y

 
1 + :2

1 +
:

2
2

:
2
1

!1+\  
1 + :2

1 +
:

2
2

:
2
1

!�2

|:1 |1�\ |F [Z d] |2 dk

+
⇣
Y

X

⌘1�\ π
⇠

2
Y

 
1 + :2

1 +
:

2
2

:
2
1

!1+\  
1 + :2

1 +
:

2
2

:
2
1

!�2 ���� :2

:1

����
1�\

|F [Z d] |2 dk


⇣
Y

X

⌘1�\
|Z d |2

!
2

.
⇣
Y

X

⌘1�\
|Z |2

!
4 |d |2

!
4

.
⇣
Y

X

⌘1�\
|Z |2
.

1 |d |2
.

1 ,

where we have used Parseval’s theorem, the Cauchy-Schwarz inequality and the embedding
.

1
õ! !

4 (R2) (see Proposition 2.2). ⇤
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Corollary 4.10. Fix \ 2 ( 1
2 , 1). The estimate

���<̃(D)�1
⇣
jY (D)

�
(jY (D)Z) (jY (D)d)

�
� Z d

⌘���
.

1+\
. Y

1�\
2 |Z |

.
1+\ |d |

.
1+\

holds for all Z , d 2 .1+\ .

Proof. This result is obtained by writing

<̃(D)�1
⇣
jY (D)

�
(jY (D)Z) (jY (D)d)

�
� Z d

⌘
= 1

2 <̃(D)�1
jY (D)

�
((jY (D) + 1)Z) ((jY (D) � 1)d)

�
+ 1

2 <̃(D)�1
jY (D)

�
((jY (D) + 1)d) ((jY (D) � 1)Z)

�
+ <̃(D)�1 (jY (D) � 1) (Z d),

and applying Lemma 4.9 to the first two terms on the right-hand side and Lemma 4.10 to the third. ⇤

It thus remains to show that

d1G[Z¢
:
, 0] = � + 2<̃(D)�1 (Z¢

:
·)

is an isomorphism; this fact is a consequence of the following result.

Lemma 4.11. The operator <̃(D)�1 (Z¢
:
·) : .1+\ ! .

1+\ is compact.

Proof. Let {Z 9 } be a sequence which is bounded in.1. We can find a subsequence of {Z 9 } (still denoted
by {Z 9 }) which converges weakly in !

2 (R2) (because {Z 9 } is bounded in !
2 (R2)) and strongly in

!
2 ( | (G, H) | < =) for each = 2 N (by Proposition 2.2(ii) and a ‘diagonal’ argument). Denote the limit by
Z1. Since

|Z¢
:
Z 9 � Z¢: Z1 |!2 ( | (G,H) |<=)  |Z¢

:
|1 |Z 9 � Z1 |!2 ( | (G,H) |<=) ! 0

as 9 ! 1 for each = 2 N and

sup
9

|Z¢
:
Z 9 |!2 ( | (G,H) |>=)  sup

| (G,H) |>=
|Z¢
:
(G, H) | sup

9

|Z 9 |!2 ! 0

as =! 1 we conclude that {Z¢
:
Z 9 } converges to Z¢

:
Z1 as 9 ! 1 in !2 (R2). It follows that Z 7! Z

¢

:
Z is

compact .1 ! !
2 (R) and hence .1+\ ! !

2 (R); the result follows from this fact and the observation
that <̃(D)�1 is continuous !2 (R2) ! .

2
õ! .

1+\ . ⇤

Corollary 4.12. The operator � + 2<̃(D)�1 (Z¢
:
·) is an isomorphism .

1+\
e ! .

1+\
e .

Proof. The previous result shows that � + 2<̃(D)�1 (Z¢
:
·) : .1+\

e ! .
1+\
e is Fredholm with index 0; it

therefore remains to show that it is injective. Suppose that Z 2 .1+\
e satisfies

Z + 2<̃(D)�1 (Z¢
:
Z) = 0. (4.5)

It follows that

:1 Ẑ =
�2:3

1

:
2
1 +

1
2 (V � 1

3 ):4
1 + :2

2

F [Z¢
:
Z], :2 Ẑ =

�2:2
1:2

:
2
1 +

1
2 (V � 1

3 ):4
1 + :2

2

F [Z¢
:
Z]

and hence Z 2 �
9+1 (R2) whenever Z¢

:
Z 2 �

9 (R2). Since Z 2 !
2 (R2) and Z 2 �

9 (R2) implies

Z
¢

:
Z 2 � 9 (R2) because Z¢

:
2 ⇠ 9b (R2), the space of smooth functions on R2 with bounded derivatives

up to order 9 , we find by bootstrapping that Z 2 �1 (R2).
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Since Z is smooth and satisfies (4.5), it satisfies the linear equation
�
(V � 1

3 )ZGG + 2Z + 2(Z¢
:
Z)

�
GG

� ZII = 0,

and this equation has only the trivial smooth, decaying, symmetric solution (see Lemma 1.1(iii)). ⇤

Having completed the proof of Theorem 4.2, we now finalise the proof of Theorem 1.2 by tracing back
the steps in the reduction procedure to construct solutions to (1.3) which are uniformly approximated
by a suitable scaling of Z¢

:
.

Lemma 4.13. The formula

D = D1 + D2 (D1), D1 (G, H) = Y2
Z
Y

:
(YG, Y2

H)

defines a smooth solution to the steady FDKP equation (1.3) which satisfies the estimate

D(G, H) = Y2
Z
¢

:
(YG, Y2

H) + >(Y2)

uniformly over (G, H) 2 R2.

Proof. Theorem 4.2 implies that

|Z Y
:
� Z¢

:
|1 = >(1)

as Y ! 0 because of the embedding .1+\
õ! ⇠b (R2) (see Proposition 2.3). It follows that

D1 (G, H) = Y2
Z
¢

:
(YG, Y2

H) + Y2 (Z Y
:
� Z¢

:
) (YG, Y2

H)
= Y2

Z
¢

:
(YG, Y2

H) + >(Y2)

as Y ! 0 uniformly over (G, H) 2 R2, while

|D2 (D1) |1 . |D2 (D1) |-2 . Y |D1 |2Y . Y3

because |D2 (D1) |-2 . Y |D1 |2Y and |D1 |Y = Y |Z |. 1 with Z 2 ⌫" (0) ✓ .1
Y
. The fact that D = D1 + D2 (D1) is

smooth follows from Proposition 3.4. ⇤
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