An existence theory for solitary waves on a ferrofluid jet
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Abstract

We discuss axisymmetric solitary waves on the surface of an otherwise cylindrical ferrofluid jet surrounding
a stationary metal rod. The ferrofluid, which is governed by a general (nonlinear) magnetisation law, is subject
to an azimuthal magnetic field generated by an electric current flowing along the rod. We treat the governing
equations using a modification of the Zakharov-Craig-Sulem formulation for water waves, reducing the problem
to a single nonlocal equation for the free-surface elevation variable 7. The nonlocality in the equation takes the
form of a Dirichlet-Neumann operator whose analyticity (in standard function spaces) is demonstrated by studying
its defining boundary-value problem in newly introduced Sobolev spaces for radial functions. Using rudimentary
fixed-point arguments and Fourier analysis we rigorously reduce the equation for 7 to a perturbation of a Korteweg-
de Vries equation (for strong surface tension) or a nonlinear Schrédinger equation (for weak surface tension),
both of which have nondegenerate explicit solitary-wave solutions. The existence theory is completed using an
appropriate version of the implicit-function theorem.

1 Introduction

1.1  The hydrodynamic problem
We consider the inviscid, incompressible and irrotational flow of a ferrofluid of unit density in the region
S1={0<r<R+n0,z1t)}

bounded by the free surface {r = R + n(0,z,t)} and a current-carrying wire at {r = 0} (see Figure 1). Here
(r, 0, z) are the usual cylindrical polar coordinates, ¢ is time, R is a positive constant which represents the radius of
the jet without any current flow, and 7 is a function of (6, z,¢). The magnetic field generated by the wire is static
and the region
Sy ={r>R+n(0,z1)}

is assumed to be a vacuum. The irrotational magnetic and solenoidal induction fields in S; and S, are denoted by
respectively H;, By and Hs, B,, while the irrotational, solenoidal velocity field of the fluid in S7 is denoted by v.
The interdependence between the fields is given by the formulae

B = po(Hy + M, (H,y)), By = g Ho,
where (i is the magnetic permeability of free space,

H,

M, (H,) =m1(|H1|)m

is the given magnetic intensity of the ferrofluid and m; (H,) is a nonnegative function.
The ferrohydrodynamic problem was formulated in terms of magnetic potential functions 1, 12 and a velocity
potential ¢ such that
H, =-V¢1, Hy=-Viy, v=V¢

by Groves & Nilsson [12, §2] following the theory given by Rosensweig [17, §§5.1-5.2]. The governing equations
are

v : (M(|V¢1|V¢1)) = 07 0 <r< R+ n(guzat)7 (1)
A¢2 = 07 r>R+ 77(9a27t)a (2)
A¢ =0, 0<r<R+nb,z1), 3)
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Figure 1: Waves on the surface of a ferrofluid jet surrounding a current-carrying wire

where
(o) =1+ L,

with boundary conditions
2 — 1 =0, 4)
Yo — pu(|V1])th1n = 0, (5)

1

-+ (br - ﬁ¢0n9 - (bznz =0, (6)
¢0 + 5|V = pov([Vihr|) + 208 — guo(u(|Ver]) = 1)* = ¢ N

at 7 = R + n(0, z,t), where 2k is the mean curvature of the surface, o is the coefficient of surface tension and
co is a constant arising from integration of the (magnetic) Euler equation. Equations (1)—(3) state that By, B>
and v are solenoidal, equations (4), (5) state that the magnetic and induction fields are continuous at the surface,
while equation (6) is the the hydrokinematic boundary condition that fluid particles on the surface remain there and
equation (7) is the hydrodynamic boundary condition which balances the forces at the surface.

The constant cg is selected so that

J J
Hl—ieey H2_797 VZO, 77:0
2nr 2mr
(that is 1 = 1o = —JO/2m, ¢ = 0, n = 0) is a solution to the above equations (corresponding to a uniform
magnetic field and a circular cylindrical jet with radius R); we therefore set ¢ = —puov(J/27r) + o/R. Seeking
axisymmetric waves for which 7 and ¢ are independent of 6, one finds that ¢»; = o = —J0/27, so that the

hydrodynamic problem decouples from the magnetic problem and is given by

1
¢rr+;¢r+¢zz:0, O<T<R+77(Z,t)
and
_nt+¢r_¢z77z:07
1, 4 9 J
¢t+2(¢r+¢z) MOV(27T(R+77))

g OMzz o

J
oy (%R) T ERIAT 7 GrPE R

atr = R+ n(z,t), where we have used the formula

=0

(R+n0)*(1+n2) + (R+1)*n..
(R ) (1 + )2

This initial-value problem has been studied by Wang & Yang [18], but here we concentrate upon travelling
waves. Introducing dimensionless variables

2 = —

o1/2 ) 1 1
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and functions

n (s) = 2T R J B(s) = 471'2R2V J
mi(s) := TX my 727TRS , s) = T2y —QWRS ,

where x = (2nR/J)m1(J/2nR) and m (1) = /(1) = 1, and looking for travelling-wave solutions of the form

o(ryz,t) = ¢(r, z — ct), n(z,t) = n(z — ct),
we arrive at the equations
1
¢rr+;¢’r+¢zz:07 0<T‘<1+’I7(Z,t)7

and

cn. + ¢ — ¢on. =0,

~ost 306+ o= (v (755) ) + (s ~ e 1) =

atr =1+ n(z,t), where

X
4m20R?’
Solitary waves are nontrivial solutions to (8)—(10) which are evanescent as |z| — oco.

1.2  The main results

®)

C))
(10)

We treat equations (8)—(10) using a modification of the Zakharov-Craig-Sulem formulation for water waves (Za-
kharov [19], Craig & Sulem [7]), thus reducing the problem to a single non-local equation for 7 by introducing
a Dirichlet-Neumann operator informally defined as follows (see Xu & Wang [20] for a similar approach for the
time-dependent problem and Blyth & Parau [4] for an alternative non-local reformulation). Fix ® = ®(z), let ¢ be

the unique solution of the Dirichlet boundary-value problem

Bt 1ot 6 =0, 0<r<lim,
op=o r=1+4mn,
and define
1/209

Gm®:= (1+n)(1+n?)

(“)n r=1+4+n
=1 +n)(¢r — 772¢2)|T=1+7]'

Equations (9) and (10) can be rewritten as

G(n)®

1+n

cn, + =0

and

1 G(n)®Y
b+ L0 ——— (@,
et 2<1+n2>(" T T4

z

1 1 N2z
—ylvl—— ) —-v() )+ - —-1) =0,
(v (755) )+ (e e~ e )
and by substituting ® = —cG(n) ! (n, + nn.) from (13) into (14), we arrive at

K(n) — ¢L(n) =0,

where

k= (v (155) =) + (ara s w1

£0n) = — Ym0+ 3K + —— S0 = 0K () — K o)y

[ 2)2
2(1 +n?

)
12)

13)

(14)

as)

(16)

a7



and

K¢ = —(G(n) &)= (18)
Equation (15) is equivalent to (8)—(10); the velocity potential is recovered by setting ® = —cG (1) ~*(n, +nn,) and
solving (11), (12).

Our task is therefore to find nontrivial solutions to (15) which satisfy 7(z) — 0 as z — 400, and we prove the
following results.

Theorem 1.1 Suppose that 1 < v < 9 and ¢® = c3(1 — €2). For each sufficiently small value of € > 0 there exists
a symmetric Korteweg-de Vries solitary-wave solution of (15) which satisfies

n(z) = e*(kav(ez) + o(e?)

uniformly over z € R, where

3 ) 6(2) 1/2
(KdV(Z) = _ﬁ sech 2 (9 — 7) Z (19)
and 1 3 1 3 1
_ N = //1 _ Y 2:_ -1
do=5z (515w m-3).  d=30-1

Figure 2: Korteweg-de Vries solitary waves of elevation (left) and of depression (right) depending on the sign of dj

Theorem 1.2 Suppose that w > 0,

2w f (w 2w wlp(w
/ ( ) 9 Cg = ! ) f(w) = O( ) )

f'(w) f'(w) I (w)

where 1, is the modified Bessel function of the first kind and order v, and ¢* = (1 — &2). For each sufficiently
small value of € > 0 there exist two symmetric nonlinear Schrodinger solitary-wave solutions of (15) which satisfy

y=1-w?+

n(z) = £elnLs(ez) cos(wz) + o(e) (20)

1/2 1/2
cNLs(Z>=(%) sech((j—f) Z) 21

and a1, as, as are positive constants which depend upon w.

uniformly over z € R, where

Axisymmetric solitary waves have also been investigated using model equations by Bashtovoi, Rex & Foiguel
[2] and Rannacher & Engel [16], experimentally by Bourdin, Bacri & Falcon [5] and numerically by Blyth &
Parau [3], Guyenne & Parau [13], Doak & Vanden-Broeck [9] and Xu & Wang [20]. Furthermore, using spatial
dynamical-systems methods Groves & Nilsson [12] have given a rigorous existence theory for multiple types of
solitary waves (including those in Theorems 1.1 and 1.2).



Figure 3: Nonlinear Schrodinger solitary waves of elevation (left) and of depression (right) depending on the sign
in equation (20)

1.3 Weakly nonlinear theory

It is instructive to present a heuristic argument as a motivation for Theorems 1.1 and 1.2, beginning with the lin-
earised problem. Linearising equation (15) yields

(v—=1)n—n.. — *Kon = 0, (22)
where Ky = f(D) and
k[ 1o (|k])
E|) = ZH0URD
F(IK]) T (D)

here we used the notation

h(D)¢ = Flh(k)E], &= FIg,

for the Fourier multiplier defined by h, where F is the one-dimensional Fourier transform defined by

P = —= [ )7 a

and D = —i0,. Seeking solutions of (22) of the form 7(z) = cos(kz) (‘sinusoidal wave trains’), we obtain the
dispersion relation
2o 0= 1+ k2
fk)

which describes the relation between the wave number £ > 0 and the wave speed ¢ > 0. In Appendix A we show
that c? is a strictly monotone increasing function of k for 1 < v < 9, while for v > 9 it has a unique local maximum
at k = 0 and a unique global minimum at ¥ = w > 0 (the formula v = 1 — w? + 2w f(w)/f’(w) defines a bijection
between the values of v € (9, 00) and w € (0, 0)). In both cases we denote its global minimum by c2, so that

A0)=3(v—-1), 1<v<09,

2
Cy = 2w

(see Figure 4).

Using c as a bifurcation parameter, we expect branches of small-amplitude solitary waves to bifurcate at ¢ = ¢
(where the linear group and phase speeds are equal) into the region {¢ < ¢o} where linear periodic wave trains are
not supported (see Dias & Kharif [8, §3]). In the case 1 < v < 9, one writes 2= cg(l — 52), where ¢ is a small
positive number, substitutes the Ansatz

n(z) =G (2) +e'Q(Z2) + (23)
where Z = ¢z, into equation (15), and finds that (; satisfies the stationary Korteweg-de Vries equation
(37 — $)Czz + 265 + 2c5do(* = 0, 24)

which has the explicit (symmetric) solitary-wave solution (kqyv given in Theorem 1.1. In the case v > 9, one writes

c? = c3(1 — £2), uses the Ansatz

n(z) = 3e(G(2)e“" + G (2)e ™) + e2¢o(Z) + 2e®(G(2)eP* + ((Z)e29%) + -+, (25)
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where Z = ez and v = 1 — w? + 2wf(w)/f'(w), and finds that (; satisfies the stationary nonlinear Schrodinger
equation
—a1(zz + ¢ — as|(*¢ =0, (26)

which has the (symmetric) solitary-wave solutions +(nrg given in Theorem 1.2. Details of these calculations are
given in Appendix B.

3 c?

k w k

Figure 4: Dispersion relation in the cases 1 < v < 9 (left) and v > 9 (right); the minimum value of c? is denoted
by cg

1.4 Methodology

In this paper we rigorously confirm the results of the weakly nonlinear theory described above. The Ansitze (23)
and (25) suggest that the Fourier transform of a solitary wave is concentrated near the points £ = Z£w (which
coincide at k = 0 when 1 < v < 9). Indeed, writing ¢ = ¢3(1 — £2), one finds that the linearisation of (15) at
e=0is

where
gk) :==v =1+, —c3f(k) 20, keR,

with equality precisely when k = Zw (so that g(w) = ¢'(w) = 0 and ¢”(w) > 0). We therefore decom-
pose 7 into the sum of functions 7; and 72 whose Fourier transforms 7); and 7)o are supported in the region
S=(~w—0,~w+0)U(w—0d,w+0) (witho € (0, %)) and its complement (see Figure 5), so that n; = x (D)7,
12 = (1—x(D))n, where x is the characteristic function of the set S (note that S = (—4, §) if w = 0). Decomposing
(15) into

X(D) (K(m +m2) — c5(1 — &) L(m +12)) =0,
(1= x(D)) (K(n1 +m2) — g (1 = %) L(m +m2)) =0,

one finds that the second equation can be solved for 72 as a function of 7; for sufficiently small values of ¢ > 0;
substituting 772 = 72(1) into the first yields the reduced equation

X(D) (K(m +n2(m)) = e5(1 = &) L(m +n2(m))) =0
for 11 (see Section 3).

— >, TR R —

Figure 5: (a) The support of 11 is contained in the set S, where S = (—0,0) for 1 < ~ < 9 (left) and
S=(-w—0,—w+ ) U(w—0,w+0d)fory >9 (righ).

Finally, the scaling
m(z) =e*(2),  Z=ez @7

transforms the reduced equation into
e72g(eD)C + 2¢3¢ + 2c2doxo(eD)¢? + O(eY/?) = 0 (28)
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for 1 < v < 9, while the scaling

m(z) = 2e(2)e* + Le((Z)e ™%, Z =ez, (29)
transforms the reduced equation into
e 2g(w +eD)C + azC — azxo(eD)(I¢*¢) + O(/?) = 0 (30)

for v > 9; here xq is the characteristic function of the set (—d,d), the symbol D now means —id; and precise
estimates for the remainder terms are given in Section 3. Equations (28) and (30) are full dispersion versions of
(perturbed) stationary Korteweg-de Vries and nonlinear Schrodinger equations since they retain the linear part of
the original equation (15); the fully reduced model equations (24) and (26) are recovered from them in the formal
limite — 0.

The functions (kqv and +(n1,s are nondegenerate solutions of (24) and (26) in the sense that the only bounded
solutions of their linearisations at (xqv and =(nr.g are respectively Ckqav,z and £=(nrs,z, £i{nrs. Equation (15) is
invariant under the reflection 7)(z) — n(—z2), and the reduction procedure preserves this property: the reduced equa-
tion for n; is invariant under the reflection 7, (z) +— 1;1(—2), so that (24) and (26) are invariant under respectively
C(Z) = ((—Z) and ¢(Z) — ((—Z). Restricting to spaces of symmetric functions thus eliminates the antisym-
metric solutions (kqv,z and +(nrs,z, Fi(npg of the linearised equations, and in Section 4 solutions to (28) and
(30) are constructed as perturbations of (kxqv and £(n1g by formulating them as fixed-point equations and using
an appropriate version of the implicit-function theorem.

This method has been used for the classical water-wave problem by Groves [10], and since many of the details in
the derivation and solution of our reduced equations are similar to those in that reference we keep Sections 3 and 4
concise. We begin our analysis by showing that the functionals /C and £ in equation (15) depend analytically upon 7
in a suitable sense (see Buffoni & Toland [6] for a treatise on analytic functions in Banach spaces), which of course
entails rigorously defining the operator K given by (18) and demonstrating its analyticity. This step, the details of
which are given in Section 2, differs significantly from the corresponding step in reference [10]; in particular it is
necessary to study an axisymmetric boundary-value problem using novel function spaces and carefully estimate a
Green’s function defined in terms of modified Bessel functions.

1.5 Function spaces

In addition to the familiar Sobolev spaces

H*(R) = {?7 €S (R) | Il := /R(l + k) [ik)|? dk < 00} ;820

we use the variants
H:(R) = xo(eD)H*(R),  s>0

and
Z={ne " ®) | nlz =l + nlz < oo},

where
m=x(D)n,  m=1-x(D)n

(see Section 1.4 above). Note in particular the estimate

I ll.00 < MK AE) 21 @) S I72llLr )

which holds because 7; has compact support, and implies in particular that

171,00 < [Imll100 + [IM2ll1,00 S IMllz2®) + [In2ll2 = [0l 2- (31)
Our analyticity result for the operator K defined by equation (18) is given in terms of the space Z.

Lemma 1.3 The mapping K : Z — L(H?/?(R), H'/2(R)) is analytic at the origin.



This lemma is proved in Section 2, where we work with the equivalent definition
KM€ = —(8lr=141)-, (32)

where ¢ is the axisymmetric solution of the Neumann boundary-value problem

Adp=0, 0<r<1+mn,
.
Qem+m) P2l =e, =14y

(which is unique up to additive constants). To solve this boundary-value problem it is obviously necessary to study
axisymmetric functions in the ferrofluid domain {0 < r < 1 + n}. For this purpose we use the radial function
spaces introduced by Groves & Hill [11] for functions defined on the reference domain {0 < r < 1} (onto which
the ferrofluid domain is mapped for our analysis). Let fom : By (0) x R — C be a function with the property that

fin(rcosO,rsinb, z) = ™ £, (r, 2), re0,1), 0 €T, 2 €R, (33)

for some m € Z and some f,, : [0,1) x R — C with f,,(0, z) = 0 for m # 0. We refer to such functions as mode
m functions, such that axisymmetric functions are mode 0 functions.

Remarks 1.4

(i) The radial coefficient fo(r, z) of a mode 0 function fo (z,y, z) obviously satisfies fy(0,z) = fO(O7 z). The
same is true for m # 0 since f,, (0, z) = 0 implies that f,,(0,z) = 0.

(ii) The radial coefficient f,,(r, z) of the mode m function fm(a?, Yy, z) is also the radial coefficient of the mode

—m function fp,(z,—y, 2).
It is convenient to study mode m functions using the Wirtinger-type complex differential operators

0, = L0, —i0,), 0= (9, +19,)

-5 (
V2 V2

in place of the Cartesian differential operators 0, 9,. Let fm : B1(0) x R — C be a mode m function with radial
coefficient f,, : [0,1) x R — C. It follows that

O fn = "V 2D fin,  Orfm = TV D i,

where D; is the Bessel operator
,d . d g
Dj:=r JETJ _E—i_;'
According to this calculation the operators J; and 9> map a mode m function with radial coefficient f,,, to a mode
m—1 function with radial coefficient D,,, f,, and a mode m+1 function with radial coefficient D_,, f,,, respectively.
Correspondingly, one finds that D,,, and D_,,, map a mode m radial coefficient to a mode m — 1 and a mode m + 1
radial coefficient respectively, as illustrated diagrammatically in Figure 6 (which commutes). Note that it is actually
not necessary to distinguish between mode m and mode —m radial coefficients since the radial coefficient of the
mode m function fm(x, y) is also the radial coefficient of the mode —m function Fom (z, —y) (which explains the
apparent ambiguity in this interpretation of Dy.)
We denote the (closed) subspace of the standard Sobolev space

q p n
H9(B;1(0) x R;C) = {f: Bi(0) xR Cl [ fl1H =>_> > (’;) |or=iaior—" f||2, < oo}

p=0n=0 i=0

consisting of mode m functions by fI(qm)(Bl(O) x R;C). Observe that a mode m function f,, belongs to
L?(B;(0) x R;C) if and only if its radial coefficient f,,, belongs to

1
Lf((O,l)xR;(C):{f:[O,l)xR—MC\||f|i§ ::27r// f(r,z)|2rdrdz<oo},
RJO
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mode m—+ 2
D_nt1) D_miny o
/ Ve
7 /
4 Dtz 4
mode m+1
D_m D_.;
7 7/
7/ Ve
7 D1 7 Dint1
mode m
D1, Dy
7 7
s
/ g 7
D Dl 7
mode m—1
Dy
s
7

D14 7 D1

R mode m — 2
q=0 q=1 q=2 q=3 q=4

Figure 6: Actions of the Bessel operators. The mode m + j function in column ¢ is el(™+7 )9qu Dry_y - Diny s
where the indices {m;}?_; satisfy m; = £(m;_1 —1), with m; = £m, and consist of 1 (¢— ) positive and 3 (g-+5)
non-positive terms.

and that
ORI fry = el =200 o= pri DI . i=0,...n,
where )
Dt = pIte <1d)zer-_ D i_o...Di_1D..
J rdr J—(-1)~j—(i-2) J—1&75

One indeed finds that f,,, belongs to HY )(Bl (0) x R;C) if and only if its radial coefficient f,, belongs to

(m

q P n
—-n n n—1u % —n
HY, ((0,1)xR; €)= {fm (0D xRS C fullfye =D D27 () 1D Do fnl 2 < oo},

p=0n=0 =0

and that the mapping f,,, — fm is an isometric isomorphism (see Groves & Hill [11, §3] for a more precise
statement and a discussion of the properties of these function spaces).

2 Analyticity

2.1 The operator K

In this section we study the operator K given by (32). Denoting the radial coefficient of q; by ¢, such that

(b(.%‘,y, Z) = (;5(7‘, Z)7

we can equivalently define
K(n)€ = _(¢|T:1+n)m

where ¢ is the solution of the boundary-value problem

D1D(]¢5 + ¢zz = 0, O<r<l1+ 7, (34)
(14+1)(Dogp —n.0-) =&, r=1+n (35)

(which is unique up to additive constants).



The ‘flattening’ transformation
r
!

=1 el
transforms 57 into the fixed strip X = (0, 1) x R and the boundary-value problem (34), (35) into

u(r/ﬂ Z) = ¢(T7 Z)

D1Dou+ u,, = D1 Fi(n,u) + 0, Fa(n,u), 0<r<l, (36)
Dou:Fl(nvu)+§zv 7":1, (37)

where we have dropped the primes for notational simplicity and
Fi(n,u) = r(L+m)n.u. —r*n2Dou, — Fa(n,u) = (1 +1)1.Dou — n(n + 2)us, (38)

so that
K(??)& = _UZ‘T:L

This boundary-value problem can be cast as the integral equation
u = S(F1(n,u), F2(n,u),§), (39)
where .
S(Fy, Fy, &) = F~! [ /0 (kG(r,7) Py = DoG(r, ) By ) 7 a7 — ikG(r, 1)5}
with

Li(|k|)

~Io(|Klr) (Kmm n Io(km) Co<r<r

G(r,7) =

—Io([K|7) (Ko(k|r) + I;I((";‘C"))Jowv)) L ier<l

We study (39) forn € Z, ¢ € H3?(R) and u € H*(X), where
H*(2) := H{y)(D)/R

with norm
2 2 2
lul? = 1= 3, -+ Dol

The following result is proved in Section 2.2 below.

Theorem 2.1 The solution operator S satisfies

IS(Fy, P €)1l S IR lars, + 1 Fally, + €12

forall Fy € H(ll)(Z), = H(IO)(E) and ¢ € H3*(R).

Lemma 2.2 The formulae (38) define analytic functions Fy : Zx H*(X) — H(ll)(E), Fy: ZxH*(X) — H(lo)(E).

Proof. Clearly
lrnzuzllrs S lInsllcolluzlize S llnllzllulls,

(see (31)). Using the calculations

Dl (”h%) = rnzDO (uz) + 2nzuz7 az (Tnzuz) = TNezUy + TN Uz

= TMzzUz + T1222Uz + 712 Uzz,
we similarly find that
D1 (rnzuz)licz S 1n:lloe (1Douzllzz + luzllzz) S linllzllull«
and
[0 (rnzuz )z S llmszlloolluzllz + [1nslloollusz |2 + 1n2s2usllze S Inllzllulls + [[n2:2usl L2

10



with

1/2

1722202172 < HmzzH%Slélﬂzllr uzl[720,1)
z

S lm2a= 3l 2z (r, 2) M 3 g, 22(0,0))

— Moma N3 22 + Nusell2:)

< izl
It follows that (1),u) — 71,u, is an analytic mapping Z x H*(X) — H (11)(2), and similar arguments show
that (n,u) +~ ron.u., (n,u) — 7r°n?Dyu are analytic mappings Z x H*(X) — H(ll)(E), such that

F: Zx HX) — H(ll)(Z) is analytic. The same method shows that F5 : Z x H*(X) — H(lo)(Z) is ana-
Iytic. o

Theorem 2.3 For each ¢ € H3/? (R) and each sufficiently small n € Z the boundary-value problem (36), (37)
admits a unique solution uw € H*(X). Furthermore, the mapping Z — L(H?/?(R), H*(X)) is analytic at the
origin.

Proof. Define a mapping 7' : H*(X) x Z x H3/?(R) — H*(X) by
T(“?U?é‘):ui ( ( m, )F2(777 )7 )7
€)-

such that the solutions to (39) are precisely the zeros of T'(+, n It follows from Theorem 2.1 and Lemma 2.2 that
T is analytic at the origin. Furthermore 7°(0,0,0) = 0 and d T[O 0,0] = I is an isomorphism. It follows from the
analytic implicit-function theorem (see Buffoni & Toland [6, Theorem 4.5.4]) that there exists open neighbourhoods
N; C Z, N, € H??(R) and N3 C H*(X) of the origin and analytic function v : N7 x No — N3 such that

T(U(T]7 6)7 1, 5) = 0;
furthermore u = v(n, ) for all (1, &, u) € Ny X Ny x N3 with T'(u,n, &) = 0. Since w is linear in £ we can choose
Ny = H3/%(R). 0
Corollary 2.4 The mapping K : Z — L(H?/?(R), H'/?(R)) is analytic at the origin.

Proof. This assertion follows from the formula K ()¢ = —u.|,—1, the analyticity of u : Ny x H3/?(R) — H*(X)
and the facts that 9, : H*(X) — H (10) (3) and u — ulp=1, H (10) (¥) — H'Y?(R) are continuous linear operators
(see Groves & Hill [11, Lemma 3.24)). O

According to Corollary 2.4 we can choose M sufficiently small and study the equation
K(n) — (1 —€*)L(n) =0
in the set
U={neHR):|nlz <M} (40)
noting that H2(R) is continuously embedded in Z and U is an open neighbourhood of the origin in H?(R).
Corollary 2.5 The formulae (16), (17) define analyic functions U — L*(R).

Proof. This observation follows from the formulae

= (+ () 0) () (e =) v

1 1
+7(1+77)1/2—1 <(1+n)3/2—1>772z_7722a

£() = =3 (Kn)* = SK K i = S0P + 5575 + 5 (K)?

772 212 772 772 2
+ "= (K = Kmn- — K
8(an)( (mn*) T+ 12 (mn 5+ 17) (mn

n: ) ) ,
PR (mnK (n)n” + K(n)n+ 5K (n)n

and

11



(1) Corollary 2.4,

(i) the fact that the functions

1 1 1 p?
p I/<1+p) I/( )7 p 1+ ? p (1+p2)1/2 ? p (1+p2)1/2

are analytic at the origin H!(R) — H'(R),

(ii) the continuity of the multiplication map H'(R) x H*(R) — L?*(R), H'(R) x L?*(R) — L?(R) and
H'?(R) x H'/2(R) — L?(R) (see Hormander [14, Theorem 8.3.1]),

(iii) the continuity of the embeddings H?(R) C H3/?(R) C H'(R) C HY?(R) C L*(R),
(iv) the fact that F3/2(R) is a Banach algebra. a

2.2 The linear boundary-value problem

In this section we prove Theorem 2.1 by estimating the operators
1
Gi(F):=F! [ / kG (r, 7)F(F) df} :
0
1
Go(F) :=F! [ / —DoG(r, 7)FF () df] :
0
1 . 1| do(lklr) £
G3(§) := FH—ikG(r,1){] = F 1{—
(6) o= F kG (r, D] SR

in Lemmata 2.10-2.12 below. For this purpose we introduce the functions

ﬂMhumm(Kamvw+Kﬁ:?m0Mﬂ)7 0<r<7
fhlrr) = Ky (k)

mnukr(Klm anumn), Fer<t,

kLo 1klr) (Klm ﬁﬁ?mmm), 0<r<i,
Halrn ) = L (IK)

i k) (o) + U T(ein ) 7 <<

K21 (k) (Kuk K(Whmmv),o<r<a
= ﬁ%

) k ]
|k|2 I (k| 7) (K1 |k|r) A 1(|k:r)>, Fr<l,

which are the formal derivatives G, (r, 7), G#(r,7) and G,#(r, 7) of G(r, ) respectively, and establish the following
auxiliary results.

Proposition 2.6 The function G(r,T) satisfies

! 1 ! 1
r|G(r,7)|dr = —, /rGr,F dr = —
| e =g [ ree e - o

forall k € R.

12



Proof. We find that

1 T
/0 r|G(r, 7)|dr = (Ko(k|f)+Izl((lz“"'))fo(mw))/o rIo(|k|r) dr
1
+Io(|k|ff)[ r (K0(|k|r)+ Ig((':l))fo(w)) dr
1
kP
and
1 i 1 } 1
/OT\G(T,THdr—/O r|G(r,7)|dr = ek o

Proposition 2.7 The function H1(r,T) satisfies

Sforall k € R.

Proof. We note that
0 as|klr—0,
2\klrIy (|k|r) K1 (Jk|r) —
1 as|klr — o0

and
0 aslk|—0,

okl (k)2 ZL D o (ki (k) — {

I (|k[) 1 as k| = oo,

so that these quantities are bounded over r € [0, 1] and k € R. We therefore find that

el [ a7 a7 = o] (Ka(iln) — G0 0k0) ) [ ek

#n k) [ 1017 (Kol + T R (k1)) 07

5 Ki(|k|)
I, (|K])

= =2|k|rI (Jk|r) + 2|k|r Iy (|k|r) K1 (|k|r)

<1

Next we record the estimates

0 < ZIRIFL([RI7) Ko([k[7) Lo(1K7) — 5 |kI7To(|k[7) Ky ([K|7) Lo(|k|7)
= | k|7 Lo ([k|7) Ko ([k|7) L (|k[7) + 5 Lo([K[F)
A

as |k|7 — 0,
i L1(|kl)> ( L1<|k|>) 5 aslk=0,
0<ZIy(|kl7)1— < ZIy(|k 1-— —
< 3 1o(|K| )( L(k)) =2 o(lk[) I, (|k|) 1 as|k| — oo,

[l VI E]

as |k|7 — oo,

where L, is the modified Struve function of the first kind and order wv. Using the fact that
h s ws(I(s)Lo(s) — In(s)L1(s)) is increasing (since h'(s) = 2sI1(s) > 0 for s > 0 with A/(0) = 0),

13



we furthermore find that

0 < k|7l (I7) (T (k17 Lo(1k17) — To(IK[7) Ly (K]7 )
k

< ekl (K1) (1R (K1) ~ To(D L (Ik1)) (<|'k')>
0 asl|k|—0,
{ 1 as|k|] — oo.

Using these estimates we conclude that
' . S
i [ it ar = i (Ko + S0 1)) [ wier e ar

ka1 [ 1ol (50 - T k0 ) 07

= Z1k|P L ([K[F) Ko (|k|7) Lo (|k|7) — F1kI7Lo(|k|7) K1 (|k|7) Lo(|k|7)
Ly (|k|)

I ([k)
+ k7L (417) (1 (417) Lo [417) Io<|k|r>L1<|k|r>)Kf<(|zf|>)

— k[P Lo ([k|7) Ko (||7) L ([k[7) + 5 Lo(|k[7)

<1
Corollary 2.8 The function Hs(r,T) satisfies
! 1 ! 1
/ FHy (r, 7)] dF < / P Ha(r,7) dr € -
0 [k[ 0 ||
forallk € R.
Proposition 2.9 The function Hs(r,T) satisfies

1 1
/ FHa(r, )| d7 < 1, / r|Hy(r, 7)) dr < 1
0 0

forall k € R.

Proof. Using the estimates
L1<|k|>> < L1<|k|>) 0 as k| =0,
0 < ZL(|k|r (1 <ZThL(k)(1- —
U= 2 ) = 3100 ) 7 U1 as b = o,

0 asl|kl—0,

0.< 5( (k) — La(Jklr) — {

1 as|k| — oo,

we find that

SR K (k) ST
/0 7|Hs(r, )| dF = |k <K1(|k|r)— Il(|k|)11(k|r)>/o |k|7 11 (|k|7) A7

1
kel [ (k) - TR k) a7
Ly(lk])
LK)

s La((klr)

L(klr) 7

14



and . .
/r|H3(r,f)|dr:/ FHy(r, 7)| dF < 1.
0 0

Lemma 2.10 The estimate

163 () < 1F L,

holds for all F' € H(lo) (2).

Proof. It follows fom Proposition 2.6 that

) 1
0P < [ [

oo 1 1 1
g/ / r/ \k|2f|G(r,f)|df/ \k|?7|G (r, 7)||[F(7)|? d7 dr dke
—o0 J0 0 0

< /_O; /O1 (/01 |k|2r|G (r, 77)|dr> FIE(F) % dF dk

< IFIZ

2

1
/ —|k|?FG(r, ) F () dF|  drdk
0

and hence
102G1(F)l 12 = 10:G1(F:)|l 2 < || Fxll 2.

Next we note that

DoG1(F) = F1 [ / 1 ik Hy (r, 7) F(7) df]

0
and using Proposition 2.7 that

e8] 1
PPz [ [
—oo J0

[e'e) 1 1 1
5/ / 7"/ |k|f|H1(r,f)|dF/ e lF L (r, )| | B ()2 dF dr
—o0 JO 0 0

S /O; /01 (/01 |kT|H1(T,f)|dr> FIE(F) |2 dF dk

SIFI3

1 2
/ ikiH, (r,7)F(F)dF| drdk
0

and hence
[0:DoG1 (F)l| Lz = [[DoG1(F:) Lz < || Fell e

Finally, using the identity
D1DoGi(F) + 92G1(F) = F.,

which follows from the definition of G;, we find that

ID1DoGr (F) 12 < 10261 (F)ll 2 + [ Fall e S 1Pl e

Lemma 2.11 The estimate
162 S 1F 1y,

holds for all F ¢ H(ll) ().

Proof. Since

9.Go(F) = F~! [ /0 1 ki Hy (1, 7)F(F) dF

15



it follows from Corollary 2.8 that

10-G2(F)2: S / /
1
5/ /r|k|/ F\HQ(r,f)|dF/ \k|7| Ha (r, 7)|| F(7)|? dF dr dk
—oc0 JO 0 0
e’} 1 1
5/ / (/ |k|r|H2(r,F)|dr)F|F(F)|2dfdk
—oc0 JO 0

SIFIZ:

2

1/4;7‘H2 (r,7)F(F)dF| drdk

and hence
102Ga(F)l 2 = [10-Ga(F2)ll 2 S || Fllr2-
Next we note that

DoGa(F) = F~ UOerg(r 7)F (7 )dr] ~F,

ez < [ [

1
5/ /r/ f|H3(r,f>|df/ F|Hs (r, 7)|| F(7)|* dF dr dk + || || 2
0

/ /(/ r|H3rr)|dr)r|F( 52 dr dk

S IFIZ,

so that

2
ng (r,7)E(7) dF

drdk + || F| 2

where we have used Proposition 2.9, and hence

[10:DoGa(F)ll 3 = 1PoG2(F2)ll 3 < 1 F= 22

Finally, using the identity
D1DoGo(F) + 02Go(F) = Dy F,
which follows from the definition of G5, we find that

ID1DoGa(F) 2z < 102G2(F) 2z + ID1Fllnz S IFellpe + IDLF s

Lemma 2.12 The estimate

1G5« < N€ 32
holds for all ¢ € H3/?(R).

Proof. First note that

117.12 IO(W)Q _ 2\1/2

bk (200 1) S 1+ o)
BE(To(R)?

ﬂume<mwv‘Q*{

Io(|k|r
o6s@lis = [~ [ e M g ara

-, e (R ) e

S Il 2

since

[\V]

as |k| — 0,

as |k| — oo,

N[

from which it follows that
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and hence that

102G5(9)lls = 193 (€2 < N18=1% -

Lo (o TURD?Y L TollkD -
al (1 11<|k|)2) TRy < RS

L <11'o(|k|)2>+ k| To(kl) [ O aslk[=0,
201+ |k[2)1/2 LKD) (L [R2)Y2 L ([k]) as [k| — oo,

from which it follows that

I (|k|r)?
Do @lig = [ [ e B g ara

= (o (- 1)

< l€l?e

Similarly

since

[N

Io(|%])
I (|k])

) €2 dr dk

and hence that
18:DoGs(&)lI 22 = [IDoGs(E) 122 S -7 2
Finally, using the identity
D1DoGs(§) + 92G3(€) =

which follows from the definition of G5, we find that
ID1DoGs(E) |22 < 102G5(E) 2 S M€z l1y2- .

2.3 Expansions

Using the results in Section 2.1 above, we obtain the expansions
0 .
&)=Y v (n¢), 1)
=0

where v’ is homogeneous of degree j in 7 and linear in &, and

=Y K;(m), K =)_K;m), L) =>_Ln)
=0 =0

J=0

where K, KC;, £; are homogeneous of degree j in 7). Note in particular the formulae

Ki(n) = (v = 1)n = 2z, (42)
Ka(n) = Aon® — 3172, 43)
Ks(n) = Bon® + $m2 + 302122, (44)
L1(n) = Kon, (45)
La(n) = 5 (n? — (Kon)* + Kon® + 2K1(n)n), (46)
L3(n) = —n2Kon — L(Kon)(Kon* + 2K (n)n) + 2 K1 (n)n* + Ka(n)n, A7)

where
Ag=——s"()+1,  Bo=ry+w"1)+ g (1) -1,
which are obtained from equations (16), (17).

The terms in the expansion of u(7, ) can be computed by proceeding formally. Substituting (41) into equations
(36)—(37) and equating terms which are homogeneous of order j in 7 yields a boundary-value problem for »7 in
terms of u°, ..., u/~!. Formulae for the terms in the expansion for K (7) in terms of Fourier multipliers are then
recovered from the formula

K;()(€) = —ul (1, €)lr=1.

17



Remark 2.13 This method leads to formulae involving ever more derivatives of ) and £ in the individual terms
in the formulae for K;(n); the overall validity of the formulae arises from subtle cancellations between the terms
(see Nicholls and Reitich [15, §2.2] for a discussion of this phenomenon in the context of the classical Dirichlet—
Neumann operator).

Proposition 2.14 The operator Ko € L(H3/?(R), H'/%(R)) is given by the formula
KO& = f(D)§7
which also defines an operator in L(H*T(R), H*(R)) for each s > 0.

Proof. The solution to the boundary-value problem

DDy’ +ul, =0, 0<r<l,
DOUO = 527 r= 17
for w0 is

o k(R -
w=r {kul(kng]’

such that

Ko& = —(u)|r=1 = f(D)E.

Fk)SV1+k2,  keR,

Furthermore, the estimate

which follows from the calculation

fk) _ _Ikllo(lk) 2 as|k] =0,
VI+k2  V1+E2L(k]) 1 as|k| — oo,

implies that
[Ko&lls < NI€lls+1
forall s > 0. O

Proposition 2.15 The operators K1 and Ko are given by the formulae

K1(77)5 = _(nfz)z - KO(nKO€)7
Ko(m)€ = (1P Koz + Ko (&) + 3(0°E): — $Ko(PKof) + Ko(nKo(nKof))

for eachn € H*(R) and ¢ € H3/?(R) (see Remark 2.13).

Proof. The solution to the boundary-value problem

D1Dout + uiz =D (rr]zug) + 0. (rn. Do’ — 277u2), 0<r<l,
Dou' = rn.u, r=1,
for u! is
ut = ryDou’ + w',
where
D1 Dow* +w?, =0, 0<r<l,
Dow'* = (nug)z, r=1,
such that el (K]
1 0 —1 1K 1o r 0
u = rnDou’ + F —— = Flnuy|r=1]
k| Iy (|k])

18



It follows that
Ki(n)§ = —(ul)|r=1 = —(n&.). — Ko(nKof).

Similarly, the solution to the boundary-value problem

D1Dou® + uf,z =D (rnzui + rnnzug - rznzDouo), 0<r<l,
+ 0.(rn.Dou’ + rmm.Dou’ — n?ul — 2nul),
IDO'U/2 = Tnzui + 7"7777zu2 - T277ZDOUO> r= 1?
for u? is
w? = —%nzDO(TQDouO) + ryDout + w?,
where
DlDOw —l—u) =0, 0<r<li,
Dow® = (u}). + (37°u)). — (3(°Dou’).).,  r=1,

such that

[EL L (1K)

u? = —1n*Dy(r*Dou’) + rnDou’ + F 1 [1kI()(|k7” Flan*u|r—1] ]
FRRPDou). | 1@ L F [ F

ikIo(|k|r)
[kILy(KI)

1 [1kIo(|k|r)

1
d DI “—”]'

‘We conclude that

Ky(m)é = —(u?)],=1
LPDEu’). + (P Dou®). — (maul). — $Ko((n*E2)2) + S Ko(n*ul) — Ko(nKi1(n)€)
TP Ko).. + 3Ko(n*E.z) + 2 (0%E). — Ko (0P Kof) + Ko(nKo(nKof)).

Corollary 2.16 The formulae

Kl(n) = (’Y - 1)77 — Nzz,
ICQ(U) = AO 2 - %7737
Ks(n) = Bon® + $mm2 + 3n2n-.,

L1(n) = Kon,
Lo(n) = 302 = (Kon)? = ()22 — 2Ko(nKon) + Kon®),
L3(n) = $(Kon)(°) = + (Kon) (Ko(nKon)) — 3 (Kon)(Kon®) — n2(Kon)
(P Kon) = + 5 Ko(n’n22) — $(0°n.). — 3 Ko(n*Kon)
+ Ko(nKo(nKon)) — 5 Ko(nKon®)

hold for all n € H?(R?) (see Remark 2.13).

Lemma 2.17

(i) The estimates

IK2(mllo < lInllzllnllz, — dK2[0](p)llo < llnllzllpll2,
[1L2(mllo < lInllzllnllzs ldL2[nl(p)llo < llnllz el

hold for all n, p € H*(R).
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(ii) The estimates

Is(m)llo < InllZlnllz,  IdKs[ml(e)llo < lInlZlellz + Inllzlnli=lloll2,
1£s(mllo < IliZlinll2,— NdLsmI(p) o < lInlZllellz + Il zlnl2loll2
hold for alln € U and p € H?(R).

(iii) The quantities

Ke(p) =Y Kim), L) = Li(n)

j=4 j=4

satisfy the estimates
I (mllo S InllZlnllz, 1K) ()llo < InliZllellz + InliZlnllzlloll2,
1£:(mllo S Il Zlnllzs AL [lR)lo < InllZlollz + lnlZlmll]lpll2

hold for all € U and p € H?(R).
Proof. These results are obtained by estimating the right-hand sides of (43), (44), (46), (47) and
K:(n) = K(n) = Ki(n) = K2(n) — Ks(n)

== (w (1_177) — (1) +yn+ (Ao — Vn* + (Bo + 1)n3)

1 1
((1_1_7] 2)3/2 -1+ 277z) Nze+ (1 =) <(1+ )1/2 -1+ 277z>
+ (1 = n%) ;—1 T ) g —
(1+n2)t/2 L+7 (1+n2)1/2’

L:(n) = L(n) — L1(n) — L2(n) — (77)

1 1
— LK) +2( 1) O = K~ K )

+ 3(Kmn + n-K(mn*)?> = n2(K>1(n)n + s K(n)n*)
+K23( ) + K>2( ) 2

with

Koi(n) =Y K;(n),  Ksa(n)=>_ K;jm),  Kxs(n) =Y K;n)

j=1 j=2 =3

using the methods described in the proof of Corollary 2.5, noting that

1K (nlle S Inlslnllsre, 1Kl < llnlls

and

[ (mnlhye S Inllzlinllsz, 1Kseullye S IlZlnllse, 1K=l S nlZlnlls /-

The estimates for the derivatives are obtained in the same way.

3 Reduction

In this section we reduce the equation

|
=

K(n) = c5(1 = *)L(n)

20

S(Ksa(mn+ 3K m)n?)? — (Kon + K1 (n)n)(Ks2(n)n + $Ks1(n)n?) — & (Ki(n)n)?
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to a perturbation of a full-dispersion model equation using a technique reminiscent of the Lyapunov-Schmidt reduc-
tion. We work in the subset U of the basic space X = H?(R?) (see equation (40), so that equation (48) holds in
L?(IR?). Respecting the decomposition of 7 into two parts, we decompose X’ into the direct sum of the spaces

X =x(D)X, X =(1-x(D)X

and equip X and &> with respectively the scaled norm

(Al :/R(1+€*2(Ik\ —w)?)in|* dk

(with the convention that w = 0 if 1 < 7 < 9) and the usual norm for H?(R).
Proposition 3.1 The estimate

iy S €2 llmll
holds for every n € X1, and in particular

1/2

Inllz < &/ Zlllmlll + lInzll2

foreveryn € X.

Proof. This result follows from the calculation

i (142 ([k|—w)?)1/2
Lmlas= [ G - e elin ()] ak

(/ T+e2(Jk|—w)? |I<:\ )2 k>1/2771|||

w
= (7r5 + 2¢ arctan *) |||771 ||| =
e

IN

Clearly n € U satisfies (48) if and only if

X(D) (K(m +n2) = ¢§(1 = %) L(m + 1)) = 0,
(1= x(D)) (K(m +12) = (1 = €*)L(m +112)) =0
and these equations can be rewritten as

g(D)ym + 3 Kom + x(D)N (1 + n2) = 0, (49)
g(D)nz + g Kona + (1 = x(D))N (1 + n2) =0, (50)

in which
N () = Ka(n) + Ks(n) + Ke(n) = c3(1 = €2)(La(n) + L3(n) + L:(1)).-

We proceed by writing (50) as a fixed-point equation for 19 using Proposition 3.2, which follows from the fact
that g(k) = |k|? for k ¢ S, and solving it for 7, as a function of 7; using Theorem 3.3, which is proved by
a straightforward application of the contraction mapping principle. Substituting 7o = 72(71) into (49) yields a
reduced equation for 777, which can be rewritten as a perturbation of a full-dispersion model equation by applying a
further change of variable. Full details are given in Sections 3.1 and 3.2 below, which deal with the cases 1 < v < 9
(‘strong surface tension’) and v > 9 (‘weak surface tension’) separately.

Proposition 3.2 The mapping (1 — x(D))g(D)~" is a bounded linear operator L*(R) — Xs.

Theorem 3.3 Let Xy, X5 be Banach spaces, X1, X2 be closed, convex sets in, respectively, X1, X5 containing the
originand G: X1 x Xy — X be a smooth function. Suppose that there exists a continuous functionr: X, — [0, 00)
such that

1G(21,0)]| < 57, [[d2Glar, 2]l < g

for each x5 € B,(0) C X, and each z1 € X;.

Under these hypotheses there exists for each x1 € X1 a unique solution xo = xo(x1) of the fixed-point equation
x9 = G(x1,x2) satisfying xo(x1) € B,.(0). Moreover x5(x1) is a smooth function of v, € X, and in particular
satisfies the estimate

[daz[21]]| < 2[|d1Glay, 22 (z1)]]]-
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3.1 Strong surface tension
Suppose that 1 < v < 9. We write (50) in the form
2 = —(1—x(D))g(D)~" (cge*Konz + N (1 +12)) (51)
and apply Theorem 3.3 with
Xi={m e Xi:|Imll < R},  Xo={n € Xa: [In2]l2 < Ro};

the function G is given by the right-hand side of (51). Using Proposition 3.1 one can guarantee that
1910l m2y < %M for all 71 € X; for an arbitrarily large value of R;; the value of Ry is constrained by the
requirement that |||l < 3M for all 7, € X,. The next lemma follows from Lemma 2.17, its corollary from
Proposition 3.2.

Lemma 3.4 The estimates

2
2

(i) IN (1, m2)llo < €2 mll* + &'/ lllma Wiz ll2 + N lll2l13 + e

2
2

(i) [N, o)l e 2@y S €2 Imll + €/2(n2ll2 + [0

(iii) || d2N 1, 2] £ s, 22my) S €2l + N1zl + 2]z,
where with a slight abuse of notation we write N'(1n1 + n2) as N (n1,m2), hold for each n, € X1 and 1y € Xo.

Corollary 3.5 The estimates

(D) 1G(n1,m2)ll2 < €2l + €2 mullllallz + Wl linz 13 + 2113 + 2 llme]l2.

1/2

(i) [|drG 1, m2lllccaey, 20y S €2l + €2 (mzll2 + lIn2ll3.

(iii) [|d2G[m1, m2ll 2,20y S €2 Mmall + Ml |22 + a2 + &2
hold for each m; € X1 and ns € Xo.

Theorem 3.6 Equation (51) has a unique solution ny € Xo which depends smoothly upon 11 € X1 and satisfies

the estimates
1/2

I ()l S 2 lmll? ldnamllecen,x) S €2 llmll.

Proof. Choosing R, and ¢ sufficiently small and setting (1);) = oe'/?||n ||? for a sufficiently large value of & > 0,

one finds that

1G(n1,0)]l2 < 2r(m), 1d2G [, 1) | 20, 00) S €2

form € Xy and ns € Fr(m) (0) C X2 (Corollary 3.5(i), (iii)). Theorem 3.3 asserts that equation (51) has a unique

solution 72 in Er(m) (0) C X5 which depends smoothly upon 7; € X, and the estimate for its derivative follows
from Corollary 3.5(ii). O

Substituting 72 = 72(n1) into (49) yields the reduced equation

9(D)my + cge* Kom + X(D)N (1 + n2(m)) =0 (52)

for n; € X;. The leading-order terms in this equation are computed by approximating the operators 0, and Ky in
its quadratic part by constants.

Proposition 3.7 The estimates
(i) = = OCel[n ).
(ii) Koni = 201 + O(el[mll),

(iii) Ko(mpr) = 2mpr + O lmlllpv]l)
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hold for all 1, p1 € Xy. The order-of-magnitude estimates are computed with respect to the L*(R)-norm (which is
equivalent to the H®(R)-norm on the space x(D)H?*(R) for any s > 0).

Proof. This result follows from the calculations
Imzllo = llElillo < efllmll,
(Ko —2D)mllo = [[(f(k) = 2)mlly < MElAllo < llml,

1Ko — 2D)(mp) o < H'k' PG IAGIE

0
| = e B @orai+ [~ B o

S kLol Al r )y + 191l @)l [FlA1llo0
< 2l lpall

for each 11, p1 € X1, where we have also used Young’s inequality. O

0

The leading-order terms in the nonlinear part of (52) are now obtained from Corollary 3.8 (which follows from
Corollary 2.16 and Proposition 3.7) and Lemma 3.9 (which follows from Lemma 2.17) below. Here we use the
symbol O(&*||n||*) (with s > 0, ¢t > 1) to denote a smooth function R® : X; — L?(R) which satisfies the

estimates
[

IR (u)llo < e*llmll” AR [l 2, p2qr2)) S €°lllm
for each n; € Xj.
Corollary 3.8 The estimates
(i) Ka(m +n2(m)) = (= = 370" (1) + 1) i + O(ellmI?).
(ii) La(m +n2(m)) = =5nF + O(el|m|I*)
hold for each m; € X;.
Lemma 3.9 The estimate
N(m +n2(m)) = Ka(m) — (1 — %) L2(m) + O(ellmll*)
holds for each m; € X;.

We conclude that the reduced equation for 7, is the perturbed full dispersion Korteweg-de Vries equation

9(D)m + e Kom + X(D) (2o + O(ellm||)) = o,
and applying Proposition 3.7(ii), one can further simplify it to

g(D)m + 263 + (D) (2c3don? + O(ellmI2) + O llm ) ) = 0.
Finally, we introduce the Korteweg-de Vries scaling

m(z) = e%¢(e2),
noting that I : ; — ( is an isomorphism X; — H!(R) and x(D)L?*(R) — L2?(R) and choosing R > 1 large
enough so that (xqv € Br(0) (and € > 0 small enough so that Br(0) C HZ(R) is contained in I[X;]). We find
that ¢ € Br(0) C H(R) satisfies the equation
e72g(eD)¢ + 2¢5¢ + 2¢5doxo(eD)¢ + ' 205([I¢[l1) = 0, (53)

which holds in L2(R), where the symbol D now means —idz and the symbol OF (¢°||¢||}) denotes a smooth
function R : Br(0) C H1(R) — H”(R) which satisfies the estimates

IR S NS AR 2o (ry, mm )y S €°lICHTT

for each ¢ € Br(0) C HL(R) (witht > 1, s, n > 0). Note that ||5]| = £3/2||¢||, and the change of variable from
zto Z = ez introduces an additional factor of €'/ in the remainder term.

Equation (52) is invariant under the reflection 71 (z) + 11(—z); a familiar argument shows that it is inherited
from the corresponding invariance of (49), (51) under 11 (z) — 11 (—2), n2(2) — 12(—2) when applying Theorem
3.3. The invariance is likewise inherited by (53), which is invariant under the reflection {(Z) — ((—Z).
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3.2 Weak surface tension

Suppose that v > 9. Since x(D)K2(n1) and x(D)L2(n;) both vanish the nonlinear term in (49) is at leading order
cubic in 771, so that this equation may be rewritten as

g(D)my + cge®Kom + x(D) (N (1 +m2) + cg(1 — %) La(m) — Ka(m1)) = 0. 54

To compute the reduced equation for 7; we need an explicit formula for the leading-order quadratic part of 72(71);
inspecting (50) shows that it is given by

F(m) == (1—x(D))g(D)™" (c§(1 — %) La(m) — Ka(m)) , (55)

an estimate for which is found using Lemma 2.17 (note that Ky F'(n) satisfies the same estimates as F'(7) since
F[F(n)] has compact support).

Proposition 3.10 The estimates
(i) |1 E(m)ll2, 1o F (m)ll2 < €% [lm|

(ii) [|AF M)l 22,2005 1Ko F ]l 22y S €2 llmll
hold for each m, € X;.

2

i

It is convenient to write 772 = F'(11) + 13 and (50) in the form
s = —(1 = X(D)g(D) ™ (N1 + Flm) + ) + (1 = ) Lam) — Ka(m) + e Ko(Flm) +1s) ) (56)

(with the requirement that 1, + F(11) + n3 € U). We apply Theorem 3.3 to equation (56) with

Xi={meX:|ml <R}, Xs={mea:|ns<Rs};

the function G is given by the right-hand side of (56). (Here we write X3 rather than X5 for notational clarity.)
Using Proposition 3.1 one can guarantee that |71 [| 1 () < 1M forall n; € X; for an arbitrarily large value of R1;
the value of Rj is constrained by the requirement that || F'(11) + n3||2 < 1M forall y; € X; and 3 € X3, so that

m + F () +n3 € U (Proposition 3.10 asserts that || F(1;)||2 = O(¢'/2) uniformly over n; € X;). We proceed by
writing

N+ F(m) +n3) + g (1 — &%) La(m) — Ka(m) = —c5(1 — e*)N1(n1,m3) + Na(n1,m3) + Ns(n1,3),

where

Ni(n,m3) = La(m + F(n1) +13) — La(m1),
Na(ni,nz) = Ka(m + F(m) +n3) — Ka(m),
Ns(n1,m3) = Ka(m + F(m) +n3) + Ke(m + F(m) + n3)
— g (1= €?) (Ls(m + F(m) +n3) + Le(m + F(m) +13))

Ny O

and estimating these quantities using Lemma 2.17.
Proposition 3.11 The estimates
(i) IIN (1, m3) o, N2 (s ) o S ellmlI® + €2 llm 1 l1msllz2 + €22 malll1ms]l2 + s

(ii) |ds N1, ms]ll 2, L2 ryys 1aN2 [0, ms] L 2y p2 ) S ellmll® + /2 mlInsllz + £*/2]ns

2
2

2,

(iii) || 2Nt 1, ns]ll 2 cas 2wy 12N 01, 03]l 2 p2Ry) S €2 Il + [Ims]l2

and
(iv) N3, n3)llo S V2 nall + [Inslls)2(nwlll + [1nslls).
) [N 1, 3]l 2oy, 2ry) S (€2 Imll + [Imslls)?,

vi) | daNs[m, nall s, 2y S (€2 lmall + mslls) (llmall + l1mslls)
hold for each my € X1 and ns € X3.

24



The final estimates for G and its derivatives follow from Propositions 3.10 and 3.11 by virtue of Proposition 3.2.

Corollary 3.12 The estimates

@) G, m3)ll2 S EV2lImlll + 1msll2)? (L + il + lInsll2) + €2lIns
(ii) (|1 G 1, ms]ll ey, 2y S (EV2 el + Insll2) (62 + Y2l + [Ins]l2).

2,

(iii) ||d2G 1, ns)ll ccxes i) S (€2 malll + [Imsll2) (L + ol + lImsll2) + €

hold for each my € X, and n3 € X3.

Theorem 3.13 Equation (56) has a unique solution ns € X3 which depends smoothly upon n1 € X, and satisfies
the estimates

s (m)ll2 < ellmll®, [dns[mlllcoxn,a) S ellmll-

Proof. Choosing R3 and ¢ sufficiently small and setting r(1;) = oel||n:|? for a sufficiently large value of o > 0,
one finds that

1G(11,0)||l2 < 57(m), 1d2G 71, n3]ll £ (s, 2) S €172

forn; € X; andn3 € ET(m)(O) C X3 (Lemma 3.12(i), (iii)). Theorem 3.3 asserts that equation (56) has a unique

solution 73 in E(m)(O) C X3 which depends smoothly upon 7; € X7, and the estimate for its derivative follows
from Lemma 3.12(ii). O

Substituting 772 = F'(n1) + n3(n1) into (54) yields the reduced equation
9(D)m + cge* Kom + x(D) (=5 (1 — *)N1 (1, m3(m)) + Na(m,ms(m)) + Na(n,ms(m))) =0 (57)
for n; € X;. The next step is to compute the leading-order terms in the reduced equation. To this end we write
m=mn 4,

where i = x*(D)n; and x* (D) are the characteristic functions of the sets (+w — 8, +w 4 §), so that 1] satisfies
the equation

g(D)n + e’ Kon + xT (D) (—c§(1 = eX)Ni(n1,m3(m)) + Na(ni,ms(m)) + Ns(ni,ms(m))) =0 (58)

(and n; = ﬁ satisfies its complex conjugate). We again begin by showing how Fourier-multiplier operators
acting upon the function 7; may be approximated by constants. The following result is proved in the same way as
Proposition 3.7.

Proposition 3.14 The estimates
(i) 0. = +iwni + O(e||m ),
(ii) O2ny" = —w?ny" + O(ellmll),
(iii) Koni = f(w)ni + Oellmll),
(iv) Ko(ni pi) = fw)(nf pi) + O 2(mlllll o),
(v) Ko(npi) =20 pi + OE*2(|lmlllllprll),
i) F~ (k)L Flni o)) = 9(20) 7 (i pi) + OE* 2|l px 1),
(vii) F~g(k) " Flni o7 1) = 9(0) " i pr + O 2 llpa ),
(viii) Ko(nf pi€7) = f(w) (" pi &) + OEImlllloallI€ 1)

hold for all 11, py, &1 € X1, where the order-of-magnitude estimates are computed with respect to the L*(R)-norm.
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We proceed by approximating each term in the quadratic and cubic parts of equation (58) using Corollary 2.16 and
Lemma 3.14.

Proposition 3.15 The estimate
F(m) = g(2w) 7" (§AW) — 4o — 50%) () + (17)?) +9(0) 7' (GB(w) — 240 +w?) ni 0y +O (2 [lm ||?),

where
Aw) = Jw? = 3f(W)* = f(w)f(2w) + 3f(2w),  Bw) =’ — f(w)* —4f(w) +2
holds for each m € Xj.

Proposition 3.16 The estimate
X (D) (¢3(1 = )N (1, m3) — Na (i1, m3))
=X (D)((29(20) HSC(w) — Ao +w?)(FAW) — Ao — )
+29(0) (AD () ~ Ao)(BB(w) — 240 +w?) (12 + O Imi|I*) )

where

holds for each m € X;.

Proposition 3.17 The estimates
(i) X (D)Cs(m + Fm) +ns(m)) = x* (D) ((3Bo + §w? = $wt) (17 + O m 1)),

(ii) X (D)La(m + F(m) +na(m)) = x* (D) (E@)(ni 27 + OE2m ),

where
B(w) = 2f(w)* f(2w) = 6f(w)w? +  f(w)* - f(w)f(2w) — 4f (w) + 507,
hold for each m; € X;.

The higher-order terms in equation are estimated using Lemma 2.17(iii).
Proposition 3.18 The estimates
(i) Ke(m + F(m) +ns(m)) = O [Iml|*).

(ii) Le(m + F(m) +n3(m)) = O(¥?(|m|*)
hold for each m; € X;.

Corollary 3.19 The estimate
(DI ma(mn) = x* (D) ((8Bo + hoo? = o' = GBW)) (i + 0> Im))
holds for each m € X;.
We conclude that the reduced equation for 7; is the perturbed full dispersion nonlinear Schrodinger equation
g(Dy -+ e Kon +x* (D)~ dasinf Pnf + 02 mI)) =0
where

daz = 29(2w) " (FC(w) — Ap + w?) (g A(w) — Ag — 3w?)
+2g(0) (2 D(w) — Ag)(cAB(w) — 240 + w?) — 3By — w + w + 2 E(w),
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and applying Lemma 3.14(iii), one can further simplify it to
g(Dyif + @)t +xHD)( — daslrf Pof + 02 mlP) + O mill)) = .
Finally, we introduce the nonlinear Schrodinger scaling
M () = BeC(ez)e,
noting that I : n + ¢ is an isomorphism X;" := x*(D)X; — HX(R) and xT(D)L?*(R) — L?(R), where
Xt = x(D)X;, and choosing R > 1 large enough so that {xy.s € Bgr(0) (and ¢ > 0 small enough so that
Br(0) C H(R) is contained in I[X;"]). We find that { € Br(0) C HZ(R) satisfies the equation

e72g(w +eD)C + A f(w)¢ — azxo(eD)([C7¢) + 205 (|I¢[h) = 0, (59)

which holds in L2(R). Note that || ]| = £'/?||¢||: and the change of variable from z to Z = ¢z introduces
an additional factor of £'/2 in the remainder term. Equation (57) is of course also invariant under the reflection
1 (z) — m1(—z), and this invariance is inherited by (59), which is invariant under the reflection {(Z) — ((—Z2).

4 Solution of the reduced equation
In this section we find solitary-wave solutions of the reduced equations
e%g(eD)¢ +2¢5¢ + 2¢3doxo(e D) + €205 ([I¢[11) = 0, (60)

and
e 2g(w + eD)C + 2 f(W)¢ — azxo(eD)(I¢%¢) + 205 ([I¢ ) = 0. (61)

noting that in the formal limit ¢ — 0 they reduce to respectively the stationary Korteweg-de Vries equation
(37 — $)Czz + 265 + 2c5do(* = 0, (62)

and the stationary nonlinear Schrodinger equation

—a1lzz + as( — az|¢[*¢ =0, (63)

which have explicit (symmetric) solitary-wave solutions (xqy and £(nrs (equations (19) and (21)). For this pur-
pose we use a perturbation argument, rewriting (60) and (61) as fixed-point equations and applying the following
version of the implicit-function theorem. We again treat the cases 1 < v < 9 (‘strong surface tension’) and v > 9
(‘weak surface tension’) separately.

Theorem 4.1 Let W be a Banach space, Wy and ANy be open neighbourhoods of respectively w* in W and the
originin R and H : Wy x Ag — W be a function which is differentiable with respect to w € Wy for each A € Ay.
Furthermore, suppose that H(w*,0) = 0, dyH[w*, 0] : W — W is an isomorphism,

lim Hle[w,O} — dllH[’w*,OHlﬁ(W) =0

w—w*

and
lim [|H(w,A) = H(w,0)[[w =0, lim [[diH[w, \] = diH[w,0][| £on) =0
A—0 A—0

uniformly over w € Xj.
There exist open neighbourhoods W of w* in W and A of 0 in R (with W C Wy, A C Ay) and a uniquely
determined mapping h : A — X with the properties that

(i) h is continuous at the origin (with h(0) = w*),
(ii) H(h(A),\) =0forall X € A,
(iii) w = h(X) whenever (w, \) € W x A satisfies H(w, \) = 0.
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4.1 Strong surface tension

Theorem 4.2 For each sufficiently small value of € > 0 equation (60) has a small-amplitude, symmetric solution
Ce in HX(R) with ||¢e — Ckavlli — 0ase — 0.

The first step in the proof of Theorem 4.2 is to write (60) as the fixed-point equation
¢+¢e*(2¢ge” + g(eD)) ! <2c§d0X0(eD)§2 T 51/2QS(||CH1)> =0 (64)

for ¢ € H!(R) and use the following elementary inequality to ‘replace’ the nonlocal operator with a differential
operator.

Proposition 4.3 The inequality

52

1 €
2c3e? + g(ek)  2¢3 + (2 — Lk?

<
~ 1+ k)2

holds uniformly over |k| < d/e.

Using the above proposition, one can write equation (64) as

C"‘FE(O:O;

where .
F:(C) = 2c3do (2c5 — (§ = §1)0%) " xo(eD)¢* + ' 201(l[¢]h)-
It is convenient to replace this equation with ~
¢+ FE(C) =0,

where F.(¢) = F.(xo(eD)¢) and study it in the fixed space H'(R) (the solution sets of the two equations evidently
coincide). We establish Theorem 4.6 by applying Theorem 4.1 with

W=H!R):={uc H(R):uw(Z) =u(—2)forall Z € R},
Wo = Bgr(0), Ag = (—&0, &9) for a sufficiently small value of &g, and
H(Coe) = C+ Fe(Q)
(here ¢ is replaced by || so that H((, €) is defined for ¢ in a full neighbourhood of the origin in R). Observe that
H(C.e) = H(C,0) = 23do (26§ = (3 = §)93) ' Ixo(lel D) (xo(I<l D)) = €1+ [l 05 ([clw).

and noting that
lim [[xo([e[ D) = Il £y, mr3/4 ) = 0

because
\WMMDm—uﬁM=/" (L4 K2 dk
|k|> 2
< sup (L) [ b d
k> & Ikl> 127
52 —1/4
§Q+M» 2,
that

Xo(lelD) (xo ([l D)O)* = ¢* = xo(le| D) (xo(le] D) + )¢ (xo0(le| D) = 1)¢ + (xo(le] D) — 1)¢?
and that F/%/4(R) is a Banach algebra, we find that

213% IH(¢, ) — H(C,0)[l1 =0, glg% i H[C, €] = diH[C, O]|l £t (my) = O
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uniformly over ¢ € Bg(0). The equation
H(G,0) = ¢ +2c8do (26§ — (§ — §)93) " ¢* =0
has the (unique) nontrivial solution (xqv in HZ(R) and it remains to show that

-1
d1H[Ckav, 0] = I +4cido (2¢5 — (2 — $7)0%)  (Ckav+)
is an isomorphism. This result follows from the following lemma.

Lemma 4.4

(i) The formula { — 4c3dy (2¢3 — (2 — %W)a%)_l (Ckav-) defines a compact linear operator H(R) — H'(R)

and H!(R) — H!(R), and in particular d1H[Ckav, 0] is a Fredholm operator with index 0.

(ii) Every bounded solution of the equation
(37— 9)Czz + 2¢¢ + 4cgdoCrav( = 0, (65)
is a multiple of Ckav,z and is therefore antisymmetric. In particular ker d1H[Ckav, 0] is trivial.
Theorem 1.1 follows from Theorem 4.2 and the following result.

Proposition 4.5 The formulae
n=m+m(m), m(z) =c’(=)

lead to the estimate
n(z) = e*(kav(ez) + o(e?)

uniformly over z € R

Proof. Note that
1¢e = Cxavlloo S [I¢e — Ckavllr = o(1),

so that
m(z) = eCkav(ez) + €2 ((e(e2) — Ckav(e2)) = e*Ckav(e2) + o(e?)

uniformly over z € R. Furthermore

In2(m)llso S lln2(m)ll2 S €2 lmall® = e™2I¢ 13 < €772, o

4.2  Weak surface tension

Theorem 4.6 For each sufficiently small value of € > 0 equation (61) has two small-amplitude, symmetric solutions
¢Ein HX(R) with ||¢F F (nis||i — 0ase — 0.

We again begin the proof of Theorem 4.6 by ‘replacing’ the nonlocal operator in the fixed-point formulation
-1
C+ 222G f(w) + glw +eD) ™ (~asxo(eD) (20 + 205 (c]h)) = 0 (66)

of equation (61) for ¢ € HZ(IR) with a differential operator.

Proposition 4.7 The inequality

e? 1
Af(w)e? +g(w+ek) az+ark?

€
(1+ k2)1/2

<

holds uniformly over |k| < d/e.
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Using the above proposition, one can write equation (66) as

<+FE(<)207

where

~ -1

F.(¢) = Fe(xo(eD)0),  Fe(¢) = —as (a2 — a10%) " xo(eD)(I¢[*¢) + 205 ([[¢[h),
and establish Theorem 4.6 by applying Theorem 4.1 with

W =H}R,C)={¢ € H'(R):¢((Z)=({(—Z) forall Z € R},

Wy = Bgr(0), Ag = (—&0, &0) for a sufficiently small value of £y and

H(<75) =C+ F|6|(C)'
Observe that

H(C,E) - H(Q,O)
= —ag (az — aﬁ%)_l [XO(IelD)(IxO(\6|D)Cl2(xO(|€ID) — )¢+ [¢*(xo(le|D) — I)¢
+ Cxo([e]D)¢(xo(|e| D) — 1)C)
+ (xo(eD]) = DIC¢| + el O (¢ )

noting that /' (R; C) is a Banach algebra, that x(|¢|D) — I'in L(H*(R), H*/*(R)) = 0 as ¢ — 0 and that point-
wise multiplication defines a bounded trilinear mapping (H'(R; C)? x H3/*(R;C) — L?*(R;C) (see Hormander
[14, Theorem 8.3.1]), one concludes that

lim [H(¢,e) = H(C,0)|ly =0, lim ldiH[C, e] — diH[C, O]l £ r,c)) = O

uniformly over ¢ € Bg(0).
The equation

H(C,0) = ¢ —as (az — 102) " [CPC =0

has (precisely two) nontrivial solutions +(xrs in H} (R, C), which are both real, and the fact that d;H[+(NLs, 0]
is an isomorphism is conveniently established by using real coordinates. Define (; = Re ¢ and (2 = Im , so that

diH[ECNLs, 0](C1 +1¢2) = Hi(C1) +1H2(C2)s
where H; : HX(R) — H}(R) and Ho : H(R) — H!(R) are given by

H1(¢1) = ¢ — 3ag (a2 — aﬁ%)_l CRLsCts Ha(C2) = ¢ —as (az — 1113%)_1 (RrsC
and

HY(R):={ue€ H'R) : u(Z) = u(~Z) forall Z € R},

e

H!R):={uec H(R) : u(Z) = —u(—Z) forall Z € R}.

o

Proposition 4.8
(i) The formulae
-1 -1
G —3as (a2 — a10%) (R, G —az (a2 — a10%)  Rse

define compact linear operators H'(R) — H'(R), H}(R) — H}(R) and H}(R) — H!(R), and in partic-
ular H1, Ho are Fredholm operators with index 0.
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(ii) Every bounded solution of the equation

—a11z7 + a2C1 — 3a3(RpsCi = 0 (67)

is a multiple of (N1.s,z and is therefore antisymmetric, while every bounded solution of the equation
—a1Cizz + a2y — azCiisl =0 (68)

is a multiple of (n1s and is therefore symmetric. In particular ker H1 and ker Ho are trivial.

Theorem 1.2 follows from Theorem 4.6 and the following result.
Proposition 4.9 The formulae
n=m+F@m)+nm), m=n+n, nf(z)=3eC (e2)e”

leads to the estimate
n(z) = +enLs(e2) cos(wz) + o(e)

uniformly over z € R.

Proof. Note that
¢ F nislloo S M1 F Cneslli = o(1),
so that
N (2) = £3elnrs(e2)e? + Le((F(e2) F (nis(ez))e™? = £iednrs(e2)e!? + o(e)
uniformly over z € R. Furthermore

IE(m)lloo S I1E()llz S /2 mll? = 2117 < &2

and
m3(m) oo < Ims(m)l2 S ellmi® = 21117 < €% 0
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Appendix A Dispersion relation

In this appendix we establish the qualitative features of the dispersion relation

211t k?
f(k)
shown in Figure 4. Note that ¢?(0) = (v — 1) and ¢*(k) — oo as k — co. Furthermore, the calculation
24y IO O LV gy O )
shows that 402
E(O) =0,

and it remains to determine whether ¢ has any critical points at positive values of k.

Proposition A.1 The function
2kf (k)

h(k)=1-k*+ HGOR k>

is strictly monotone increasing.
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Proof. Observe that

I d k B —2
(k) = =26+ 270 (5105 ) + 26 = ~2 (0109 640 10)
where ) 1o (k) I (k)
gl 1 _ 0 2
Gr(k) = 1) = 1= e
Barciz [1, p. 257] showed that for each v > —1 the function
buk) =1~ OBy

k) N

satisfies ¢/,(k) < 0 for k& > 0 with ¢,,(0) = 0. It follows from equation (70) that h'(k) > 0 for & > 0 with
R'(0) = 0, so that h is strictly monotone increasing (note that ¢; (k) > 0 since ¢1(0) = 1, ¢1(k) — 0 as k — oo
and ¢, is strictly monotone decreasing). |

Observing that 2(0) = 9 and h(k) — oo as k — oo, we find from (69) that for each fixed v > 9 there exists a

unique w > 0 with
2 dc?

LI

f'(w) dk
while ¢? has no critical points at positive values of k for 1 < ~ < 9. It follows that ¢? is a strictly monotone
increasing function of k£ for 1 < v < 9, while for v > 9 it has a unique local maximum at ¥ = 0 and a unique
global minimum at k = w > 0, where w = h=!(y) > 0.

y=1—-w?+

Appendix B Weakly nonlinear theory

Formal derivation of the KdV equation for 1 < v <9

We choose
6(2) = %('7 - 1),
write ¢? = ¢Z(1 — £2) and substitute the Ansatz
n(z) =*C(2) +*G(Z) +-- -, Z =¢z,
into equation (15). Expanding
Ko = f(eD)
= f(0) =3¢ £7(0) 9% + O("),
= =

where D = —idyz, we find from Corollary 2.16 that
Ki(n) =e(y = DG +e*( = Gizz + (v = 1)¢2) + O(°),
Ka(n) = e*(—y — 37" (1) + 1)(T + O(°),
Li(n) = 2°C +e* (= §Cuzz + 26) + O(Y),
Ls(n) = =5¢*¢ + O(e°)

and of course K;(n), £;(n) = O(°) for j > 3.
The O(£?) component of equation (15) is trivially satisfied, while the O(e*) component yields the KdV equation

(37 = §)Cizz + 265¢1 + 2¢3do¢i = 0.
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Formal derivation of the NLS equation for v > 9

‘We choose 200 f () )
5 w f(w 9 w
Y= 1-w + ) Co= &7
f'(w) )
write ¢? = ¢Z(1 — £2) and substitute the Ansatz
n(z) =em(z,2)+ 52772(;2, Z)+ 53773(2', Z)+ -, 7 =€z,

into equation (15). Expanding

KO = f(d + €D)
= f(d) —ief'(d)dz — 52 f"(d)d + O(e?),
where d = —i0,, D = —idz, we find from Corollary 2.16 that

Kin)=e((v—=Dm —mz2) +2((v = Dnz — n2z2 — 2m122)
+*((y = Dz = M2z — 20222 — mzz) + O(e"),

Ka(n) = €*(Aoni — $m3.) +€° (2A0mnz — m=mz — man2:) + O(?),

Ks(n) = *(Boni + mni, + 3ni.m==) + O(e?),

L1(n) =ef(d)ym + e (f(d)n2 —if (d)mz)
+ 2 (f(d)ns —if (d)nez — 21" (d)mzz) + O(eh),
Lo(n) =*(— 307, — S(f(d)m)? = nizam — F() (i f(d)m) + 3 £(d)n?)

+ &% (= MMz — M2z — Mzaz — MN22z — 2mmzz — (F(d)m)(f(d)n2)
+i(f(@)m)(f' (d)ymz) +if(d)(n f (d)mz) +if' (d)(mf(d)m)z

f( ) f(d)n2) — f(d)(n2f (d)m) — 5if (d) (1) z + f(d)(mn2)) + O(eY),
(= 3 (rime)z + 5 (F(m)n)== + (F(@d)n)(f(d) (1 f (d)m))
—3(f(d)n )( Fdyn?) = (f(d)m)ni. + (i f(d)m)z= + 5 f(d) (rim)
= s S f(d)m) + f( @) f(d)(m f(d)m)) = 3f(d)(nf(d)n7)) + O(e?),

and of course K;(n), £;(n) = O(e*) for j > 4.
The next step is to substitute the expressions

m(z 2) = ¢ (2)e“” +ce.,
12(2,2) = Co(Z) + (2(2)e* + c.c,
13(2, Z) = G6(Z) + (5(2)e™" + (u(2)e™% + (3(2)e** + c.c.,

into the previous expansions. Noting that
FI@)("?) = fD(nw)e™ =, j €Ny, neL,
we find that the O(g) component of equation (15) is
g(w)¢1e™* +cc =0,
which is satisfied because g(w) = 0. The O(g?) component yields the equation

9006+ (40— ~ABE)IGI +ig (W)
+ (9(20)G + (Ao + 30* = BAW))E)e + e = 0,

where

Aw) = 30° = 3f(@)* = fw)f(2w) + 3f(2w),  Bw) =’ - f(w)* —4f(w) +2;
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since ¢’(w) = 0 this equation is satisfied by choosing

Go = 9(0) 7 (w?® = 240 + FBw)) |G,
G2 = g(2w)(~wo — 5w + g AW))(F

The coefficient of e!“’* in the O(£3) component of (15) yields the equation

9(W)Gs +2(Ag — w? = GO(W))C1G2 — 59" (W)CT + 3 f (W)

+2(Ag — g D(w))CoCi + (3Bo + 3w? — Jw' — GE(W))|Gi|G [ =0, (71
where
Clw) = 3w — f(w)f(2w) + 5 f(w) — 3 f(w)?,
D(w) = 50 = 3 f(w) — 5 f(w)?,
E(w) = 2f(w)?f(2w) — 6f(w)w® + B f(w)? = f(w)f(2w) — 4f(w) + 3

Substituting for {y and (, into equation (71) and setting g(w) = 0 yields the nonlinear Schrodinger equation

—a1C12z + a2C — as|¢i[*¢ = 0,
where a1 = 3¢”(w), az = ¢ f(w) and
daz = 29(2w) "N (FC(w) — Ag + w?) (G A(w) — Ag — 2w?)
+29(0) (g D(w) — Ao)(c§ B(w) — 240 + w?)
—3BO—7w + w + c2E(w).
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