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Abstract
We discuss axisymmetric solitary waves on the surface of an otherwise cylindrical ferrofluid jet surrounding

a stationary metal rod. The ferrofluid, which is governed by a general (nonlinear) magnetisation law, is subject
to an azimuthal magnetic field generated by an electric current flowing along the rod. We treat the governing
equations using a modification of the Zakharov-Craig-Sulem formulation for water waves, reducing the problem
to a single nonlocal equation for the free-surface elevation variable η. The nonlocality in the equation takes the
form of a Dirichlet-Neumann operator whose analyticity (in standard function spaces) is demonstrated by studying
its defining boundary-value problem in newly introduced Sobolev spaces for radial functions. Using rudimentary
fixed-point arguments and Fourier analysis we rigorously reduce the equation for η to a perturbation of a Korteweg-
de Vries equation (for strong surface tension) or a nonlinear Schrödinger equation (for weak surface tension),
both of which have nondegenerate explicit solitary-wave solutions. The existence theory is completed using an
appropriate version of the implicit-function theorem.

1 Introduction

1.1 The hydrodynamic problem

We consider the inviscid, incompressible and irrotational flow of a ferrofluid of unit density in the region

S1 = {0 < r < R+ η(θ, z, t)}

bounded by the free surface {r = R + η(θ, z, t)} and a current-carrying wire at {r = 0} (see Figure 1). Here
(r, θ, z) are the usual cylindrical polar coordinates, t is time, R is a positive constant which represents the radius of
the jet without any current flow, and η is a function of (θ, z, t). The magnetic field generated by the wire is static
and the region

S2 = {r > R+ η(θ, z, t)}
is assumed to be a vacuum. The irrotational magnetic and solenoidal induction fields in S1 and S2 are denoted by
respectively H1, B1 and H2, B2, while the irrotational, solenoidal velocity field of the fluid in S1 is denoted by v.
The interdependence between the fields is given by the formulae

B1 = µ0(H1 +M1(H1)), B2 = µ0H2,

where µ0 is the magnetic permeability of free space,

M1(H1) = m1(|H1|)
H1

|H1|

is the given magnetic intensity of the ferrofluid and m1(H1) is a nonnegative function.
The ferrohydrodynamic problem was formulated in terms of magnetic potential functions ψ1, ψ2 and a velocity

potential ϕ such that
H1 = −∇ψ1, H2 = −∇ψ2, v = ∇ϕ

by Groves & Nilsson [12, §2] following the theory given by Rosensweig [17, §§5.1–5.2]. The governing equations
are

∇ · (µ(|∇ψ1|∇ψ1)) = 0, 0 < r < R+ η(θ, z, t), (1)
∆ψ2 = 0, r > R+ η(θ, z, t), (2)
∆ϕ = 0, 0 < r < R+ η(θ, z, t), (3)
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Figure 1: Waves on the surface of a ferrofluid jet surrounding a current-carrying wire

where

µ(s) = 1 +
m(s)

s
,

with boundary conditions

ψ2 − ψ1 = 0, (4)
ψ2n − µ(|∇ψ1|)ψ1n = 0, (5)

−ηt + ϕr −
1

r2
ϕθηθ − ϕzηz = 0, (6)

ϕt +
1
2 |∇ϕ|

2 − µ0ν(|∇ψ1|) + 2σκ− 1
2µ0(µ(|∇ψ1|)− 1)2 = c0 (7)

at r = R + η(θ, z, t), where 2κ is the mean curvature of the surface, σ is the coefficient of surface tension and
c0 is a constant arising from integration of the (magnetic) Euler equation. Equations (1)–(3) state that B1, B2

and v are solenoidal, equations (4), (5) state that the magnetic and induction fields are continuous at the surface,
while equation (6) is the the hydrokinematic boundary condition that fluid particles on the surface remain there and
equation (7) is the hydrodynamic boundary condition which balances the forces at the surface.

The constant c0 is selected so that

H1 =
J

2πr
eθ, H2 =

J

2πr
eθ, v = 0, η = 0

(that is ψ1 = ψ2 = −Jθ/2π, ϕ = 0, η = 0) is a solution to the above equations (corresponding to a uniform
magnetic field and a circular cylindrical jet with radius R); we therefore set c0 = −µ0ν(J/2πr) + σ/R. Seeking
axisymmetric waves for which η and ϕ are independent of θ, one finds that ψ1 = ψ2 = −Jθ/2π, so that the
hydrodynamic problem decouples from the magnetic problem and is given by

ϕrr +
1

r
ϕr + ϕzz = 0, 0 < r < R+ η(z, t)

and

− ηt + ϕr − ϕzηz = 0,

ϕt +
1

2
(ϕ2r + ϕ2z)− µ0ν

(
J

2π(R+ η)

)
+ µ0ν

(
J

2πR

)
+

σ

(R+ η)(1 + η2z)
1/2

− σηzz
(1 + η2z)

3/2
− σ

R
= 0

at r = R+ η(z, t), where we have used the formula

2κ =
−(R+ η)2(1 + η2z) + (R+ η)3ηzz

(R+ η)3/2(1 + η2z)
3/2

.

This initial-value problem has been studied by Wang & Yang [18], but here we concentrate upon travelling
waves. Introducing dimensionless variables

(ẑ, r̂) :=
1

R
(z, r), t̂ =

σ1/2

R3/2
t, ϕ̂ :=

1

(σR)1/2
ϕ, η̂ :=

1

R
η

2



and functions

m̂1(s) :=
2πR

Jχ
m1

(
J

2πR
s

)
, ν̂(s) :=

4π2R2

J2χ
ν

(
J

2πR
s

)
,

where χ = (2πR/J)m1(J/2πR) and m̂(1) = ν̂′(1) = 1, and looking for travelling-wave solutions of the form

ϕ(r, z, t) = ϕ(r, z − ct), η(z, t) = η(z − ct),

we arrive at the equations

ϕrr +
1

r
ϕr + ϕzz = 0, 0 < r < 1 + η(z, t), (8)

and

cηz + ϕr − ϕzηz = 0, (9)

− cϕz +
1

2
(ϕ2r + ϕ2z)− γ

(
ν

(
1

1 + η

)
− ν(1)

)
+

(
1

(1 + η)(1 + η2z)
1/2

− ηzz
(1 + η2z)

3/2
− 1

)
= 0 (10)

at r = 1 + η(z, t), where

γ =
µ0J

2χ

4π2σR2
.

Solitary waves are nontrivial solutions to (8)–(10) which are evanescent as |z| → ∞.

1.2 The main results

We treat equations (8)–(10) using a modification of the Zakharov-Craig-Sulem formulation for water waves (Za-
kharov [19], Craig & Sulem [7]), thus reducing the problem to a single non-local equation for η by introducing
a Dirichlet-Neumann operator informally defined as follows (see Xu & Wang [20] for a similar approach for the
time-dependent problem and Blyth & Parau [4] for an alternative non-local reformulation). Fix Φ = Φ(z), let ϕ be
the unique solution of the Dirichlet boundary-value problem

ϕrr +
1

r
ϕr + ϕzz = 0, 0 < r < 1 + η, (11)

ϕ = Φ r = 1 + η, (12)

and define

G(η)Φ := (1 + η)(1 + η2z)
1/2 ∂ϕ

∂n

∣∣∣
r=1+η

= (1 + η)(ϕr − ηzϕz)
∣∣
r=1+η

.

Equations (9) and (10) can be rewritten as

cηz +
G(η)Φ

1 + η
= 0 (13)

and

−cΦz +
1
2Φ

2
z −

1

2(1 + η2z)

(
ηzΦz +

G(η)Φ

1 + η

)2
− γ

(
ν

(
1

1 + η

)
− ν(1)

)
+

(
1

(1 + η)(1 + η2z)
1/2

− ηzz
(1 + η2z)

3/2
− 1

)
= 0, (14)

and by substituting Φ = −cG(η)−1(ηz + ηηz) from (13) into (14), we arrive at

K(η)− c2L(η) = 0, (15)

where

K(η) = −γ
(
ν

(
1

1 + η

)
− ν(1)

)
+

(
1

(1 + η)(1 + η2z)
1/2

− ηzz
(1 + η2z)

3/2
− 1

)
, (16)

L(η) = − 1
2 (K(η)η + 1

2K(η)η2)2 +
1

2(1 + η2z)
(ηz − ηzK(η)η − 1

2ηzK(η)η2)2

+K(η)η + 1
2K(η)η2 (17)
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and
K(η)ξ = −(G(η)−1ξz)z. (18)

Equation (15) is equivalent to (8)–(10); the velocity potential is recovered by setting Φ = −cG(η)−1(ηz +ηηz) and
solving (11), (12).

Our task is therefore to find nontrivial solutions to (15) which satisfy η(z) → 0 as z → ±∞, and we prove the
following results.

Theorem 1.1 Suppose that 1 < γ < 9 and c2 = c20(1− ε2). For each sufficiently small value of ε > 0 there exists
a symmetric Korteweg-de Vries solitary-wave solution of (15) which satisfies

η(z) = ε2ζKdV(εz) + o(ε2)

uniformly over z ∈ R, where

ζKdV(Z) = − 3

2d0
sech2

(
2

(
c20

9− γ

)1/2

Z

)
(19)

and

d0 =
1

2c20

(
3

2
γ − 1

2
γν′′(1)− 3

2

)
, c20 =

1

2
(γ − 1).

Figure 2: Korteweg-de Vries solitary waves of elevation (left) and of depression (right) depending on the sign of d0

Theorem 1.2 Suppose that ω > 0,

γ = 1− ω2 +
2ωf(ω)

f ′(ω)
, c20 =

2ω

f ′(ω)
, f(ω) =

ωI0(ω)

I1(ω)
,

where Iν is the modified Bessel function of the first kind and order ν, and c2 = c20(1 − ε2). For each sufficiently
small value of ε > 0 there exist two symmetric nonlinear Schrödinger solitary-wave solutions of (15) which satisfy

η(z) = ±εζNLS(εz) cos(ωz) + o(ε) (20)

uniformly over z ∈ R, where

ζNLS(Z) =

(
2a2
a3

)1/2
sech

((
a2
a1

)1/2
Z

)
(21)

and a1, a2, a3 are positive constants which depend upon ω.

Axisymmetric solitary waves have also been investigated using model equations by Bashtovoi, Rex & Foiguel
[2] and Rannacher & Engel [16], experimentally by Bourdin, Bacri & Falcon [5] and numerically by Blyth &
Parau [3], Guyenne & Parau [13], Doak & Vanden-Broeck [9] and Xu & Wang [20]. Furthermore, using spatial
dynamical-systems methods Groves & Nilsson [12] have given a rigorous existence theory for multiple types of
solitary waves (including those in Theorems 1.1 and 1.2).
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Figure 3: Nonlinear Schrödinger solitary waves of elevation (left) and of depression (right) depending on the sign
in equation (20)

1.3 Weakly nonlinear theory

It is instructive to present a heuristic argument as a motivation for Theorems 1.1 and 1.2, beginning with the lin-
earised problem. Linearising equation (15) yields

(γ − 1)η − ηzz − c2K0η = 0, (22)

where K0 = f(D) and

f(|k|) = |k|I0(|k|)
I1(|k|)

.

here we used the notation
h(D)ξ = F [h(k)ξ̂], ξ̂ = F [ξ],

for the Fourier multiplier defined by h, where F is the one-dimensional Fourier transform defined by

F [ξ](k) =
1√
2π

∫
R
ξ(z)e−ikz dz

and D = −i∂z . Seeking solutions of (22) of the form η(z) = cos(kz) (‘sinusoidal wave trains’), we obtain the
dispersion relation

c2 =
γ − 1 + k2

f(k)
,

which describes the relation between the wave number k ≥ 0 and the wave speed c ≥ 0. In Appendix A we show
that c2 is a strictly monotone increasing function of k for 1 < γ ≤ 9, while for γ > 9 it has a unique local maximum
at k = 0 and a unique global minimum at k = ω > 0 (the formula γ = 1− ω2 + 2ωf(ω)/f ′(ω) defines a bijection
between the values of γ ∈ (9,∞) and ω ∈ (0,∞)). In both cases we denote its global minimum by c20, so that

c20 =


c2(0) = 1

2 (γ − 1), 1 < γ ≤ 9,

c2(ω) =
2ω

f(ω)
, γ > 9

(see Figure 4).
Using c as a bifurcation parameter, we expect branches of small-amplitude solitary waves to bifurcate at c = c0

(where the linear group and phase speeds are equal) into the region {c < c0} where linear periodic wave trains are
not supported (see Dias & Kharif [8, §3]). In the case 1 < γ < 9, one writes c2 = c20(1 − ε2), where ε is a small
positive number, substitutes the Ansatz

η(z) = ε2ζ1(Z) + ε4ζ2(Z) + · · · , (23)

where Z = εz, into equation (15), and finds that ζ1 satisfies the stationary Korteweg-de Vries equation

( 18γ − 9
8 )ζZZ + 2c20ζ + 2c20d0ζ

2 = 0, (24)

which has the explicit (symmetric) solitary-wave solution ζKdV given in Theorem 1.1. In the case γ > 9, one writes
c2 = c20(1− ε2), uses the Ansatz

η(z) = 1
2ε
(
ζ1(Z)e

iωx + ζ1(Z)e
−iωx

)
+ ε2ζ0(Z) +

1
2ε

2
(
ζ2(Z)e

2iωz + ζ2(Z)e
−2iωz

)
+ · · · , (25)
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where Z = εz and γ = 1 − ω2 + 2ωf(ω)/f ′(ω), and finds that ζ1 satisfies the stationary nonlinear Schrödinger
equation

−a1ζZZ + a2ζ − a3|ζ|2ζ = 0, (26)

which has the (symmetric) solitary-wave solutions ±ζNLS given in Theorem 1.2. Details of these calculations are
given in Appendix B.

Figure 4: Dispersion relation in the cases 1 < γ ≤ 9 (left) and γ > 9 (right); the minimum value of c2 is denoted
by c20

1.4 Methodology

In this paper we rigorously confirm the results of the weakly nonlinear theory described above. The Ansätze (23)
and (25) suggest that the Fourier transform of a solitary wave is concentrated near the points k = ±ω (which
coincide at k = 0 when 1 < γ < 9). Indeed, writing c2 = c20(1 − ε2), one finds that the linearisation of (15) at
ε = 0 is

g(D)η = 0,

where
g(k) := γ − 1 + k2 − c20f(k) ≥ 0, k ∈ R,

with equality precisely when k = ±ω (so that g(ω) = g′(ω) = 0 and g′′(ω) > 0). We therefore decom-
pose η into the sum of functions η1 and η2 whose Fourier transforms η̂1 and η̂2 are supported in the region
S = (−ω − δ,−ω + δ) ∪ (ω − δ, ω + δ) (with δ ∈ (0, ω3 )) and its complement (see Figure 5), so that η1 = χ(D)η,
η2 = (1−χ(D))η, where χ is the characteristic function of the set S (note that S = (−δ, δ) if ω = 0). Decomposing
(15) into

χ(D)
(
K(η1 + η2)− c20(1− ε2)L(η1 + η2)

)
= 0,

(1− χ(D))
(
K(η1 + η2)− c20(1− ε2)L(η1 + η2)

)
= 0,

one finds that the second equation can be solved for η2 as a function of η1 for sufficiently small values of ε > 0;
substituting η2 = η2(η1) into the first yields the reduced equation

χ(D)
(
K(η1 + η2(η1))− c20(1− ε2)L(η1 + η2(η1))

)
= 0

for η1 (see Section 3).

Figure 5: (a) The support of η̂1 is contained in the set S, where S = (−δ, δ) for 1 < γ < 9 (left) and
S = (−ω − δ,−ω + δ) ∪ (ω − δ, ω + δ) for γ > 9 (right).

Finally, the scaling
η1(z) = ε2ζ(Z), Z = εz, (27)

transforms the reduced equation into

ε−2g(εD)ζ + 2c20ζ + 2c20d0χ0(εD)ζ2 +O(ε1/2) = 0 (28)
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for 1 < γ < 9, while the scaling

η1(z) =
1
2εζ(Z)e

iωz + 1
2εζ(Z)e

−iωz, Z = εz, (29)

transforms the reduced equation into

ε−2g(ω + εD)ζ + a2ζ − a3χ0(εD)(|ζ|2ζ) +O(ε1/2) = 0 (30)

for γ > 9; here χ0 is the characteristic function of the set (−δ, δ), the symbol D now means −i∂Z and precise
estimates for the remainder terms are given in Section 3. Equations (28) and (30) are full dispersion versions of
(perturbed) stationary Korteweg-de Vries and nonlinear Schrödinger equations since they retain the linear part of
the original equation (15); the fully reduced model equations (24) and (26) are recovered from them in the formal
limit ε→ 0.

The functions ζKdV and ±ζNLS are nondegenerate solutions of (24) and (26) in the sense that the only bounded
solutions of their linearisations at ζKdV and ±ζNLS are respectively ζKdV,Z and ±ζNLS,Z , ±iζNLS. Equation (15) is
invariant under the reflection η(z) 7→ η(−z), and the reduction procedure preserves this property: the reduced equa-
tion for η1 is invariant under the reflection η1(z) 7→ η1(−z), so that (24) and (26) are invariant under respectively
ζ(Z) 7→ ζ(−Z) and ζ(Z) 7→ ζ(−Z). Restricting to spaces of symmetric functions thus eliminates the antisym-
metric solutions ζKdV,Z and ±ζNLS,Z , ±iζNLS of the linearised equations, and in Section 4 solutions to (28) and
(30) are constructed as perturbations of ζKdV and ±ζNLS by formulating them as fixed-point equations and using
an appropriate version of the implicit-function theorem.

This method has been used for the classical water-wave problem by Groves [10], and since many of the details in
the derivation and solution of our reduced equations are similar to those in that reference we keep Sections 3 and 4
concise. We begin our analysis by showing that the functionals K and L in equation (15) depend analytically upon η
in a suitable sense (see Buffoni & Toland [6] for a treatise on analytic functions in Banach spaces), which of course
entails rigorously defining the operator K given by (18) and demonstrating its analyticity. This step, the details of
which are given in Section 2, differs significantly from the corresponding step in reference [10]; in particular it is
necessary to study an axisymmetric boundary-value problem using novel function spaces and carefully estimate a
Green’s function defined in terms of modified Bessel functions.

1.5 Function spaces

In addition to the familiar Sobolev spaces

Hs(R) =
{
η ∈ S ′(R)

∣∣ ∥η∥2s :=

∫
R
(1 + k2)s|η̂(k)|2 dk <∞

}
, s ≥ 0

we use the variants
Hs

ε (R) = χ0(εD)Hs(R), s ≥ 0

and
Z =

{
η ∈ S ′(R)

∣∣ ∥η∥Z := ∥η̂1∥L1(R) + ∥η2∥2 <∞
}
,

where
η1 = χ(D)η, η2 = (1− χ(D))η

(see Section 1.4 above). Note in particular the estimate

∥η1∥j,∞ ≤ ∥kj η̂(k)∥L1(R) ≲ ∥η̂1∥L1(R),

which holds because η̂1 has compact support, and implies in particular that

∥η∥1,∞ ≤ ∥η1∥1,∞ + ∥η2∥1,∞ ≲ ∥η̂1∥L1(R) + ∥η2∥2 = ∥η∥Z . (31)

Our analyticity result for the operator K defined by equation (18) is given in terms of the space Z .

Lemma 1.3 The mapping K : Z → L(H3/2(R), H1/2(R)) is analytic at the origin.
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This lemma is proved in Section 2, where we work with the equivalent definition

K(η)ξ = −(ϕ̃|r=1+η)z, (32)

where ϕ̃ is the axisymmetric solution of the Neumann boundary-value problem

∆ϕ̃ = 0, 0 < r < 1 + η,

(1 + η)(1 + η2z)
1/2 ∂ϕ̃

∂n
= ξz, r = 1 + η

(which is unique up to additive constants). To solve this boundary-value problem it is obviously necessary to study
axisymmetric functions in the ferrofluid domain {0 < r < 1 + η}. For this purpose we use the radial function
spaces introduced by Groves & Hill [11] for functions defined on the reference domain {0 < r < 1} (onto which
the ferrofluid domain is mapped for our analysis). Let f̃m : B1(0)× R → C be a function with the property that

f̃m(r cos θ, r sin θ, z) = eimθfm(r, z), r ∈ [0, 1), θ ∈ T1, z ∈ R, (33)

for some m ∈ Z and some fm : [0, 1)× R → C with fm(0, z) = 0 for m ̸= 0. We refer to such functions as mode
m functions, such that axisymmetric functions are mode 0 functions.

Remarks 1.4

(i) The radial coefficient f0(r, z) of a mode 0 function f̃0(x, y, z) obviously satisfies f0(0, z) = f̃0(0, z). The
same is true for m ̸= 0 since fm(0, z) = 0 implies that f̃m(0, z) = 0.

(ii) The radial coefficient fm(r, z) of the mode m function f̃m(x, y, z) is also the radial coefficient of the mode
−m function f̃m(x,−y, z).

It is convenient to study mode m functions using the Wirtinger-type complex differential operators

∂τ := 1√
2
(∂x − i∂y), ∂τ̄ := 1√

2
(∂x + i∂y)

in place of the Cartesian differential operators ∂x, ∂y . Let f̃m : B1(0)× R → C be a mode m function with radial
coefficient fm : [0, 1)× R → C. It follows that

∂τ f̃m = ei(m−1)θ 1√
2
Dmfm, ∂τ̄ f̃m = ei(m+1)θ 1√

2
D−mfm,

where Dj is the Bessel operator

Dj := r−j d

dr
rj =

d

dr
+
j

r
.

According to this calculation the operators ∂τ and ∂τ̄ map a mode m function with radial coefficient fm to a mode
m−1 function with radial coefficient Dmfm and a modem+1 function with radial coefficient D−mfm respectively.
Correspondingly, one finds that Dm and D−m map a mode m radial coefficient to a mode m− 1 and a mode m+1
radial coefficient respectively, as illustrated diagrammatically in Figure 6 (which commutes). Note that it is actually
not necessary to distinguish between mode m and mode −m radial coefficients since the radial coefficient of the
mode m function f̃m(x, y) is also the radial coefficient of the mode −m function f̃m(x,−y) (which explains the
apparent ambiguity in this interpretation of D0.)

We denote the (closed) subspace of the standard Sobolev space

Hq(B1(0)× R;C) =

{
f̃ : B1(0)× R → C

∣∣ ∥f̃∥2Hq :=

q∑
p=0

p∑
n=0

n∑
i=0

(
n
i

)
∥∂n−i

τ̄ ∂iτ∂
p−n
z f̃∥2L2 <∞

}

consisting of mode m functions by H̃q
(m)(B1(0) × R;C). Observe that a mode m function f̃m belongs to

L2(B1(0)× R;C) if and only if its radial coefficient fm belongs to

L2
1((0, 1)× R;C) =

{
f : [0, 1)× R → C

∣∣ ∥f∥2L2
1
:= 2π

∫
R

∫ 1

0

|f(r, z)|2r dr dz <∞
}
,
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Figure 6: Actions of the Bessel operators. The modem+j function in column q is ei(m+j)θDmqDmq−1 . . .Dm1fm,
where the indices {mi}qi=1 satisfymi = ±(mi−1−1), withm1 = ±m, and consist of 1

2 (q−j) positive and 1
2 (q+j)

non-positive terms.

and that
∂n−i
τ̄ ∂iτ f̃m = ei(m+n−2i)θ 2−

n
2 Dn−i

−m+iD
i
mfm, i = 0, . . . n,

where

Di
j := r−j+i

(
1

r

d

dr

)i

rj = Dj−(i−1)Dj−(i−2) . . .Dj−1Dj .

One indeed finds that f̃m belongs to H̃q
(m)(B1(0)× R;C) if and only if its radial coefficient fm belongs to

Hq
(m)((0, 1)×R;C)=

{
fm : [0, 1)× R → C

∣∣ ∥fm∥2Hq
(m)

:=

q∑
p=0

p∑
n=0

2−n
n∑

i=0

(
n
i

)
∥Dn−i

−m+iD
i
m∂

p−n
z fm∥2L2

1
<∞

}
,

and that the mapping fm 7→ f̃m is an isometric isomorphism (see Groves & Hill [11, §3] for a more precise
statement and a discussion of the properties of these function spaces).

2 Analyticity

2.1 The operator K

In this section we study the operator K given by (32). Denoting the radial coefficient of ϕ̃ by ϕ, such that

ϕ̃(x, y, z) = ϕ(r, z),

we can equivalently define
K(η)ξ = −(ϕ|r=1+η)z,

where ϕ is the solution of the boundary-value problem

D1D0ϕ+ ϕzz = 0, 0 < r < 1 + η, (34)
(1 + η)(D0ϕ− ηzϕz) = ξz, r = 1 + η (35)

(which is unique up to additive constants).
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The ‘flattening’ transformation
r′ =

r

1 + η
, u(r′, z) = ϕ(r, z)

transforms S1 into the fixed strip Σ = (0, 1)× R and the boundary-value problem (34), (35) into

D1D0u+ uzz = D1F1(η, u) + ∂zF2(η, u), 0 < r < 1, (36)
D0u = F1(η, u) + ξz, r = 1, (37)

where we have dropped the primes for notational simplicity and

F1(η, u) = r(1 + η)ηzuz − r2η2zD0u, F2(η, u) = r(1 + η)ηzD0u− η(η + 2)uz, (38)

so that
K(η)ξ = −uz|r=1.

This boundary-value problem can be cast as the integral equation

u = S(F1(η, u), F2(η, u), ξ), (39)

where

S(F1, F2, ξ) = F−1

[∫ 1

0

(
ikG(r, r̃)F̂2 − D̃0G(r, r̃)F̂1

)
r̃ dr̃ − ikG(r, 1)ξ̂

]
with

G(r, r̃) =


−I0(|k|r)

(
K0(|k|r̃) +

K1(|k|)
I1(|k|)

I0(|k|r̃)
)
, 0 ≤ r < r̃,

−I0(|k|r̃)
(
K0(|k|r) +

K1(|k|)
I1(|k|)

I0(|k|r)
)
, r̃ < r < 1.

We study (39) for η ∈ Z , ξ ∈ H3/2(R) and u ∈ H⋆(Σ), where

H⋆(Σ) := H2
(0)(Σ)/R

with norm
∥u∥2⋆ := ∥uz∥2H1

(0)
+ ∥D0u∥2H1

(1)
.

The following result is proved in Section 2.2 below.

Theorem 2.1 The solution operator S satisfies

∥S(F1, F2, ξ)∥⋆ ≲ ∥F1∥H1
(1)

+ ∥F2∥H1
(0)

+ ∥ξ∥3/2

for all F1 ∈ H1
(1)(Σ), F2 ∈ H1

(0)(Σ) and ξ ∈ H3/2(R).

Lemma 2.2 The formulae (38) define analytic functions F1 : Z×H⋆(Σ) → H1
(1)(Σ), F2 : Z×H⋆(Σ) → H1

(0)(Σ).

Proof. Clearly
∥rηzuz∥L2

1
≲ ∥ηz∥∞∥uz∥L2

1
≲ ∥η∥Z∥u∥⋆,

(see (31)). Using the calculations

D1(rηzuz) = rηzD0(uz) + 2ηzuz, ∂z(rηzuz) = rηzzuz + rηzuzz

= rη1zzuz + rη2zzuz + rηzuzz,

we similarly find that

∥D1(rηzuz)∥L2
1
≲ ∥ηz∥∞(∥D0uz∥L2

1
+ ∥uz∥L2

1
) ≲ ∥η∥Z∥u∥⋆

and

∥∂z(rηzuz)∥L2
1
≲ ∥η1zz∥∞∥uz∥L2

1
+ ∥ηz∥∞∥uzz∥L2

1
+ ∥η2zzuz∥L2

1
≲ ∥η∥Z∥u∥⋆ + ∥η2zzuz∥L2

1
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with

∥η2zzuz∥2L2
1
≤ ∥η2zz∥20 sup

z∈R
∥r1/2uz∥2L2(0,1)

≲ ∥η2zz∥20∥r1/2uz(r, z)∥2H1(R,L2(0,1))

= ∥η2zz∥20(∥uz∥2L2
1
+ ∥uzz∥2L2

1
)

≤ ∥η∥2Z∥u∥2⋆.

It follows that (η, u) 7→ rηzuz is an analytic mapping Z × H⋆(Σ) → H1
(1)(Σ), and similar arguments show

that (η, u) 7→ rηηzuz , (η, u) 7→ r2η2zD0u are analytic mappings Z × H⋆(Σ) → H1
(1)(Σ), such that

F1 : Z × H⋆(Σ) → H1
(1)(Σ) is analytic. The same method shows that F2 : Z × H⋆(Σ) → H1

(0)(Σ) is ana-
lytic. 2

Theorem 2.3 For each ξ ∈ H3/2(R) and each sufficiently small η ∈ Z the boundary-value problem (36), (37)
admits a unique solution u ∈ H⋆(Σ). Furthermore, the mapping Z 7→ L(H3/2(R), H⋆(Σ)) is analytic at the
origin.

Proof. Define a mapping T : H⋆(Σ)×Z ×H3/2(R) → H⋆(Σ) by

T (u, η, ξ) = u− S(F1(η, u), F2(η, u), ξ),

such that the solutions to (39) are precisely the zeros of T (·, η, ξ). It follows from Theorem 2.1 and Lemma 2.2 that
T is analytic at the origin. Furthermore T (0, 0, 0) = 0 and d1T [0, 0, 0] = I is an isomorphism. It follows from the
analytic implicit-function theorem (see Buffoni & Toland [6, Theorem 4.5.4]) that there exists open neighbourhoods
N1 ⊆ Z , N2 ⊆ H3/2(R) and N3 ⊆ H⋆(Σ) of the origin and analytic function v : N1 ×N2 → N3 such that

T (v(η, ξ), η, ξ) = 0;

furthermore u = v(η, ξ) for all (η, ξ, u) ∈ N1 ×N2 ×N3 with T (u, η, ξ) = 0. Since u is linear in ξ we can choose
N2 = H3/2(R). 2

Corollary 2.4 The mapping K : Z → L(H3/2(R), H1/2(R)) is analytic at the origin.

Proof. This assertion follows from the formula K(η)ξ = −uz|r=1, the analyticity of u : N1 ×H3/2(R) → H⋆(Σ)
and the facts that ∂z : H⋆(Σ) → H1

(0)(Σ) and u 7→ u|r=1, H1
(0)(Σ) → H1/2(R) are continuous linear operators

(see Groves & Hill [11, Lemma 3.24]). 2

According to Corollary 2.4 we can choose M sufficiently small and study the equation

K(η)− c20(1− ε2)L(η) = 0

in the set
U = {η ∈ H2(R) : ∥η∥Z < M}, (40)

noting that H2(R) is continuously embedded in Z and U is an open neighbourhood of the origin in H2(R).

Corollary 2.5 The formulae (16), (17) define analyic functions U → L2(R).

Proof. This observation follows from the formulae

K(η) = −γ
(
ν

(
1

1 + η

)
− ν(1)

)
+

(
1

1 + η
− 1

)(
1

(1 + η2z)
1/2

− 1

)
+

1

1 + η
− 1

+
1

(1 + η2z)
1/2

− 1−
(

1

(1 + η2z)
3/2

− 1

)
ηzz − ηzz,

L(η) = − 1
2 (K(η)η)2 − 1

2K(η)ηK(η)η2 − 1
8 (K(η)η2)2 +

η2z
2(1 + η2z)

+
η2z

2(1 + η2z)
(K(η)η)2

+
η2z

8(1 + η2z)
(K(η)η2)2 − η2z

1 + η2z
K(η)η − η2z

2(1 + η2z)
K(η)η2

+
η2z

2(1 + η2z)
K(η)ηK(η)η2 +K(η)η + 1

2K(η)η2

and

11



(i) Corollary 2.4,

(i) the fact that the functions

ρ 7→ ν

(
1

1 + ρ

)
− ν(1), ρ 7→ 1

1 + ρ
− 1, ρ 7→ 1

(1 + ρ2)1/2
− 1, ρ 7→ ρ2

(1 + ρ2)1/2

are analytic at the origin H1(R) → H1(R),

(ii) the continuity of the multiplication map H1(R) × H1(R) → L2(R), H1(R) × L2(R) → L2(R) and
H1/2(R)×H1/2(R) → L2(R) (see Hörmander [14, Theorem 8.3.1]),

(iii) the continuity of the embeddings H2(R) ⊆ H3/2(R) ⊆ H1(R) ⊆ H1/2(R) ⊆ L2(R),

(iv) the fact that H3/2(R) is a Banach algebra. 2

2.2 The linear boundary-value problem

In this section we prove Theorem 2.1 by estimating the operators

G1(F ) := F−1

[∫ 1

0

ikr̃G(r, r̃)F̂ (r̃) dr̃

]
,

G2(F ) := F−1

[∫ 1

0

−D̃0G(r, r̃)r̃F̂ (r̃) dr̃

]
,

G3(ξ) := F−1[−ikG(r, 1)ξ̂] = F−1

[
−i
I0(|k|r)
I1(|k|)

ξ̂

]
in Lemmata 2.10–2.12 below. For this purpose we introduce the functions

H1(r, r̃) =


−|k|I1(|k|r)

(
K0(|k|r̃) +

K1(|k|)
I1(|k|)

I0(|k|r̃)
)
, 0 ≤ r < r̃,

|k|I0(|k|r̃)
(
K1(|k|r)−

K1(|k|)
I1(|k|)

I1(|k|r)
)
, r̃ < r < 1,

H2(r, r̃) =


|k|I0(|k|r)

(
K1(|k|r̃)−

K1(|k|)
I1(|k|)

I1(|k|r̃)
)
, 0 ≤ r < r̃,

−|k|I1(|k|r̃)
(
K0(|k|r) +

K1(|k|)
I1(|k|)

I0(|k|r)
)
, r̃ < r < 1,

H3(r, r̃) =


|k|2I1(|k|r)

(
K1(|k|r̃)−

K1(|k|)
I1(|k|)

I1(|k|r̃)
)
, 0 ≤ r < r̃,

|k|2I1(|k|r̃)
(
K1(|k|r)−

K1(|k|)
I1(|k|)

I1(|k|r)
)
, r̃ < r < 1,

which are the formal derivativesGr(r, r̃),Gr̃(r, r̃) andGrr̃(r, r̃) ofG(r, r̃) respectively, and establish the following
auxiliary results.

Proposition 2.6 The function G(r, r̃) satisfies∫ 1

0

r̃|G(r, r̃)| dr̃ = 1

|k|2
,

∫ 1

0

r|G(r, r̃)| dr = 1

|k|2

for all k ∈ R.
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Proof. We find that∫ 1

0

r|G(r, r̃)| dr =
(
K0(|k|r̃) +

K1(|k|)
I1(|k|)

I0(|k|r̃)
)∫ r̃

0

rI0(|k|r) dr

+ I0(|k|r̃)
∫ 1

r̃

r

(
K0(|k|r) +

K1(|k|)
I1(|k|)

I0(|k|r)
)

dr

=
1

|k|2

and ∫ 1

0

r̃|G(r, r̃)| dr̃ =
∫ 1

0

r|G(r, r̃)| dr = 1

|k|2
. 2

Proposition 2.7 The function H1(r, r̃) satisfies∫ 1

0

r̃|H1(r, r̃)|dr̃ ≲
1

|k|
,

∫ 1

0

r|H1(r, r̃)|dr ≲
1

|k|

for all k ∈ R.

Proof. We note that

2|k|rI1(|k|r)K1(|k|r) →

{
0 as |k|r → 0,

1 as |k|r → ∞

and

2|k|rI1(|k|r)2
K1(|k|)
I1(|k|)

≤ 2|k|I1(|k|)K1(|k|) →

{
0 as |k| → 0,

1 as |k| → ∞,

so that these quantities are bounded over r ∈ [0, 1] and k ∈ R. We therefore find that

|k|
∫ 1

0

r̃|H1(r, r̃) dr̃ = |k|
(
K1(|k|r)−

K1(|k|)
I1(|k|)

I1(|k|r)
)∫ r

0

|k|r̃I0(|k|r̃) dr̃

+ |k|I1(|k|r)
∫ 1

r

|k|r̃
(
K0(|k|r̃) +

K1(|k|)
I1(|k|)

I0(|k|r̃)
)

dr̃

= −2|k|rI1(|k|r)2
K1(|k|)
I1(|k|)

+ 2|k|rI1(|k|r)K1(|k|r)

≲ 1.

Next we record the estimates

0 ≤ π
2 |k|r̃I1(|k|r̃)K0(|k|r̃)L0(|k|r̃)− π

2 |k|r̃I0(|k|r̃)K1(|k|r̃)L0(|k|r̃)
− π|k|r̃I0(|k|r̃)K0(|k|r̃)L1(|k|r̃) + π

2 I0(|k|r̃)

→

{
π
2 as |k|r̃ → 0,

1 as |k|r̃ → ∞,

0 ≤ π
2 I0(|k|r̃)

(
1− L1(|k|)

I1(|k|)

)
≤ π

2 I0(|k|)
(
1− L1(|k|)

I1(|k|)

)
→

{
π
2 as |k| → 0,

1 as |k| → ∞,

where Lν is the modified Struve function of the first kind and order ν. Using the fact that
h : s 7→ πs(I1(s)L0(s) − I0(s)L1(s)) is increasing (since h′(s) = 2sI1(s) > 0 for s > 0 with h′(0) = 0),
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we furthermore find that

0 ≤ π|k|r̃I0(|k|r̃)
(
I1(|k|r̃)L0(|k|r̃)− I0(|k|r̃)L1(|k|r̃)

)K1(|k|r̃)
I1(|k|r̃)

≤ π|k|I0(|k|)
(
I1(|k|)L0(|k|)− I0(|k|)L1(|k|)

)K1(|k|)
I1(|k|)

→

{
0 as |k| → 0,

1 as |k| → ∞.

Using these estimates we conclude that

|k|
∫ 1

0

r|H1(r, r̃)|dr = |k|
(
K0(|k|r̃) +

K1(|k|)
I1(|k|)

I0(|k|r̃)
)∫ r̃

0

|k|rI1(|k|r) dr̃

+ |k|I0(|k|r̃)
∫ 1

r̃

|k|r
(
K1(|k|r)−

K1(|k|)
I1(|k|)

I1(|k|r)
)

dr̃

= π
2 |k|r̃I1(|k|r̃)K0(|k|r̃)L0(|k|r̃)− π

2 |k|r̃I0(|k|r̃)K1(|k|r̃)L0(|k|r̃)

− π|k|r̃I0(|k|r̃)K0(|k|r̃)L1(|k|r̃) + π
2 I0(|k|r̃)

L1(|k|)
I1(|k|)

+ π|k|r̃I0(|k|r̃)
(
I1(|k|r̃)L0(|k|r̃)− I0(|k|r̃)L1(|k|r̃)

)K1(|k|)
I1(|k|)

≲ 1. 2

Corollary 2.8 The function H2(r, r̃) satisfies∫ 1

0

r̃|H2(r, r̃)|dr̃ ≲
1

|k|
,

∫ 1

0

r|H2(r, r̃)|dr ≲
1

|k|

for all k ∈ R.

Proposition 2.9 The function H3(r, r̃) satisfies∫ 1

0

r̃|H3(r, r̃)|dr̃ ≲ 1,

∫ 1

0

r|H3(r, r̃)|dr ≲ 1

for all k ∈ R.

Proof. Using the estimates

0 ≤ π
2 I1(|k|r)

(
1− L1(|k|)

I1(|k|)

)
≤ π

2 I1(|k|)
(
1− L1(|k|)

I1(|k|)

)
→

{
0 as |k| → 0,

1 as |k| → ∞,

0 ≤ π
2

(
I1(|k|r)− L1(|k|r)

)
→

{
0 as |k| → 0,

1 as |k| → ∞,

we find that ∫ 1

0

r̃|H3(r, r̃)|dr̃ = |k|
(
K1(|k|r)−

K1(|k|)
I1(|k|)

I1(|k|r)
)∫ r

0

|k|r̃I1(|k|r̃) dr̃

+ |k|I1(|k|r)
∫ 1

r

|k|r̃
(
K1(|k|r̃)−

K1(|k|)
I1(|k|)

I1(|k|r̃)
)

dr̃

= π
2 I1(|k|r)

L1(|k|)
I1(|k|)

− π
2L1(|k|r)

≲ 1
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and ∫ 1

0

r|H3(r, r̃)|dr =
∫ 1

0

r̃|H3(r, r̃)|dr̃ ≲ 1. 2

Lemma 2.10 The estimate
∥G1(F )∥⋆ ≲ ∥F∥H1

(0)

holds for all F ∈ H1
(0)(Σ).

Proof. It follows fom Proposition 2.6 that

∥∂zG1(F )∥2L2
1
≲
∫ ∞

−∞

∫ 1

0

r

∣∣∣∣∫ 1

0

−|k|2r̃G(r, r̃)F̂ (r̃) dr̃
∣∣∣∣2 dr dk

≲
∫ ∞

−∞

∫ 1

0

r

∫ 1

0

|k|2r̃|G(r, r̃)| dr̃
∫ 1

0

|k|2r̃|G(r, r̃)||F̂ (r̃)|2 dr̃ dr dk

≲
∫ ∞

−∞

∫ 1

0

(∫ 1

0

|k|2r|G(r, r̃)| dr
)
r̃|F̂ (r̃)|2 dr̃ dk

≲ ∥F∥2L2
1

and hence
∥∂2zG1(F )∥L2

1
= ∥∂zG1(Fz)∥L2

1
≲ ∥Fz∥L2

1
.

Next we note that

D0G1(F ) = F−1

[∫ 1

0

ikr̃H1(r, r̃)F̂ (r̃) dr̃

]
and using Proposition 2.7 that

∥D0G1(F )∥2L2
1
≲
∫ ∞

−∞

∫ 1

0

r

∣∣∣∣∫ 1

0

ikr̃H1(r, r̃)F̂ (r̃) dr̃

∣∣∣∣2 dr dk

≲
∫ ∞

−∞

∫ 1

0

r

∫ 1

0

|k|r̃|H1(r, r̃)|dr̃
∫ 1

0

|k|r̃|H1(r, r̃)||F̂ (r̃)|2 dr̃ dr dk

≲
∫ ∞

−∞

∫ 1

0

(∫ 1

0

|k|r|H1(r, r̃)|dr
)
r̃|F̂ (r̃)|2 dr̃ dk

≲ ∥F∥2L2
1

and hence
∥∂zD0G1(F )∥L2

1
= ∥D0G1(Fz)∥L2

1
≲ ∥Fz∥L2

1
.

Finally, using the identity
D1D0G1(F ) + ∂2zG1(F ) = Fz,

which follows from the definition of G1, we find that

∥D1D0G1(F )∥L2
1
≤ ∥∂2zG1(F )∥L2

1
+ ∥Fz∥L2

1
≲ ∥Fz∥L2

1
. 2.

Lemma 2.11 The estimate
∥G2(F )∥⋆ ≲ ∥F∥H1

(1)

holds for all F ∈ H1
(1)(Σ).

Proof. Since

∂zG2(F ) = F−1

[∫ 1

0

ikr̃H2(r, r̃)F̂ (r̃) dr̃

]
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it follows from Corollary 2.8 that

∥∂zG2(F )∥2L2
1
≲
∫ ∞

−∞

∫ 1

0

r

∣∣∣∣∫ 1

0

ikr̃H2(r, r̃)F̂ (r̃) dr̃

∣∣∣∣2 dr dk

≲
∫ ∞

−∞

∫ 1

0

r|k|
∫ 1

0

r̃|H2(r, r̃)|dr̃
∫ 1

0

|k|r̃|H2(r, r̃)||F̂ (r̃)|2 dr̃ dr dk

≲
∫ ∞

−∞

∫ 1

0

(∫ 1

0

|k|r|H2(r, r̃)|dr
)
r̃|F̂ (r̃)|2 dr̃ dk

≲ ∥F∥2L2
1

and hence
∥∂2zG2(F )∥L2

1
= ∥∂zG2(Fz)∥L2

1
≲ ∥Fz∥L2

1
.

Next we note that

D0G2(F ) = F−1

[∫ 1

0

r̃H3(r, r̃)F̂ (r̃) dr̃

]
− F,

so that

∥D0G2(F )∥2L2
1
≲
∫ ∞

−∞

∫ 1

0

r

∣∣∣∣∫ 1

0

r̃H3(r, r̃)F̂ (r̃) dr̃

∣∣∣∣2 dr dk + ∥F∥L2
1

≲
∫ ∞

−∞

∫ 1

0

r

∫ 1

0

r̃|H3(r, r̃)|dr̃
∫ 1

0

r̃|H3(r, r̃)||F̂ (r̃)|2 dr̃ dr dk + ∥F∥L2
1

≲
∫ ∞

−∞

∫ 1

0

(∫ 1

0

r|H3(r, r̃)|dr
)
r̃|F̂ (r̃)|2 dr̃ dk

≲ ∥F∥2L2
1
,

where we have used Proposition 2.9, and hence

∥∂zD0G2(F )∥L2
1
= ∥D0G2(Fz)∥L2

1
≲ ∥Fz∥L2

1
.

Finally, using the identity
D1D0G2(F ) + ∂2zG2(F ) = D1F,

which follows from the definition of G2, we find that

∥D1D0G2(F )∥L2
1
≤ ∥∂2zG2(F )∥L2

1
+ ∥D1F∥L2

1
≲ ∥Fz∥L2

1
+ ∥D1F∥L2

1
. 2.

Lemma 2.12 The estimate
∥G3(ξ)∥⋆ ≲ ∥ξ∥3/2

holds for all ξ ∈ H3/2(R).

Proof. First note that
1
2 |k|

2

(
I0(|k|)2

I1(|k|)2
− 1

)
≲ (1 + |k|2)1/2

since
|k|2

2(1 + |k|2)1/2

(
I0(|k|)2

I1(|k|)2
− 1

)
→

{
2 as |k| → 0,

1
2 as |k| → ∞,

from which it follows that

∥∂zG3(ξ)∥L2
1
=

∫ ∞

−∞

∫ 1

0

r|k|2 I0(|k|r)
2

I1(|k|)2
|ξ̂|2 dr dk

=

∫ ∞

−∞

∫ 1

0

1
2 |k|

2

(
I0(|k|)2

I1(|k|)2
− 1

)
|ξ̂|2 dk

≲ ∥ξ∥21/2
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and hence that
∥∂2zG3(ξ)∥L2

1
= ∥G3(ξz)∥L2

1
≲ ∥ξz∥21/2.

Similarly
1
2 |k|

2

(
1− I0(|k|)2

I1(|k|)2

)
+ |k|I0(|k|)

I1(|k|)
≲ (1 + |k|2)1/2

since
|k|2

2(1 + |k|2)1/2

(
1− I0(|k|)2

I1(|k|)2

)
+

|k|
(1 + |k|2)1/2

I0(|k|)
I1(|k|)

→

{
0 as |k| → 0,

1
2 as |k| → ∞,

from which it follows that

∥D0G3(ξ)∥L2
1
=

∫ ∞

−∞

∫ 1

0

r|k|2 I1(|k|r)
2

I1(|k|)2
|ξ̂|2 dr dk

=

∫ ∞

−∞

(
1
2 |k|

2

(
1− I0(|k|)2

I1(|k|)2

)
+ |k|I0(|k|)

I1(|k|)

)
|ξ̂|2 dr dk

≲ ∥ξ∥21/2
and hence that

∥∂zD0G3(ξ)∥L2
1
= ∥D0G3(ξz)∥L2

1
≲ ∥ξz∥21/2.

Finally, using the identity
D1D0G3(ξ) + ∂2zG3(ξ) = 0,

which follows from the definition of G3, we find that

∥D1D0G3(ξ)∥L2
1
≤ ∥∂2zG3(ξ)∥L2

1
≲ ∥ξz∥1/2. 2.

2.3 Expansions

Using the results in Section 2.1 above, we obtain the expansions

u(η, ξ) =

∞∑
j=0

uj(η, ξ), (41)

where uj is homogeneous of degree j in η and linear in ξ, and

K(η) =

∞∑
j=0

Kj(η), K(η) =

∞∑
j=0

Kj(η), L(η) =
∞∑
j=0

Lj(η),

where Kj , Kj , Lj are homogeneous of degree j in η. Note in particular the formulae

K1(η) = (γ − 1)η − ηzz, (42)

K2(η) = A0η
2 − 1

2η
2
z , (43)

K3(η) = B0η
3 + 1

2ηη
2
z +

3
2η

2
zηzz, (44)

L1(η) = K0η, (45)

L2(η) =
1
2

(
η2z − (K0η)

2 +K0η
2 + 2K1(η)η

)
, (46)

L3(η) = −η2zK0η − 1
2 (K0η)(K0η

2 + 2K1(η)η) +
1
2K1(η)η

2 +K2(η)η, (47)

where
A0 = −γ − 1

2γν
′′(1) + 1, B0 = γ + γν′′(1) + 1

6γν
′′′(1)− 1,

which are obtained from equations (16), (17).
The terms in the expansion of u(η, ξ) can be computed by proceeding formally. Substituting (41) into equations

(36)–(37) and equating terms which are homogeneous of order j in η yields a boundary-value problem for uj in
terms of u0, . . . , uj−1. Formulae for the terms in the expansion for K(η) in terms of Fourier multipliers are then
recovered from the formula

Kj(η)(ξ) = −ujz(η, ξ)|r=1.
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Remark 2.13 This method leads to formulae involving ever more derivatives of η and ξ in the individual terms
in the formulae for Kj(η); the overall validity of the formulae arises from subtle cancellations between the terms
(see Nicholls and Reitich [15, §2.2] for a discussion of this phenomenon in the context of the classical Dirichlet–
Neumann operator).

Proposition 2.14 The operator K0 ∈ L(H3/2(R), H1/2(R)) is given by the formula

K0ξ = f(D)ξ,

which also defines an operator in L(Hs+1(R), Hs(R)) for each s ≥ 0.

Proof. The solution to the boundary-value problem

D1D0u
0 + u0zz = 0, 0 < r < 1,

D0u
0 = ξz, r = 1,

for u0 is

u0 = F−1

[
ikI0(|k|r)
|k|I1(|k|)

ξ̂

]
,

such that
K0ξ = −(u0z)|r=1 = f(D)ξ.

Furthermore, the estimate
f(k) ≲

√
1 + k2, k ∈ R,

which follows from the calculation

f(k)√
1 + k2

=
|k|I0(|k|)√
1 + k2I1(|k|)

→

{
2 as |k| → 0,

1 as |k| → ∞,

implies that
∥K0ξ∥s ≲ ∥ξ∥s+1

for all s ≥ 0. 2

Proposition 2.15 The operators K1 and K2 are given by the formulae

K1(η)ξ = −(ηξz)z −K0(ηK0ξ),

K2(η)ξ =
1
2 (η

2K0ξ)zz +
1
2K0(η

2ξzz) +
1
2 (η

2ξz)z − 1
2K0(η

2K0ξ) +K0(ηK0(ηK0ξ))

for each η ∈ H2(R) and ξ ∈ H3/2(R) (see Remark 2.13).

Proof. The solution to the boundary-value problem

D1D0u
1 + u1zz = D1(rηzu

0
z) + ∂z(rηzD0u

0 − 2ηu0z), 0 < r < 1,

D0u
1 = rηzu

0
z, r = 1,

for u1 is
u1 = rηD0u

0 + w1,

where

D1D0w
1 + w1

zz = 0, 0 < r < 1,

D0w
1 = (ηu0z)z, r = 1,

such that

u1 = rηD0u
0 + F−1

[
ikI0(|k|r)
|k|I1(|k|)

F [ηu0z|r=1]

]
.
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It follows that
K1(η)ξ = −(u1z)|r=1 = −(ηξz)z −K0(ηK0ξ).

Similarly, the solution to the boundary-value problem

D1D0u
2 + u2zz = D1(rηzu

1
z + rηηzu

0
z − r2ηzD0u

0), 0 < r < 1,

+ ∂z(rηzD0u
1 + rηηzD0u

0 − η2u0z − 2ηu1z),

D0u
2 = rηzu

1
z + rηηzu

0
z − r2ηzD0u

0, r = 1,

for u2 is
u2 = − 1

2η
2D0(r

2D0u
0) + rηD0u

1 + w2,

where

D1D0w
2 + w2

zz = 0, 0 < r < 1,

D0w
2 = (u1z)z + ( 12η

2u0z)z − ( 12 (η
2D0u

0)z)z, r = 1,

such that

u2 = − 1
2η

2D0(r
2D0u

0) + rηD0u
1 + F−1

[
ikI0(|k|r)
|k|I1(|k|)

F [ 12η
2u0z|r=1]

]
−F−1

[
ikI0(|k|r)
|k|I1(|k|)

F [ 12 (η
2D0u

0)z|r=1]

]
+ F−1

[
ikI0(|k|r)
|k|I1(|k|)

F [ηu1z|r=1]

]
.

We conclude that

K2(η)ξ = −(u2z)|r=1

= 1
2 (η

2D2
0u

0)z + (η2D0u
0)z − (ηηzu

0
z)z − 1

2K0((η
2ξz)z) +

1
2K0(η

2u0z)−K0(ηK1(η)ξ)

= 1
2 (η

2K0ξ)zz +
1
2K0(η

2ξzz) +
1
2 (η

2ξz)z − 1
2K0(η

2K0ξ) +K0(ηK0(ηK0ξ)). 2

Corollary 2.16 The formulae

K1(η) = (γ − 1)η − ηzz,

K2(η) = A0η
2 − 1

2η
2
z ,

K3(η) = B0η
3 + 1

2ηη
2
z +

3
2η

2
zηzz,

L1(η) = K0η,

L2(η) =
1
2 (η

2
z − (K0η)

2 − (η2)zz − 2K0(ηK0η) +K0η
2),

L3(η) =
1
2 (K0η)(η

2)zz + (K0η)(K0(ηK0η))− 1
2 (K0η)(K0η

2)− η2z(K0η)

+ 1
2 (η

2K0η)zz +
1
2K0(η

2ηzz)− 1
2 (η

2ηz)z − 1
2K0(η

2K0η)

+K0(ηK0(ηK0η))− 1
2K0(ηK0η

2)

hold for all η ∈ H2(R2) (see Remark 2.13).

Lemma 2.17

(i) The estimates

∥K2(η)∥0 ≲ ∥η∥Z∥η∥2, ∥dK2[η](ρ)∥0 ≲ ∥η∥Z∥ρ∥2,
∥L2(η)∥0 ≲ ∥η∥Z∥η∥2, ∥dL2[η](ρ)∥0 ≲ ∥η∥Z∥ρ∥2

hold for all η, ρ ∈ H2(R).
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(ii) The estimates

∥K3(η)∥0 ≲ ∥η∥2Z∥η∥2, ∥dK3[η](ρ)∥0 ≲ ∥η∥2Z∥ρ∥2 + ∥η∥Z∥η∥2∥ρ∥2,
∥L3(η)∥0 ≲ ∥η∥2Z∥η∥2, ∥dL3[η](ρ)∥0 ≲ ∥η∥2Z∥ρ∥2 + ∥η∥Z∥η∥2∥ρ∥2

hold for all η ∈ U and ρ ∈ H2(R).

(iii) The quantities

Kr(η) =

∞∑
j=4

Kj(η), Lr(η) =

∞∑
j=4

Lj(η)

satisfy the estimates

∥Kr(η)∥0 ≲ ∥η∥3Z∥η∥2, ∥dKr[η](ρ)∥0 ≲ ∥η∥3Z∥ρ∥2 + ∥η∥2Z∥η∥2∥ρ∥2,
∥Lr(η)∥0 ≲ ∥η∥3Z∥η∥2, ∥dLr[η](ρ)∥0 ≲ ∥η∥3Z∥ρ∥2 + ∥η∥2Z∥η∥2∥ρ∥2

hold for all η ∈ U and ρ ∈ H2(R).

Proof. These results are obtained by estimating the right-hand sides of (43), (44), (46), (47) and

Kr(η) = K(η)−K1(η)−K2(η)−K3(η)

= −
(
γν

(
1

1 + η

)
− γν(1) + γη + (A0 − 1)η2 + (B0 + 1)η3

)
−
(

1

(1 + η2z)
3/2

− 1 + 3
2η

2
z

)
ηzz + (1− η)

(
1

(1 + η2z)
1/2

− 1 + 1
2η

2
z

)
+ (η2 − η3)

(
1

(1 + η2z)
1/2

− 1

)
+

(
1

1 + η
− 1 + η − η2 + η3

)
1

(1 + η2z)
1/2

,

Lr(η) = L(η)− L1(η)− L2(η)− L3(η)

= − 1
2 (K≥2(η)η +

1
2K(η)η2)2 − (K0η +K1(η)η)(K≥2(η)η +

1
2K≥1(η)η

2)− 1
2 (K1(η)η)

2

− 1
2K1(η)η(K0η

2) +
1

2

(
1

1 + η2z
− 1

)
(ηz − ηzK(η)η − 1

2ηzK(η)η2)2

+ 1
2 (ηzK(η)η + 1

2ηzK(η)η2)2 − η2z(K≥1(η)η +
1
2K(η)η2)

+K≥3(η)η +
1
2K≥2(η)η

2

with

K≥1(η) =

∞∑
j=1

Kj(η), K≥2(η) =

∞∑
j=2

Kj(η), K≥3(η) =

∞∑
j=3

Kj(η)

using the methods described in the proof of Corollary 2.5, noting that

∥Kj(η)η∥1/2 ≲ ∥η∥jZ∥η∥3/2, ∥K(η)η∥1/2 ≲ ∥η∥3/2

and

∥K≥1(η)η∥1/2 ≲ ∥η∥Z∥η∥3/2, ∥K≥2(η)η∥1/2 ≲ ∥η∥2Z∥η∥3/2, ∥K≥3(η)η∥1/2 ≲ ∥η∥3Z∥η∥3/2.

The estimates for the derivatives are obtained in the same way. 2

3 Reduction
In this section we reduce the equation

K(η)− c20(1− ε2)L(η) = 0 (48)
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to a perturbation of a full-dispersion model equation using a technique reminiscent of the Lyapunov-Schmidt reduc-
tion. We work in the subset U of the basic space X = H2(R2) (see equation (40), so that equation (48) holds in
L2(R2). Respecting the decomposition of η into two parts, we decompose X into the direct sum of the spaces

X1 = χ(D)X , X2 = (1− χ(D))X

and equip X1 and X2 with respectively the scaled norm

|||η1|||2 =

∫
R
(1 + ε−2(|k| − ω)2)|η̂1|2 dk

(with the convention that ω = 0 if 1 < γ < 9) and the usual norm for H2(R).

Proposition 3.1 The estimate
∥η̂∥L1R) ≲ ε1/2|||η1|||

holds for every η ∈ X1, and in particular

∥η∥Z ≲ ε1/2|||η1|||+ ∥η2∥2

for every η ∈ X .

Proof. This result follows from the calculation∫
R
|η̂1(k)| dk =

∫
R

(1+ε−2(|k|−ω)2)1/2

(1+ε−2(|k|−ω)2)1/2
|η̂1(k)| dk

≤
(∫

R

1

1+ε−2(|k|−ω)2
dk

)1/2
|||η1|||

=
(
πε+ 2ε arctan

ω

ε

)1/2
|||η1|||. 2

Clearly η ∈ U satisfies (48) if and only if

χ(D)
(
K(η1 + η2)− c20(1− ε2)L(η1 + η2)

)
= 0,

(1− χ(D))
(
K(η1 + η2)− c20(1− ε2)L(η1 + η2)

)
= 0,

and these equations can be rewritten as

g(D)η1 + c20ε
2K0η1 + χ(D)N (η1 + η2) = 0, (49)

g(D)η2 + c20ε
2K0η2 + (1− χ(D))N (η1 + η2) = 0, (50)

in which
N (η) = K2(η) +K3(η) +Kr(η)− c20(1− ε2)(L2(η) + L3(η) + Lr(η)).

We proceed by writing (50) as a fixed-point equation for η2 using Proposition 3.2, which follows from the fact
that g(k) ≳ |k|2 for k ̸∈ S, and solving it for η2 as a function of η1 using Theorem 3.3, which is proved by
a straightforward application of the contraction mapping principle. Substituting η2 = η2(η1) into (49) yields a
reduced equation for η1, which can be rewritten as a perturbation of a full-dispersion model equation by applying a
further change of variable. Full details are given in Sections 3.1 and 3.2 below, which deal with the cases 1 < γ < 9
(‘strong surface tension’) and γ > 9 (‘weak surface tension’) separately.

Proposition 3.2 The mapping (1− χ(D))g(D)−1 is a bounded linear operator L2(R) → X2.

Theorem 3.3 Let X1, X2 be Banach spaces, X1, X2 be closed, convex sets in, respectively, X1, X2 containing the
origin and G : X1×X2 → X2 be a smooth function. Suppose that there exists a continuous function r : X1 → [0,∞)
such that

∥G(x1, 0)∥ ≤ 1
2r, ∥d2G[x1, x2]∥ ≤ 1

3

for each x2 ∈ B̄r(0) ⊆ X2 and each x1 ∈ X1.
Under these hypotheses there exists for each x1 ∈ X1 a unique solution x2 = x2(x1) of the fixed-point equation

x2 = G(x1, x2) satisfying x2(x1) ∈ B̄r(0). Moreover x2(x1) is a smooth function of x1 ∈ X1 and in particular
satisfies the estimate

∥dx2[x1]∥ ≤ 2∥d1G[x1, x2(x1)]∥.
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3.1 Strong surface tension

Suppose that 1 < γ < 9. We write (50) in the form

η2 = −(1− χ(D))g(D)−1
(
c20ε

2K0η2 +N (η1 + η2)
)

(51)

and apply Theorem 3.3 with

X1 = {η1 ∈ X1 : |||η1||| ≤ R1}, X2 = {η2 ∈ X2 : ∥η2∥2 ≤ R2};

the function G is given by the right-hand side of (51). Using Proposition 3.1 one can guarantee that
∥η̂1∥L1(R2) <

1
2M for all η1 ∈ X1 for an arbitrarily large value of R1; the value of R2 is constrained by the

requirement that ∥η2∥2 < 1
2M for all η2 ∈ X2. The next lemma follows from Lemma 2.17, its corollary from

Proposition 3.2.

Lemma 3.4 The estimates

(i) ∥N (η1, η2)∥0 ≲ ε1/2|||η1|||2 + ε1/2|||η1|||∥η2∥2 + |||η1|||∥η2∥22 + ∥η2∥22,

(ii) ∥d1N [η1, η2]∥L(X1,L2(R)) ≲ ε1/2|||η1|||+ ε1/2∥η2∥2 + ∥η2∥22,

(iii) ∥d2N [η1, η2]∥L(X2,L2(R)) ≲ ε1/2|||η1|||+ |||η1|||∥η2∥2 + ∥η2∥2,

where with a slight abuse of notation we write N (η1 + η2) as N (η1, η2), hold for each η1 ∈ X1 and η2 ∈ X2.

Corollary 3.5 The estimates

(i) ∥G(η1, η2)∥2 ≲ ε1/2|||η1|||2 + ε1/2|||η1|||∥η2∥2 + |||η1|||∥η2∥22 + ∥η2∥22 + ε2∥η2∥2,

(ii) ∥d1G[η1, η2]∥L(X1,X2) ≲ ε1/2|||η1|||+ ε1/2∥η2∥2 + ∥η2∥22,

(iii) ∥d2G[η1, η2]∥L(X1,X2) ≲ ε1/2|||η1|||+ |||η1|||∥η2∥2 + ∥η2∥2 + ε2

hold for each η1 ∈ X1 and η2 ∈ X2.

Theorem 3.6 Equation (51) has a unique solution η2 ∈ X2 which depends smoothly upon η1 ∈ X1 and satisfies
the estimates

∥η2(η1)∥2 ≲ ε1/2|||η1|||2, ∥dη2[η1]∥L(X1,X2) ≲ ε1/2|||η1|||.

Proof. ChoosingR2 and ε sufficiently small and setting r(η1) = σε1/2|||η1|||2 for a sufficiently large value of σ > 0,
one finds that

∥G(η1, 0)∥2 ≲ 1
2r(η1), ∥d2G[η1, η3]∥L(X2,X2) ≲ ε1/2

for η1 ∈ X1 and η2 ∈ Br(η1)(0) ⊂ X2 (Corollary 3.5(i), (iii)). Theorem 3.3 asserts that equation (51) has a unique
solution η2 in Br(η1)(0) ⊂ X2 which depends smoothly upon η1 ∈ X1, and the estimate for its derivative follows
from Corollary 3.5(ii). 2

Substituting η2 = η2(η1) into (49) yields the reduced equation

g(D)η1 + c20ε
2K0η1 + χ(D)N (η1 + η2(η1)) = 0 (52)

for η1 ∈ X1. The leading-order terms in this equation are computed by approximating the operators ∂z and K0 in
its quadratic part by constants.

Proposition 3.7 The estimates

(i) η1z = O(ε|||η1|||),

(ii) K0η1 = 2η1 +O(ε|||η1|||),

(iii) K0(η1ρ1) = 2η1ρ1 +O(ε3/2|||η1||||||ρ1|||)
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hold for all η1, ρ1 ∈ X1. The order-of-magnitude estimates are computed with respect to the L2(R)-norm (which is
equivalent to the Hs(R)-norm on the space χ(D)Hs(R) for any s ≥ 0).

Proof. This result follows from the calculations

∥η1z∥0 = ∥|k|η̂1∥0 ≤ ε|||η1|||,

∥(K0 − 2I)η1∥0 = ∥(f(k)− 2)η̂1∥0 ≲ ∥|k|η̂1∥0 ≤ ε|||η1|||,

∥(K0 − 2I)(η1ρ1)∥0 ≲

∥∥∥∥|k| ∫
R
|η̂1(k − k̃)||ρ̂1(k̃)| dk̃

∥∥∥∥
0

≲

∥∥∥∥∫
R
|k − k̃||η̂1(k − k̃)||ρ̂1(k̃)|dk̃ +

∫
R
|k̃||η̂1(k − k̃)||ρ̂1(k̃)| dk̃

∥∥∥∥
0

≲ ∥ |k|η̂1∥0∥ρ̂1∥L1(R) + ∥η̂1∥L1(R)∥ |k|ρ̂1∥0
≲ ε3/2|||η1||| |||ρ1|||

for each η1, ρ1 ∈ X1, where we have also used Young’s inequality. 2

The leading-order terms in the nonlinear part of (52) are now obtained from Corollary 3.8 (which follows from
Corollary 2.16 and Proposition 3.7) and Lemma 3.9 (which follows from Lemma 2.17) below. Here we use the
symbol O(εs|||η1|||t) (with s ≥ 0, t ≥ 1) to denote a smooth function Rε : X1 → L2(R) which satisfies the
estimates

∥Rε(η1)∥0 ≲ εs|||η1|||t ∥dRε[η1]∥L(X1,L2(R2)) ≲ εs|||η1|||t−1

for each η1 ∈ X1.

Corollary 3.8 The estimates

(i) K2(η1 + η2(η1)) =
(
−γ − 1

2γv
′′(1) + 1

)
η21 +O(ε|||η1|||2),

(ii) L2(η1 + η2(η1)) = −5η21 +O(ε|||η1|||2)
hold for each η1 ∈ X1.

Lemma 3.9 The estimate

N (η1 + η2(η1)) = K2(η1)− c20(1− ε2)L2(η1) +O(ε|||η1|||3)

holds for each η1 ∈ X1.

We conclude that the reduced equation for η1 is the perturbed full dispersion Korteweg-de Vries equation

g(D)η1 + c20ε
2K0η1 + χ(D)

(
2c20d0η

2
1 +O(ε|||η1|||2)

)
= 0,

and applying Proposition 3.7(ii), one can further simplify it to

g(D)η1 + 2c20ε
2η1 + χ(D)

(
2c20d0η

2
1 +O(ε|||η1|||2) +O(ε3|||η1|||)

)
= 0.

Finally, we introduce the Korteweg-de Vries scaling

η1(z) = ε2ζ(εz),

noting that I : η1 → ζ is an isomorphism X1 → H1
ε (R) and χ(D)L2(R) → L2

ε(R) and choosing R > 1 large
enough so that ζKdV ∈ BR(0) (and ε > 0 small enough so that BR(0) ⊆ H1

ε (R) is contained in I[X1]). We find
that ζ ∈ BR(0) ⊆ H1

ε (R) satisfies the equation

ε−2g(εD)ζ + 2c20ζ + 2c20d0χ0(εD)ζ2 + ε1/2Oε
0(∥ζ∥1) = 0, (53)

which holds in L2
ε(R), where the symbol D now means −i∂Z and the symbol Oε

n(ε
s∥ζ∥t1) denotes a smooth

function R : BR(0) ⊆ H1
ε (R) → Hn

ε (R) which satisfies the estimates

∥R(ζ)∥n ≲ εs∥ζ∥t1 ∥dR[ζ]∥L(H1(R),Hn(R)) ≲ εs∥ζ∥t−1
1

for each ζ ∈ BR(0) ⊆ H1
ε (R) (with t ≥ 1, s, n ≥ 0). Note that |||η||| = ε3/2∥ζ∥1 and the change of variable from

z to Z = εz introduces an additional factor of ε1/2 in the remainder term.
Equation (52) is invariant under the reflection η1(z) 7→ η1(−z); a familiar argument shows that it is inherited

from the corresponding invariance of (49), (51) under η1(z) 7→ η1(−z), η2(z) 7→ η2(−z) when applying Theorem
3.3. The invariance is likewise inherited by (53), which is invariant under the reflection ζ(Z) 7→ ζ(−Z).
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3.2 Weak surface tension

Suppose that γ > 9. Since χ(D)K2(η1) and χ(D)L2(η1) both vanish the nonlinear term in (49) is at leading order
cubic in η1, so that this equation may be rewritten as

g(D)η1 + c20ε
2K0η1 + χ(D)

(
N (η1 + η2) + c20(1− ε2)L2(η1)−K2(η1)

)
= 0. (54)

To compute the reduced equation for η1 we need an explicit formula for the leading-order quadratic part of η2(η1);
inspecting (50) shows that it is given by

F (η1) := (1− χ(D))g(D)−1
(
c20(1− ε2)L2(η1)−K2(η1)

)
, (55)

an estimate for which is found using Lemma 2.17 (note that K0F (η) satisfies the same estimates as F (η) since
F [F (η)] has compact support).

Proposition 3.10 The estimates

(i) ∥F (η1)∥2, ∥K0F (η1)∥2 ≲ ε1/2|||η1|||2,

(ii) ∥dF [η1]∥L(X1,X2), ∥dK0F [η1]∥L(X1,X2) ≲ ε1/2|||η1|||

hold for each η1 ∈ X1.

It is convenient to write η2 = F (η1) + η3 and (50) in the form

η3 = −(1− χ(D))g(D)−1
(
N (η1 + F (η1) + η3) + c20(1− ε2)L2(η1)−K2(η1) + c20ε

2K0(F (η1) + η3)
)

(56)

(with the requirement that η1 + F (η1) + η3 ∈ U ). We apply Theorem 3.3 to equation (56) with

X1 = {η1 ∈ X1 : |||η1||| ≤ R1}, X3 = {η3 ∈ X2 : ∥η3∥3 ≤ R3};

the function G is given by the right-hand side of (56). (Here we write X3 rather than X2 for notational clarity.)
Using Proposition 3.1 one can guarantee that ∥η̂1∥L1(R) <

1
2M for all η1 ∈ X1 for an arbitrarily large value of R1;

the value of R3 is constrained by the requirement that ∥F (η1) + η3∥2 < 1
2M for all η1 ∈ X1 and η3 ∈ X3, so that

η1 +F (η1)+ η3 ∈ U (Proposition 3.10 asserts that ∥F (η1)∥2 = O(ε1/2) uniformly over η1 ∈ X1). We proceed by
writing

N (η1 + F (η1) + η3) + c20(1− ε2)L2(η1)−K2(η1) = −c20(1− ε2)N1(η1, η3) +N2(η1, η3) +N3(η1, η3),

where

N1(η1, η3) = L2(η1 + F (η1) + η3)− L2(η1),

N2(η1, η3) = K2(η1 + F (η1) + η3)−K2(η1),

N3(η1, η3) = K3(η1 + F (η1) + η3) +Kr(η1 + F (η1) + η3)

− c20(1− ε2) (L3(η1 + F (η1) + η3) + Lr(η1 + F (η1) + η3))

and estimating these quantities using Lemma 2.17.

Proposition 3.11 The estimates

(i) ∥N1(η1, η3)∥0, ∥N2(η1, η3)∥0 ≲ ε|||η1|||3 + ε1/2|||η1|||2∥η3∥2 + ε1/2|||η1|||∥η3∥2 + ∥η3∥22,

(ii) ∥d1N1[η1, η3]∥L(X1,L2(R)), ∥d1N2[η1, η3]∥L(X1,L2(R)) ≲ ε|||η1|||2 + ε1/2|||η1|||∥η3∥2 + ε1/2∥η3∥2,

(iii) ∥d2N1[η1, η3]∥L(X2,L2(R)), ∥d2N2[η1, η3]∥L(X2,L2(R)) ≲ ε1/2|||η1|||+ ∥η3∥2
and

(iv) ∥N3(η1, η3)∥0 ≲ (ε1/2|||η1|||+ ∥η3∥3)2(|||η1|||+ ∥η3∥3),

(v) ∥d1N3[η1, η3]∥L(X1,L2(R)) ≲ (ε1/2|||η1|||+ ∥η3∥3)2,

(vi) ∥d2N3[η1, η3]∥L(X3,L2(R)) ≲ (ε1/2|||η1|||+ ∥η3∥3)(|||η1|||+ ∥η3∥3)

hold for each η1 ∈ X1 and η3 ∈ X3.
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The final estimates for G and its derivatives follow from Propositions 3.10 and 3.11 by virtue of Proposition 3.2.

Corollary 3.12 The estimates

(i) ∥G(η1, η3)∥2 ≲ (ε1/2|||η1|||+ ∥η3∥2)2(1 + |||η1|||+ ∥η3∥2) + ε2∥η3∥2,

(ii) ∥d1G[η1, η3]∥L(X1,X2) ≲ (ε1/2|||η1|||+ ∥η3∥2)(ε1/2 + ε1/2|||η1|||+ ∥η3∥2),

(iii) ∥d2G[η1, η3]∥L(X2,X2) ≲ (ε1/2|||η1|||+ ∥η3∥2)(1 + |||η1|||+ ∥η3∥2) + ε2

hold for each η1 ∈ X1 and η3 ∈ X3.

Theorem 3.13 Equation (56) has a unique solution η3 ∈ X3 which depends smoothly upon η1 ∈ X1 and satisfies
the estimates

∥η3(η1)∥2 ≲ ε|||η1|||2, ∥dη3[η1]∥L(X1,X2) ≲ ε|||η1|||.

Proof. Choosing R3 and ε sufficiently small and setting r(η1) = σε|||η1|||2 for a sufficiently large value of σ > 0,
one finds that

∥G(η1, 0)∥2 ≲ 1
2r(η1), ∥d2G[η1, η3]∥L(X2,X2) ≲ ε1/2

for η1 ∈ X1 and η3 ∈ Br(η1)(0) ⊂ X3 (Lemma 3.12(i), (iii)). Theorem 3.3 asserts that equation (56) has a unique
solution η3 in Br(η1)(0) ⊂ X3 which depends smoothly upon η1 ∈ X1, and the estimate for its derivative follows
from Lemma 3.12(ii). 2

Substituting η2 = F (η1) + η3(η1) into (54) yields the reduced equation

g(D)η1 + c20ε
2K0η1 + χ(D)

(
−c20(1− ε2)N1(η1, η3(η1)) +N2(η1, η3(η1)) +N3(η1, η3(η1))

)
= 0 (57)

for η1 ∈ X1. The next step is to compute the leading-order terms in the reduced equation. To this end we write

η1 = η+1 + η−1 ,

where η±1 = χ±(D)η1 and χ±(D) are the characteristic functions of the sets (±ω− δ,±ω+ δ), so that η+1 satisfies
the equation

g(D)η+1 + c20ε
2K0η

+
1 + χ+(D)

(
−c20(1− ε2)N1(η1, η3(η1)) +N2(η1, η3(η1)) +N3(η1, η3(η1))

)
= 0 (58)

(and η−1 = η+1 satisfies its complex conjugate). We again begin by showing how Fourier-multiplier operators
acting upon the function η1 may be approximated by constants. The following result is proved in the same way as
Proposition 3.7.

Proposition 3.14 The estimates

(i) ∂zη±1 = ±iωη±1 +O(ε|||η1|||),

(ii) ∂2zη
±
1 = −ω2η±1 +O(ε|||η1|||),

(iii) K0η
±
1 = f(ω)η±1 +O(ε|||η1|||),

(iv) K0(η
+
1 ρ

+
1 ) = f(2ω)(η+1 ρ

+
1 ) +O(ε3/2|||η1||||||ρ1|||),

(v) K0(η
+
1 ρ

−
1 ) = 2η+1 ρ

−
1 +O(ε3/2|||η1||||||ρ1|||),

(vi) F−1[g(k)−1F [η+1 ρ
+
1 ]] = g(2ω)−1(η+1 ρ

+
1 ) +O(ε3/2|||η1||||||ρ1|||),

(vii) F−1[g(k)−1F [η+1 ρ
−
1 ]] = g(0)−1η+1 ρ

−
1 +O(ε3/2|||η1||||||ρ1|||),

(viii) K0(η
+
1 ρ

+
1 ξ

−
1 ) = f(ω)(η+1 ρ

+
1 ξ

−
1 ) +O(ε2|||η1||||||ρ1||||||ξ1|||)

hold for all η1, ρ1, ξ1 ∈ X1, where the order-of-magnitude estimates are computed with respect to the L2(R)-norm.
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We proceed by approximating each term in the quadratic and cubic parts of equation (58) using Corollary 2.16 and
Lemma 3.14.

Proposition 3.15 The estimate

F (η1) = g(2ω)−1
(
c20A(ω)−A0 − 1

2ω
2
) (

(η+1 )
2 + (η−1 )

2
)
+g(0)−1

(
c20B(ω)− 2A0 + ω2

)
η+1 η

−
1 +O(ε3/2|||η1|||2),

where
A(ω) = 3

2ω
2 − 1

2f(ω)
2 − f(ω)f(2ω) + 1

2f(2ω), B(ω) = ω2 − f(ω)2 − 4f(ω) + 2,

holds for each η1 ∈ X1.

Proposition 3.16 The estimate

χ+(D)
(
c20(1− ε2)N1(η1, η3)−N2(η1, η3)

)
= χ+(D)

((
2g(2ω)−1(c20C(ω)−A0 + ω2)(c20A(ω)−A0 − 1

2ω
2)

+ 2g(0)−1(c20D(ω)−A0)(c
2
0B(ω)− 2A0 + ω2)

)
(η+1 )

2η−1 +O(ε3/2|||η1|||3)
)
,

where
C(ω) = 3

2ω
2 − f(ω)f(2ω) + 1

2f(ω)−
1
2f(ω)

2, D(ω) = 1
2ω

2 − 3
2f(ω)−

1
2f(ω

2),

holds for each η1 ∈ X1.

Proposition 3.17 The estimates

(i) χ+(D)K3(η1 + F (η1) + η3(η1)) = χ+(D)
( (

3B0 +
1
2ω

2 − 3
2ω

4
)
(η+1 )

2η−1 +O(ε3/2|||η1|||3)
)

,

(ii) χ+(D)L3(η1 + F (η1) + η3(η1)) = χ+(D)
(
E(ω)(η+1 )

2η−1 +O(ε3/2|||η1|||3)
)

,

where
E(ω) = 2f(ω)2f(2ω)− 6f(ω)ω2 + 13

2 f(ω)
2 − f(ω)f(2ω)− 4f(ω) + 1

2ω
2,

hold for each η1 ∈ X1.

The higher-order terms in equation are estimated using Lemma 2.17(iii).

Proposition 3.18 The estimates

(i) Kr(η1 + F (η1) + η3(η1)) = O(ε2|||η1|||4),

(ii) Lr(η1 + F (η1) + η3(η1)) = O(ε3/2|||η1|||4)

hold for each η1 ∈ X1.

Corollary 3.19 The estimate

χ+(D)N3(η1, η3(η1)) = χ+(D)
( (

3B0 +
1
2ω

2 − 3
2ω

4 − c20E(ω)
)
(η+1 )

2η−1 +O(ε3/2|||η1|||3)
)

holds for each η1 ∈ X1.

We conclude that the reduced equation for η1 is the perturbed full dispersion nonlinear Schrödinger equation

g(D)η+1 + c20ε
2K0η

+
1 + χ+(D)

(
− 4a3|η+1 |2η

+
1 +O(ε3/2|||η1|||3)

)
= 0,

where

4a3 = 2g(2ω)−1(c20C(ω)−A0 + ω2)(c20A(ω)−A0 − 1
2ω

2)

+ 2g(0)−1(c20D(ω)−A0)(c
2
0B(ω)− 2A0 + ω2)− 3B0 − 1

2ω
2 + 3

2ω
4 + c20E(ω),
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and applying Lemma 3.14(iii), one can further simplify it to

g(D)η+1 + c20f(ω)ε
2η+1 + χ+(D)

(
− 4a3|η+1 |2η

+
1 +O(ε3/2|||η1|||3) +O(ε3|||η1|||)

)
= 0.

Finally, we introduce the nonlinear Schrödinger scaling

η+1 (z) =
1
2εζ(εz)e

iωz,

noting that I : η+1 7→ ζ is an isomorphism X+
1 := χ+(D)X1 → H1

ε (R) and χ+(D)L2(R) → L2
ε(R), where

X+
1 = χ(D)X1, and choosing R > 1 large enough so that ζNLS ∈ BR(0) (and ε > 0 small enough so that

BR(0) ⊂ H1
ε (R) is contained in I[X+

1 ]). We find that ζ ∈ BR(0) ⊆ H1
ε (R) satisfies the equation

ε−2g(ω + εD)ζ + c20f(ω)ζ − a3χ0(εD)(|ζ|2ζ) + ε1/2Oε
0(∥ζ∥1) = 0, (59)

which holds in L2
ε(R). Note that |||η1||| = ε1/2∥ζ∥1 and the change of variable from z to Z = εz introduces

an additional factor of ε1/2 in the remainder term. Equation (57) is of course also invariant under the reflection
η1(z) 7→ η1(−z), and this invariance is inherited by (59), which is invariant under the reflection ζ(Z) 7→ ζ(−Z).

4 Solution of the reduced equation
In this section we find solitary-wave solutions of the reduced equations

ε−2g(εD)ζ + 2c20ζ + 2c20d0χ0(εD)ζ2 + ε1/2Oε
0(∥ζ∥1) = 0, (60)

and
ε−2g(ω + εD)ζ + c20f(ω)ζ − a3χ0(εD)(|ζ|2ζ) + ε1/2Oε

0(∥ζ∥1) = 0. (61)

noting that in the formal limit ε→ 0 they reduce to respectively the stationary Korteweg-de Vries equation

( 18γ − 9
8 )ζZZ + 2c20ζ + 2c20d0ζ

2 = 0, (62)

and the stationary nonlinear Schrödinger equation

−a1ζZZ + a2ζ − a3|ζ|2ζ = 0, (63)

which have explicit (symmetric) solitary-wave solutions ζKdV and ±ζNLS (equations (19) and (21)). For this pur-
pose we use a perturbation argument, rewriting (60) and (61) as fixed-point equations and applying the following
version of the implicit-function theorem. We again treat the cases 1 < γ < 9 (‘strong surface tension’) and γ > 9
(‘weak surface tension’) separately.

Theorem 4.1 Let W be a Banach space, W0 and Λ0 be open neighbourhoods of respectively w⋆ in W and the
origin in R and H : W0 × Λ0 → W be a function which is differentiable with respect to w ∈ W0 for each λ ∈ Λ0.
Furthermore, suppose that H(w⋆, 0) = 0, d1H[w⋆, 0] : W → W is an isomorphism,

lim
w→w⋆

∥d1H[w, 0]− d1H[w⋆, 0]∥L(W) = 0

and
lim
λ→0

∥H(w, λ)−H(w, 0)∥W = 0, lim
λ→0

∥d1H[w, λ]− d1H[w, 0]∥L(W) = 0

uniformly over w ∈ X0.
There exist open neighbourhoods W of w⋆ in W and Λ of 0 in R (with W ⊆ W0, Λ ⊆ Λ0) and a uniquely

determined mapping h : Λ → X with the properties that

(i) h is continuous at the origin (with h(0) = w⋆),

(ii) H(h(λ), λ) = 0 for all λ ∈ Λ,

(iii) w = h(λ) whenever (w, λ) ∈W × Λ satisfies H(w, λ) = 0.
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4.1 Strong surface tension

Theorem 4.2 For each sufficiently small value of ε > 0 equation (60) has a small-amplitude, symmetric solution
ζε in H1

ε (R) with ∥ζε − ζKdV∥1 → 0 as ε→ 0.

The first step in the proof of Theorem 4.2 is to write (60) as the fixed-point equation

ζ + ε2
(
2c20ε

2 + g(εD
)
)−1

(
2c20d0χ0(εD)ζ2 + ε1/2Oε

0(∥ζ∥1)
)
= 0 (64)

for ζ ∈ H1
ε (R) and use the following elementary inequality to ‘replace’ the nonlocal operator with a differential

operator.

Proposition 4.3 The inequality∣∣∣∣ ε2

2c20ε
2 + g(εk)

− 1

2c20 + ( 98 − 1
9 )k

2

∣∣∣∣ ≲ ε

(1 + k2)1/2

holds uniformly over |k| < δ/ε.

Using the above proposition, one can write equation (64) as

ζ + Fε(ζ) = 0,

where
Fε(ζ) = 2c20d0

(
2c20 − ( 98 − 1

8γ)∂
2
Z

)−1
χ0(εD)ζ2 + ε1/2Oε

1(∥ζ∥1).

It is convenient to replace this equation with
ζ + F̃ε(ζ) = 0,

where F̃ε(ζ) = Fε(χ0(εD)ζ) and study it in the fixed spaceH1(R) (the solution sets of the two equations evidently
coincide). We establish Theorem 4.6 by applying Theorem 4.1 with

W = H1
e (R) := {u ∈ H1(R) : u(Z) = u(−Z) for all Z ∈ R},

W0 = BR(0), Λ0 = (−ε0, ε0) for a sufficiently small value of ε0, and

H(ζ, ε) := ζ + F̃|ε|(ζ)

(here ε is replaced by |ε| so that H(ζ, ε) is defined for ε in a full neighbourhood of the origin in R). Observe that

H(ζ, ε)−H(ζ, 0) = 2c20d0
(
2c20 − ( 98 − 1

8γ)∂
2
Z

)−1
[χ0(|ε|D)(χ0(|ε|D)ζ)2 − ζ2] + |ε|1/2O|ε|

1 (∥ζ∥1),

and noting that
lim
ε→0

∥χ0(|ε|D)− I∥L(H1(R),H3/4(R)) = 0

because

∥χ0(|ε|D)u− u∥23/4 =

∫
|k|> δ

|ε|

(1 + |k|2)3/4|û|2 dk

≤ sup
|k|> δ

|ε|

(1 + |k|2)−1/4

∫
|k|> δ

|ε|

(1 + |k|2)|û|2 dk

≤
(
1 +

δ2

|ε|2

)−1/4

∥u∥21,

that
χ0(|ε|D)(χ0(|ε|D)ζ)2 − ζ2 = χ0(|ε|D)(χ0(|ε|D) + I)ζ(χ0(|ε|D)− I)ζ + (χ0(|ε|D)− I)ζ2

and that H3/4(R) is a Banach algebra, we find that

lim
ε→0

∥H(ζ, ε)−H(ζ, 0)∥1 = 0, lim
ε→0

∥d1H[ζ, ε]− d1H[ζ, 0]∥L(H1(R)) = 0
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uniformly over ζ ∈ BR(0). The equation

H(ζ, 0) = ζ + 2c20d0
(
2c20 − ( 98 − 1

8γ)∂
2
Z

)−1
ζ2 = 0

has the (unique) nontrivial solution ζKdV in H1
e (R) and it remains to show that

d1H[ζKdV, 0] = I + 4c20d0
(
2c20 − ( 98 − 1

8γ)∂
2
Z

)−1
(ζKdV·)

is an isomorphism. This result follows from the following lemma.

Lemma 4.4

(i) The formula ζ 7→ 4c20d0
(
2c20 − ( 98 − 1

8γ)∂
2
Z

)−1
(ζKdV·) defines a compact linear operatorH1(R) → H1(R)

and H1
e (R) → H1

e (R), and in particular d1H[ζKdV, 0] is a Fredholm operator with index 0.

(ii) Every bounded solution of the equation

( 18γ − 9
8 )ζZZ + 2c20ζ + 4c20d0ζKdVζ = 0, (65)

is a multiple of ζKdV,Z and is therefore antisymmetric. In particular ker d1H[ζKdV, 0] is trivial.

Theorem 1.1 follows from Theorem 4.2 and the following result.

Proposition 4.5 The formulae
η = η1 + η2(η1), η1(z) = ε2ζε(εz)

lead to the estimate
η(z) = ε2ζKdV(εz) + o(ε2)

uniformly over z ∈ R

Proof. Note that
∥ζε − ζKdV∥∞ ≲ ∥ζε − ζKdV∥1 = o(1),

so that
η1(z) = ε2ζKdV(εz) + ε2

(
ζε(εz)− ζKdV(εz)

)
= ε2ζKdV(εz) + o(ε2)

uniformly over z ∈ R. Furthermore

∥η2(η1)∥∞ ≲ ∥η2(η1)∥2 ≲ ε1/2|||η1|||2 = ε7/2∥ζε∥21 ≲ ε7/2. 2

4.2 Weak surface tension

Theorem 4.6 For each sufficiently small value of ε > 0 equation (61) has two small-amplitude, symmetric solutions
ζ±ε in H1

ε (R) with ∥ζ±ε ∓ ζNLS∥1 → 0 as ε→ 0.

We again begin the proof of Theorem 4.6 by ‘replacing’ the nonlocal operator in the fixed-point formulation

ζ + ε2
(
ε2c20f(ω) + g(ω + εD)

)−1
(
−a3χ0(εD)(|ζ|2ζ) + ε1/2Oε

0(∥ζ∥1)
)
= 0 (66)

of equation (61) for ζ ∈ H1
ε (R) with a differential operator.

Proposition 4.7 The inequality∣∣∣∣ ε2

c20f(ω)ε
2 + g(ω + εk)

− 1

a2 + a1k2

∣∣∣∣ ≲ ε

(1 + k2)1/2

holds uniformly over |k| < δ/ε.
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Using the above proposition, one can write equation (66) as

ζ + F̃ε(ζ) = 0,

where
F̃ε(ζ) = Fε(χ0(εD)ζ), Fε(ζ) = −a3

(
a2 − a1∂

2
Z

)−1
χ0(εD)(|ζ|2ζ) + ε1/2Oε

1(∥ζ∥1),

and establish Theorem 4.6 by applying Theorem 4.1 with

W = H1
e (R,C) = {ζ ∈ H1(R) : ζ(Z) = ζ(−Z) for all Z ∈ R},

W0 = BR(0), Λ0 = (−ε0, ε0) for a sufficiently small value of ε0 and

H(ζ, ε) := ζ + F̃|ε|(ζ).

Observe that

H(ζ, ε)−H(ζ, 0)

= −a3
(
a2 − a1∂

2
Z

)−1
[
χ0(|ε|D)

(
|χ0(|ε|D)ζ|2(χ0(|ε|D)− I)ζ + |ζ|2(χ0(|ε|D)− I)ζ

+ ζχ0(|ε|D)ζ(χ0(|ε|D)− I)ζ̄
)

+ (χ0(|εD|)− I)|ζ|2ζ
]
+ |ε| 12O|ε|

1 (∥ζ∥1);

noting that H1(R;C) is a Banach algebra, that χ0(|ε|D) → I in L(H1(R), H3/4(R)) = 0 as ε→ 0 and that point-
wise multiplication defines a bounded trilinear mapping (H1(R;C)2 ×H3/4(R;C) → L2(R;C) (see Hörmander
[14, Theorem 8.3.1]), one concludes that

lim
ε→0

∥H(ζ, ε)−H(ζ, 0)∥1 = 0, lim
ε→0

∥d1H[ζ, ε]− d1H[ζ, 0]∥L(H1(R,C)) = 0

uniformly over ζ ∈ BR(0).
The equation

H(ζ, 0) = ζ − a3
(
a2 − a1∂

2
Z

)−1 |ζ|2ζ = 0

has (precisely two) nontrivial solutions ±ζNLS in H1
e (R,C), which are both real, and the fact that d1H[±ζNLS, 0]

is an isomorphism is conveniently established by using real coordinates. Define ζ1 = Re ζ and ζ2 = Im ζ, so that

d1H[±ζNLS, 0](ζ1 + iζ2) = H1(ζ1) + iH2(ζ2),

where H1 : H1
e (R) → H1

e (R) and H2 : H1
o (R) → H1

o (R) are given by

H1(ζ1) = ζ1 − 3a3
(
a2 − a1∂

2
Z

)−1
ζ2NLSζ1, H2(ζ2) = ζ2 − a3

(
a2 − a1∂

2
Z

)−1
ζ2NLSζ2

and

H1
e (R) := {u ∈ H1(R) : u(Z) = u(−Z) for all Z ∈ R},

H1
o (R) := {u ∈ H1(R) : u(Z) = −u(−Z) for all Z ∈ R}.

Proposition 4.8

(i) The formulae

ζ1 7→ −3a3
(
a2 − a1∂

2
Z

)−1
ζ2NLSζ1, ζ2 7→ −a3

(
a2 − a1∂

2
Z

)−1
ζ2NLSζ2

define compact linear operators H1(R) → H1(R), H1
e (R) → H1

e (R) and H1
o (R) → H1

o (R), and in partic-
ular H1, H2 are Fredholm operators with index 0.
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(ii) Every bounded solution of the equation

−a1ζ1ZZ + a2ζ1 − 3a3ζ
2
NLSζ1 = 0 (67)

is a multiple of ζNLS,Z and is therefore antisymmetric, while every bounded solution of the equation

−a1ζ1ZZ + a2ζ1 − a3ζ
2
NLSζ1 = 0 (68)

is a multiple of ζNLS and is therefore symmetric. In particular kerH1 and kerH2 are trivial.

Theorem 1.2 follows from Theorem 4.6 and the following result.

Proposition 4.9 The formulae

η = η1 + F (η1) + η3(η1), η1 = η+1 + η−1 , η+1 (z) =
1
2εζ

±
ε (εz)eiωz

leads to the estimate
η(z) = ±εζNLS(εz) cos(ωz) + o(ε)

uniformly over z ∈ R.

Proof. Note that
∥ζε ∓ ζNLS∥∞ ≲ ∥ζε ∓ ζNLS∥1 = o(1),

so that
η+1 (z) = ± 1

2εζNLS(εz)e
iωz + 1

2ε
(
ζ±ε (εz)∓ ζNLS(εz)

)
eiωz = ± 1

2εζNLS(εz)e
iωz + o(ε)

uniformly over z ∈ R. Furthermore

∥F (η1)∥∞ ≲ ∥F (η1)∥2 ≲ ε1/2|||η1|||2 = ε3/2∥ζ±ε ∥21 ≲ ε3/2

and
∥η3(η1)∥∞ ≲ ∥η3(η1)∥2 ≲ ε|||η1|||2 = ε2∥ζ±ε ∥21 ≲ ε2. 2

Acknowledgement
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Appendix A Dispersion relation
In this appendix we establish the qualitative features of the dispersion relation

c2 =
γ − 1 + k2

f(k)

shown in Figure 4. Note that c2(0) = 1
2 (γ − 1) and c2(k) → ∞ as k → ∞. Furthermore, the calculation

dc2

dk
(k) =

2kf(k)− (γ − 1 + k2)f ′(k)

f(k)2
, f ′(k) = k − kI0(k)I2(k)

I1(k)2
(69)

shows that
dc2

dk
(0) = 0,

and it remains to determine whether c2 has any critical points at positive values of k.

Proposition A.1 The function

h(k) = 1− k2 +
2kf(k)

f ′(k)
, k ≥ 0,

is strictly monotone increasing.
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Proof. Observe that

h′(k) = −2k + 2f(k)
d

dk

(
k

f ′(k)

)
+ 2k = −2f(k)

(
ϕ1(k)

)−2
ϕ′1(k), (70)

where

ϕ1(k) :=
1

k
f ′(k) = 1− I0(k)I2(k)

I21 (k)
.

Barciz [1, p. 257] showed that for each ν > −1 the function

ϕν(k) = 1− Iν−1(k)Iν+1(k)

I2ν (k)
, k ≥ 0,

satisfies ϕ′ν(k) < 0 for k > 0 with ϕ′ν(0) = 0. It follows from equation (70) that h′(k) > 0 for k > 0 with
h′(0) = 0, so that h is strictly monotone increasing (note that ϕ1(k) > 0 since ϕ1(0) = 1

2 , ϕ1(k) → 0 as k → ∞
and ϕ1 is strictly monotone decreasing). 2

Observing that h(0) = 9 and h(k) → ∞ as k → ∞, we find from (69) that for each fixed γ > 9 there exists a
unique ω > 0 with

γ = 1− ω2 +
2ωf(ω)

f ′(ω)
,

dc2

dk
(ω) = 0,

while c2 has no critical points at positive values of k for 1 < γ ≤ 9. It follows that c2 is a strictly monotone
increasing function of k for 1 < γ ≤ 9, while for γ > 9 it has a unique local maximum at k = 0 and a unique
global minimum at k = ω > 0, where ω = h−1(γ) > 0.

.

Appendix B Weakly nonlinear theory

Formal derivation of the KdV equation for 1 < γ < 9

We choose
c20 = 1

2 (γ − 1),

write c2 = c20(1− ε2) and substitute the Ansatz

η(z) = ε2ζ1(Z) + ε4ζ2(Z) + · · · , Z = εz,

into equation (15). Expanding

K0 = f(εD)

= f(0)︸︷︷︸
= 2

− 1
2ε

2 f ′′(0)︸ ︷︷ ︸
= 1

2

∂2Z +O(ε4),

where D = −i∂Z , we find from Corollary 2.16 that

K1(η) = ε2(γ − 1)ζ1 + ε4
(
− ζ1ZZ + (γ − 1)ζ2

)
+O(ε6),

K2(η) = ε4(−γ − 1
2γν

′′(1) + 1)ζ21 +O(ε6),

L1(η) = 2ε2ζ1 + ε4(− 1
4ζ1ZZ + 2ζ2) +O(ε6),

L2(η) = −5ε4ζ21 +O(ε6)

and of course Kj(η), Lj(η) = O(ε6) for j ≥ 3.
TheO(ε2) component of equation (15) is trivially satisfied, while theO(ε4) component yields the KdV equation

( 18γ − 9
8 )ζ1ZZ + 2c20ζ1 + 2c20d0ζ

2
1 = 0.
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Formal derivation of the NLS equation for γ > 9

We choose

γ = 1− ω2 +
2ωf(ω)

f ′(ω)
, c20 =

2ω

f ′(ω)
,

write c2 = c20(1− ε2) and substitute the Ansatz

η(z) = εη1(z, Z) + ε2η2(z, Z) + ε3η3(z, Z) + · · · , Z = εz,

into equation (15). Expanding

K0 = f(d+ εD)

= f(d)− iεf ′(d)∂Z − 1
2ε

2f ′′(d)∂2Z +O(ε3),

where d = −i∂z , D = −i∂Z , we find from Corollary 2.16 that

K1(η) = ε
(
(γ − 1)η1 − η1zz

)
+ ε2

(
(γ − 1)η2 − η2zz − 2η1zZ

)
+ ε3

(
(γ − 1)η3 − η3zz − 2η2zZ − η1ZZ

)
+O(ε4),

K2(η) = ε2(A0η
2
1 − 1

2η
2
1z) + ε3(2A0η1η2 − η1zη1Z − η1zη2z) +O(ε4),

K3(η) = ε3(B0η
3
1 +

1
2η1η

2
1z +

3
2η

2
1zη1zz) +O(ε4),

L1(η) = εf(d)η1 + ε2(f(d)η2 − if ′(d)η1Z)

+ ε3(f(d)η3 − if ′(d)η2Z − 1
2f

′′(d)η1ZZ) +O(ε4),

L2(η) = ε2
(
− 1

2η
2
1z − 1

2 (f(d)η1)
2 − η1zzη1 − f(d)(η1f(d)η1) +

1
2f(d)η

2
1

)
+ ε3

(
− η1zη1Z − η1zη2z − η1zzη2 − η1η2zz − 2η1η1zZ − (f(d)η1)(f(d)η2)

+ i(f(d)η1)(f
′(d)η1Z) + if(d)(η1f

′(d)η1Z) + if ′(d)(η1f(d)η1)Z

− f(d)(η1f(d)η2)− f(d)(η2f(d)η1)− 1
2 if

′(d)(η21)Z + f(d)(η1η2)
)
+O(ε4),

L3(η) = ε3
(
− 1

2 (η
2
1η1z)z +

1
2 (f(d)η1)(η

2
1)zz + (f(d)η1)(f(d)(η1f(d)η1))

− 1
2 (f(d)η1)(f(d)η

2
1)− (f(d)η1)η

2
1z +

1
2 (η

2
1f(d)η1)zz +

1
2f(d)(η

2
1η1zz)

− 1
2f(d)(η

2
1f(d)η1) + f(d)(η1f(d)(η1f(d)η1))− 1

2f(d)(η1f(d)η
2
1)) +O(ε4),

and of course Kj(η), Lj(η) = O(ε4) for j ≥ 4.
The next step is to substitute the expressions

η1(z, Z) = ζ1(Z)e
iωz + c.c.,

η2(z, Z) = ζ0(Z) + ζ2(Z)e
2iωz + c.c.,

η3(z, Z) = ζ6(Z) + ζ5(Z)e
iωz + ζ4(Z)e

2iωz + ζ3(Z)e
3iωz + c.c.,

into the previous expansions. Noting that

f (j)(d)(einωz) = f (j)(nω)einωz, j ∈ N0, n ∈ Z,

we find that the O(ε) component of equation (15) is

g(ω)ζ1e
iωz + c.c = 0,

which is satisfied because g(ω) = 0. The O(ε2) component yields the equation

g(0)ζ0 + (2A0 − ω2 − c20B(ω))|ζ1|2 + ig′(ω)ζ ′1e
iωz

+
(
g(2ω)ζ2 + (A0 +

1
2ω

2 − c20A(ω))ζ
2
1

)
e2iωz + c.c. = 0,

where
A(ω) = 3

2ω
2 − 1

2f(ω)
2 − f(ω)f(2ω) + 1

2f(2ω), B(ω) = ω2 − f(ω)2 − 4f(ω) + 2;
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since g′(ω) = 0 this equation is satisfied by choosing

ζ0 = g(0)−1(ω2 − 2A0 + c20B(ω))|ζ1|2,
ζ2 = g(2ω)(−ω0 − 1

2ω
2 + c20A(ω))ζ

2
1 .

The coefficient of eiωz in the O(ε3) component of (15) yields the equation

g(ω)ζ5 + 2(A0 − ω2 − c20C(ω))ζ1ζ2 − 1
2g

′′(ω)ζ ′′1 + c20f(ω)ζ1

+ 2(A0 − c20D(ω))ζ0ζ1 + (3B0 +
1
2ω

2 − 3
2ω

4 − c20E(ω))|ζ1|ζ1|2 = 0, (71)

where

C(ω) = 3
2ω

2 − f(ω)f(2ω) + 1
2f(ω)−

1
2f(ω)

2,

D(ω) = 1
2ω

2 − 3
2f(ω)−

1
2f(ω)

2,

E(ω) = 2f(ω)2f(2ω)− 6f(ω)ω2 + 13
2 f(ω)

2 − f(ω)f(2ω)− 4f(ω) + 1
2ω

2.

Substituting for ζ0 and ζ2 into equation (71) and setting g(ω) = 0 yields the nonlinear Schrödinger equation

−a1ζ1ZZ + a2ζ − a3|ζ1|2ζ1 = 0,

where a1 = 1
2g

′′(ω), a2 = c20f(ω) and

4a3 = 2g(2ω)−1(c20C(ω)−A0 + ω2)(c20A(ω)−A0 − 1
2ω

2)

+ 2g(0)−1(c20D(ω)−A0)(c
2
0B(ω)− 2A0 + ω2)

− 3B0 − 1
2ω

2 + 3
2ω

4 + c20E(ω).
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