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Abstract

Fully localised three-dimensional solitary waves are steady water waves which are evanescent in every hor-
izontal direction. This paper presents an existence theory for such waves under the assumptions that the rela-
tive vorticity and velocity fields are parallel (‘Beltrami flows’), that the free surface of the water takes the form
{z = η(x, y)} for some function η : R2 → R, and that the influence of surface tension is sufficiently strong. The
governing equations are formulated as a single equation for η, which is then reduced to a perturbation of the KP-I
equation. This equation has recently been shown to have a family of nondegenerate localised solutions, and an
application of a suitable variant of the implicit-function theorem shows that they persist under perturbations.

1 Introduction

1.1 The hydrodynamic problem

Consider an incompressible perfect fluid of unit density occupying a three-dimensional domain bounded below by a
rigid horizontal plane and above by a free surface. A steady water wave is a fluid flow of this kind in which both the
velocity field and free-surface profile are stationary with respect to a uniformly (horizontally) translating frame of
reference; a (fully localised) solitary wave is a nontrivial steady wave whose free surface decays to the height of the
fluid at rest in every horizontal direction. Working in frame of reference moving with the wave and in dimensionless
coordinates, we suppose that the fluid domain is Dη = {(x, y, z) : −1 < z < η(x, y)} (so that the free surface is
the graph Sη of an unknown function η : R2 → R), and the flow is a (strong) Beltrami flow whose velocity and
vorticity fields u and curlu are parallel, so that curlu = αu for some fixed constant α. Irrotational flows (with
curlu = 0) are included as the special case α = 0. The hydrodynamic problem is to solve the equations

curlu = αu in Dη , (1)

divu = 0 in Dη , (2)
u · e3 = 0 at z = −1, (3)

u · n = 0 at z = η, (4)

1
2 |u|

2 + η − β

(
ηx

(1 + |∇η|2) 1
2

)
x

− β

(
ηy

(1 + |∇η|2) 1
2

)
y

= 1
2 |c|

2 at z = η, (5)

where ∇ = (∂x, ∂y)
T , ∇⊥ = (∂y,−∂x)

T , c := (c1, c2)
T is the dimensionless wave velocity, e3 = (0, 0, 1)T and

n := (−ηx,−ηy, 1)
T is the outward normal vector at Sη; we have also introduced the Bond number

β = σ/gh2, where h is the depth of the fluid at rest, g is the acceleration due to gravity and σ > 0 is the coefficient
of surface tension. (The pressure p in the fluid is recovered using the formula p(x, y, z) = − 1

2 |u(x, y, z)|
2 − y, and

the variables u and p automatically solve the stationary Euler equation in Dη .) Equations (4) and (5) are referred to
as respectively the kinematic and dynamic boundary conditions at the free surface. It is natural to write η and u as
a perturbations of the trivial solution

η⋆ = 0, u⋆ = c1

 cosαz
− sinαz

0

+ c2

sinαz
cosαz

0

 (6)
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Figure 1: The trivial flow (6)

of (1)–(5) (see Figure 1), so that v = u− u⋆ satisfies the equations

curlv = αv in Dη , (7)

div v = 0 in Dη , (8)
v · e3 = 0 at z = −1, (9)

v · n+ u⋆ · n = 0 at z = η, (10)

1
2 |v|

2 + v · u⋆ + η − β

(
ηx

(1 + |∇η|2) 1
2

)
x

− β

(
ηy

(1 + |∇η|2) 1
2

)
y

= 0 at z = η. (11)

Our task is to find solutions (η,v) of (7)–(11) which are evanescent as |(x, y)| → ∞ and therefore represent fully
localised solitary waves ‘riding’ the trivial flow (6). Note that these equations are invariant under

η(x, y) 7→η(−x,−y), (v1(x, y, z), v2(x, y, z), v3(x, y, z)) 7→(v1(−x,−y, z), v2(−x,−y, z),−v3(−x,−y, z)),

and we in fact seek solutions which are themselves invariant under this transformation.
Irrotational fully localised solitary waves have been found by Groves & Sun [13] and Buffoni et al. [1] for β > 1

3
using variational methods. Their result has recently been made more precise by Gui et al. [14, 15], who obtained
waves which are perturbations and scalings of localised ‘lump’ solutions of the KP-I equation and discussed their
stability. In this paper we use a related method to obtain the same family of waves for equations (7)–(10) for
sufficiently large values of β (depending upon α); the existence result of Gui et al. is included as a special case.
Other types of three-dimensional steady water waves have also been studied, in particular doubly periodic steady
waves, that is waves which are periodic in two different horizontal directions. Their existence was established for
irrotational flows with surface tension (β > 0) by Craig & Nicholls [4, 5], for irrotational waves without surface
tension (β = 0) by Iooss & Plotnikov [16] and for Beltrami flows with surface tension by Lokharu, Seth & Wahlén
[20] (see also Groves et al. [12] for an existence theory in a framework similar to that used in the present paper).
Doubly periodic gravity-capillary waves with more general (but small) vorticity were recently constructed by Seth,
Varholm & Wahlén [23].

1.2 Heuristics

The KP-I equation arises in weakly nonlinear theory as a universal model equation for two-dimensional nonlinear
dispersive systems whose linearisation has a distinguished wave speed attained only by long waves. A straightfor-
ward calculation shows that the linearised version of (7)–(11) has solutions of the form η(x, y) ∼ cos(k ·x), where
x = (x, y)T and k = (k1, k2)

T, if
g(k) = 0, (12)

where
g(k) = − 1

|k|2
(α(c · k⊥)(c · k) + c(|k|2)(c · k)2) + 1 + β|k|2

and

c(µ) =


√

α2 − µ cot(
√
α2 − µ), if µ < α2,√

µ− α2 coth(
√

µ− α2), if µ ≥ α2.
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The calculation

g(k) = − 1

1 +
k2
2

k2
1

α
(
c1

k2

k1
− c2

)(
c1 + c2

k2

k1

)
− 1

1 +
k2
2

k2
1

c
(
k21(1 +

k2
2

k2
1
)
)(
c1 + c2

k2

k1

)2
+ 1 + βk21(1 +

k2
2

k2
1
)

shows that g is an analytic function g̃ of k1 and k2

k1
. We find that g̃(0, 0) = 0 if c = c0, where

c0 =

(
c0 cos

1
2α

−c0 sin
1
2α

)
, c20 = 2

α tan 1
2α,

and it is shown in Appendix A that the dispersion relation (12) has no further solutions for sufficiently large values
of β. Substituting the Ansatz

c = (1− ε2)c0

and
η(x, y) = ε2ζ(X,Y ), X = εx, Y = ε2y (13)

into equations (7)–(11), one duly finds that to leading order ζ satisfies the KP-I equation

−(β − β0)ζxx + 2ζ + sec2 1
2α

D2
2

D2
1

ζ + dαζ
2 = 0, (14)

where
β0 =

1

2α2
(− cosα+ α cosecα), dα = α cosecα+ 1

2α cotα,

we have replaced (X,Y ) with (x, y) for notational simplicity and D1 = −i∂x, D2 = −i∂y .
Equation (14) can be written in the normalised form

∂2
x(−∂2

xu+ u+ 3u2) + ∂2
yu = 0, (15)

which has a family of explicit symmetric ‘lump’ solutions of the form

u⋆
k(x, y) = −2∂2

x log τ
⋆
k (x, y), k = 1, 2, . . . , (16)

where τ⋆k is a polynomial of degree k(k + 1) with τ⋆k (x, y) = τk(−x, y) = τ⋆k (x,−y) for all (x, y) ∈ R2; the first
two members of the family are

τ⋆1 (x, y) = x2 + y2 + 3,

τ⋆2 (x, y) = x6 + 3x4y2 + 3x2y4 + y6 + 25x4 + 90x2y2 + 17y4 − 125x2 + 475y2 + 1875.

Note that the lump solutions u⋆
k are smooth, decaying rational functions, so that the same is true of their derivatives

of all orders. The functions ζ⋆1 and ζ⋆2 (where ζ⋆k is obtained from u⋆
k by reversing the normalisation) are sketched

in Figure 2.
The following result was established by Liu & Wei [17] and Liu, Wei & Yang [19, 18].

Lemma 1.1

(i) Every smooth, algebraically decaying lump solution of (15) has the form u(x, y) = −2∂2
x log τ(x, y) for some

polynomial τ of degree k(k + 1) with k ∈ N and satisfies |u(x, y)| ≲ (1 + x2 + y2)−1 for all (x, y) ∈ R2.

(ii) There is a unique symmetric lump solution of the form (16) for each k ∈ N with k(k + 1) ≤ 600 (and it is
conjectured that this result holds for all k ∈ N).

(iii) The lump solutions ζ⋆1 , ζ⋆2 of (15) are nondegenerate in the sense that the only smooth, evanescent solutions
of the linearised equation

∂2
x(−∂2

xu+ u+ 6u⋆
ku) + ∂2

yu = 0

for k = 1, 2 are linear combinations of ∂xu⋆
k and ∂yu

⋆
k (and it is conjectured that this result holds for all

k ∈ N; see Remark 1.3 below).
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Figure 2: The KP lumps ζ⋆1 (left) and ζ⋆2 (right).

The KP lump solution ζk formally corresponds to a fully localised solitary water wave η(x, z) = ε2ζk(εx, ε
2y).

In this article we rigorously reduce the hydrodynamic equations (7)–(11) to a perturbation of the KP-I equation and
combine the nondegeneracy result in Lemma 1.1(iii) with an implicit-function theorem argument to establish the
following result.

Theorem 1.2 Suppose that

c1 = c0(1− ε2) cos 1
2α, c2 = −c0(1− ε2) sin 1

2α

with
c20 = 2

α tan 1
2α.

For each sufficiently large value of β > 0 and each sufficiently small value of ε > 0 equations (7)–(11) possess fully
localised solitary-wave solutions η⋆1 , η⋆2 ∈ H3(R2) which satisfy η⋆k(x, y) = η⋆k(−x,−y) for all (x, y) ∈ R2 and

η⋆k(x, y) = ε2ζ⋆k(εx, ε
2y) + o(ε2) (17)

uniformly over (x, y) ∈ R2.

Remark 1.3 In fact Theorem 1.2 generates a fully localised solitary water wave from any symmetric lump solution
ζ⋆k of (14) which is nondegenerate in the sense of Lemma 1.1(iii), and a sketch of the proof of the nondegeneracy of
ζ⋆k for k ≥ 3 was given by Liu, Wei & Yang [18].

1.3 Reformulation

We proceed using a recent formulation of (7)–(11) due to Groves & Horn [11] which generalises the Zakharov-
Craig-Sulem formulation of the irrotational problem (Zakharov [25], Craig & Sulem [6]). Let F∥ denote the
horizontal component of the tangential part of a vector field F = (F1, F2, F3)

T at the free surface, so that
F∥ = Fh + F3∇η

∣∣
z=η

, where Fh = (F1, F2)
T, and write, according to the Hodge-Weyl decomposition for vector

fields in two-dimensional free space,
v∥ = ∇Φ+∇⊥Ψ,

where Φ = ∆−1(∇ · v∥), Ψ = ∆−1(∇⊥ · v∥) = −∆−1(∇ · v⊥
∥ ) and ∆−1 is the two-dimensional Newtonian

potential. Define a generalised Dirichlet-Neumann operator H(η) by

H(η)Φ = curlA · n = ∇ ·A⊥
∥ ,
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where (f1, f2)
⊥ = (f2,−f1), the underscore denotes evaluation at z = η and A is the unique solution of the

boundary-value problem

curl curlA = α curlA in Dη , (18)
divA = 0 in Dη , (19)

A ∧ e3 = 0 at z = −1, (20)
A · n = 0 at z = η, (21)

(curlA)∥ = ∇Φ− α∇⊥∆−1(∇ ·A⊥
∥ ) at z = η. (22)

(Note that Ψ = ∆−1(∇⊥ · (curlA)∥) is necessarily given by Ψ = −α∆−1(∇ ·A⊥
∥ ) because

Ψ=−∆−1(∇ · curlA⊥
∥ )=−∆−1(curl curlA · n)=−α∆−1(curlA · n)=−α∆−1(∇ ·A⊥

∥ ), (23)

and that v = curlA satisfies (7)–(9).)
A straightforward calculation shows that equations (10)–(11) are equivalent to

H(η)Φ + u⋆ · n = 0, (24)

1

2
|K(η)Φ|2− (H(η)Φ +K(η)Φ·∇η)2

2(1 + |∇η|2)

+K(η)Φ · u⋆
h + η − β

(
ηx

(1 + |∇η|2) 1
2

)
x

− β

(
ηy

(1 + |∇η|2) 1
2

)
y

= 0, (25)

where
K(η)Φ := ∇Φ− α∇⊥∆−1(H(η)Φ),

and these equations can in fact be reduced to a single equation for the variable η (see Oliveras & Vashal [22] for a
simpler version of this equation for irrotational waves). Equation (24) implies that Φ = −H(η)−1(u⋆ ·n), whereby
(25) yields

J (η) = 0, (26)

where

J (η) :=
1

2
|T (η)|2 − (−u⋆ · n+ T (η) · ∇η)2

2(1 + |∇η|2)

+ T (η) · u⋆
h + η − β

(
ηx

(1 + |∇η|2) 1
2

)
x

− β

(
ηy

(1 + |∇η|2) 1
2

)
y

(27)

and
T (η) := −∇

(
H(η)−1(u⋆ · n)

)
+ α∇⊥∆−1(u⋆ · n).

Equation (26) is invariant under the transformation η(x, y) 7→ η(−x,−y) (see the discussion beneath equations
(7)–(11)), and in this paper we show that (26) has solutions η⋆1 , η⋆2 ∈ H3(R2) which satisfy the estimate (17) and
are invariant under this transformation.

The operator T (η) can also be defined directly in terms of a boundary-value problem. Noting that
u⋆ · n = ∇ · S(η)⊥ (and, for later use, that u⋆

h = αc+ S(η)), where

S(η) =
c1
α

(
cos(αη)− 1
− sin(αη)

)
+

c2
α

(
sin(αη)

cos(αη)− 1

)
,

we can define
T (η) := M(η)S(η),

where
M(η)g := −(curlB)∥,
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and B solves the boundary-value problem

curl curlB = α curlB in Dη, (28)
divB = 0 in Dη, (29)

B ∧ e3 = 0 at z = −1, (30)
B · n = 0 at z = η, (31)

∇ ·B⊥
∥ = ∇ · g⊥ at z = η. (32)

Any solution to this boundary-value problem satisfies

(curlB)∥ = ∇Φ− α∇⊥∆−1(∇ ·B⊥
∥ )

for some Φ (see equation (23)), so that Φ = H(η)−1(∇ · g⊥) and

−(curlB)∥ = −∇(H(η)−1(∇ · g⊥)) + α∇⊥∆−1(∇ · g⊥).

In Section 2 we show that the solutions to the boundary-value problems (18)–(22) and (28)–(32) depend analyt-
ically upon η and use this fact to deduce that the same is true of H(η) and M(η). We proceed by ‘flattening’ the
fluid domain by means of the transformation Σ: D0 → Dη given by

Σ: (x, v) 7→ (x, v + σ(x, v)), σ(x, v) := η(x)(1 + v),

which transforms the boundary-value problems for A and B into equivalent problems for Ã := A ◦ Σ and
B̃ := B ◦ Σ in the fixed domain D0 (equations (36)–(40) and (42)–(46) respectively), and establishing the fol-
lowing results (the function spaces Z , Ḣs(R2) and Ȟs(R2) are defined in Sections 1.5 and 2.1 below).

Theorem 1.4 There exists a neighbourhood V of the origin in Z such that

(i) the boundary-value problem (53)–(57) has a unique solution Ã = Ã(η,Φ) in H3(D0)
3 which depends

analytically upon η ∈ V and Φ ∈ Ḣ
5
2 (R2) (and linearly upon Φ),

(ii) the boundary-value problem (42)–(46) has a unique solution B̃ = B̃(η, g) in H3(D0)
3 which depends

analytically upon η ∈ V and g ∈ H
5
2 (R2)2 (and linearly upon g).

The analyticity of H and M follows from the above theorem and the facts that

H(η)(Φ) = ∇ · Ã⊥
∥ , M(η)(g) = −(curlσ B̃)∥,

where
curlσ B̃(x, v) := (curl B) ◦ Σ(x, v).

Theorem 1.5 The mappings η 7→ H(η) and η 7→ M(η) are analytic V → L(Ḣ
5
2 (R2), Ȟ

3
2 (R2)) and

V → L(H
5
2 (R2)2, H

3
2 (R2)2) respectively.

Our final result follows by noting that H3(R2) is continously embedded in Z , so that

U := {η ∈ H3(R2) : ∥η∥Z < M} (33)

is an open neighbourhood of the origin in H3(R2).

Corollary 1.6 The formula (27) defines an analytic function J : U → H1(R2) for sufficiently small values of
M > 0.
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1.4 Reduction

The Ansatz (13) indicates that the Fourier transform of the surface-profile function η for a fully localised solitary
wave is concentrated in the region S = {(k1, k2) : |k1|, |k2

k1
| ≤ δ} for some 0 < δ ≪ 1 (see Figure 3). We therefore

decompose η ∈ H3(R2) into the sum of

η1 = χ(D)η, η2 = (1− χ(D)) η,

where χ is the indicator function of the set S, the Fourier transform η̂ = F [η] of η is defined by

η̂(k1, k2) =
1

2π

∫
R2

η(x, y)e−i(k1x+k2y) dx dy,

and D = (−i∂x,−i∂y)
T . Setting

c = (1− ε2)c0,

choosing β sufficiently large and writing equation (26) as

χ(D)J (η1 + η2) = 0,

(1− χ(D))J (η1 + η2) = 0,

we find that the second equation is solvable for η2 as a function of η1 for sufficiently small values of ε; the first
therefore reduces to

χ(D)J (η1 + η2(η1)) = 0

upon inserting η2 = η2(η1). Finally, the scaling

η1(x, y) = ε2ζ(X,Y ), X = εx, Y = ε2y

transforms the reduced equation into a perturbation of the equation

ε−2gε(D)ζ + 2ζ + dαχε(D)ζ2 = 0, (34)

where gε(k1, k2) = g(εk1, ε
2k2) and χε(k1, k2) = χ(εk1, ε

2k2) (see Sections 3 and 4; the reduced equation is
stated precisely in equation (75)). Note that δ is a small, but fixed constant while ε is a small parameter whose
maximum value depends upon δ.

k1

k2

Figure 3: The set S = {(k1, k2) : |k1| ≤ δ,
∣∣∣k2

k1

∣∣∣ ≤ δ}.

Equation (34) is a full-dispersion version of the stationary KP-I equation (14) since it retains the linear part of
the original equation (26); noting that

ε−2gε(k1, k2) = (β − β0)k
2
1 + sec2 1

2α
k22
k21

+O(ε),

we recover the fully reduced model equation in the formal limit ε = 0. In Section 5 we demonstrate that equation
(34) for ζ has solutions ζε1 , ζε2 which satisfy ζεk → ±ζ⋆k as ε → 0 in a suitable function space (see Theorem 5.2).
The key step is the nondegeneracy result given in Lemma 1.1(iii) which allows one to apply a suitable variant of the
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implicit-function theorem. For this purpose we exploit the fact that the reduction procedure preserves the invariance
of equation (26) under η(x, y) 7→ η(−x,−y), so that equation (34) is invariant under ζ(x, y) 7→ ζ(−x,−y);
restricting to a space of functions with this invariance, we find that the kernel of the appropriate linearisation is
trivial since ∂xζ

⋆
k , ∂yζ⋆k do not have this invariance.

The perturbation argument used in Section 5 was developed by Groves [10] in the context of two-dimensional
irrotational solitary waves and applied to three-dimensional irrotational fully localised solitary waves on water of
infinite depth by Buffoni, Groves & Wahlén [2]. It has also been applied to the Whitham equation by Stefanov &
Wright [24] and to a full dispersion KP-I equation (which differs from (34)) by Ehrnström & Groves [9].

1.5 Function spaces

We work with the standard function spaces Hn(Dη) for n ∈ N0 in the fluid domain together with Lp(R2) for p ≥ 1,
Wn,∞(R2) for n ∈ N0 and

Hs(R2) = {η ∈ L2(R2) : (1 + |k|2) 1
2 sη̂ ∈ L2(R2)}, ∥η∥2s =

∫
R2

(1 + |k|2)s|η̂(k)|2 dk

for s ≥ 0 in the plane; the definitions are extended componentwise to vector-valued functions. The nonstandard
spaces

Ḣs(R2) = {η ∈ L2
loc(R2) : ∇η ∈ Hs−1(R2)2}/R, ∥η∥Ḣs := ∥∇η∥s−1

∼= ∥⟨k⟩s−1|k|η̂∥0, s ≥ 1,

Ȟs(R2) = {η ∈ L2(R2) : ∆−1η ∈ Ḣs+2(R2)}, ∥η∥Ȟs := ∥∆−1η∥Ḣs+2
∼= ∥⟨k⟩s+1|k|−1η̂∥0, s ≥ 0,

where L2
loc(R2) denotes the space of locally square integrable functions in the plane, and the scale {Ys, ∥ · ∥s}s≥0,

where

Ys =

{
η ∈ L2(R2) :

(
1 + k21 +

k2
2

k2
1

)1
2 s

η̂ ∈ L2(R2)

}
, ∥η∥Ys

:=

∥∥∥∥∥
(
1 + k21 +

k2
2

k2
1

)1
2 s

η̂

∥∥∥∥∥
0

,

are also used. Note that ∆: Ḣs+2(R2) → Hs(R2) is injective so that the definition of Ȟs(R2) makes sense.

Proposition 1.7

(i) The space Y1 is continuously embedded in Lp(R2) for 2 ≤ p ≤ 6.

(ii) The space Y1 is compactly embedded in L2(|x| < R) for each R > 0.

(iii) The space Ys is continuously embedded in Cb(R2) := C(R2) ∩ L∞(R2) for s > 3
2 .

Proof. Parts (i) and (ii) are given by respectively Ehrnström & Groves [8, Proposition 2.2(i)] and de Bouard & Saut
[7, Lemma 3.3]. Turning to part (iii), note that

∥η∥∞ ≲
∫
R2

|η̂(k)| dk =

∫
R2

(
1 + k21 +

k2
2

k2
1

)− 1
2 s
(
1 + k21 +

k2
2

k2
1

)1
2 s

|η̂(k)| dk ≤ ∥η∥YsI
1
2 ,

where

I =

∫
R2

(
1 + k21 +

k2
2

k2
1

)−s

dk =

∫
R2

(1 + |k|2)−s|k1| dk < ∞

if and only if s > 3
2 . The continuity of η follows from a standard dominated convergence argument. 2

Observe that the spaces χ(D)Hs(R2) and χ(D)Ys, s ≥ 0 of ‘truncated’ functions all coincide and have
equivalent norms. In Sections 3 and 4 we identify in particular χ(D)H3(R2) with χ(D)Y1 and equip it with the
scaled norm

|||η|||2 :=

∫
R2

(
1 + ε−2k21 + ε−2 k

2
2

k2
1

)
|η̂(k)|2 dk (35)

in anticipation of the KP scaling.

Proposition 1.8 The estimate ∥η̂1∥L1(R2) ≲ ε|||η1||| holds for each η1 ∈ χ(D)Y1.
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Proof. Observe that∫
R2

|η̂1(k)| dk =

∫
R2

(
1 + ε−2k21 + ε−2 k2

2

k2
1

)− 1
2
(
1 + ε−2k21 + ε−2 k2

2

k2
1

) 1
2 |η̂1(k)| dk ≲ |||η1|||I

1
2 ,

where

I =

∫
S

1

1 + ε−2k21 + ε−2 k2
2

k2
1

dk = 4ε2
∫ δ/ε

0

∫ δ/ε

0

k1
1 + k22 + k21

dk2 dk1 ≲ ε2. 2

Corollary 1.9 The estimate ∥η1∥n,∞ ≲ ε|||η1||| holds for each η1 ∈ χ(D)Y1 and each n ∈ N0.

Proof. The result follows from the calculation ∥η1∥n,∞ ≲ ∥|k|nη̂∥L1(R2) ≲ ∥η̂1∥L1(R2) and the previous proposi-
tion. 2

Finally, we introduce the space Y ε
s = χε(D)Ys (with norm ∥ · ∥Ys

), noting the relationship

|||η|||2 = ε∥ζ∥2Y1
, η(x, y) = ε2ζ(εx, ε2y)

for ζ ∈ Y ε
1 . Observe that Y ε

s coincides with χε(D)Hs(R2) for ε > 0 and with χ(D)Ys in the limit ε → 0.

2 Analyticity

2.1 The boundary-value problems

In this section we solve the boundary-value problems (18)–(22) and (28)–(32) and use these results to deduce that
H(η) and M(η) depend analytically upon η ∈ Z , where

Z = {η ∈ S ′(R2) : ∥η̂1∥L1(R2) + ∥η2∥3 < ∞}

and
η1 = χ(D)η, η2 = (1− χ(D)) η

(see Theorem 2.5(i) below for a precise statement). We proceed by transforming (18)–(22) and (28)–(32) into
equivalent boundary-value problems in the fixed domain D0 by means of the following ‘flattening’ transformation.
Define Σ: D0 → Dη by

Σ: (x, y, v) 7→ (x, y, v + σ(x, y, v)), σ(x, y, v) := η(x, y)(1 + v),

and for f : Dη → R and F : Dη → R3 write f̃ = f ◦ Σ, F̃ = F ◦ Σ and use the notation

gradσ f̃(x, y, v) := (grad f) ◦ Σ(x, y, v),
divσ f̃(x, y, v) := (div f) ◦ Σ(x, y, v),

curlσ F̃ (x, y, v) := (curlF ) ◦ Σ(x, y, v),
∆σ f̃(x, y, v) := (∆f) ◦ Σ(x, y, v)

and more generally

∂σ
x := ∂x − ∂xσ

1 + ∂vσ
∂v, ∂σ

y := ∂y −
∂yσ

1 + ∂vσ
∂v, ∂σ

v :=
∂v

1 + ∂vσ
.

Equations (18)–(22) are equivalent to the flattened boundary-value problem

curlσ curlσ Ã = α curlσ Ã in D0, (36)
divσ A = 0 in D0, (37)

Ã ∧ e3 = 0 at v = −1, (38)

Ã · n = 0 at v = 0, (39)

(curlσ Ã)∥ = ∇Φ− α∇⊥∆−1(∇ · Ã⊥
∥ ) (40)

9



in terms of which
H(η)Φ = ∇ · Ã⊥

∥ , (41)

while equations (28)–(32) are equivalent to the flattened boundary-value problem

curlσ curlσ B̃ = α curlσ B̃ in D0, (42)
divσ B = 0 in D0, (43)

B̃ ∧ e3 = 0 at v = −1, (44)

B̃ · n = 0 at v = 0, (45)

∇ · B̃⊥
∥ = ∇ · g⊥, (46)

in terms of which
M(η)g = −(curlσ B̃)∥; (47)

note that the orthogonal gradient part of (curlσ B̃)∥ is equal to −α∇⊥∆−1(∇·B̃⊥
∥ ) for any solution B̃ ∈ H2(D0)

3

of (42)–(46).
It is in fact convenient to replace (18)–(22) with an equivalent boundary-value problem. The following propo-

sition was proved by Groves & Horn [11, Proposition 4.6] (under slightly different regularity assumptions on Φ, η
and A, the change in which does not affect the proof).

Proposition 2.1 Suppose that Φ ∈ Ḣ
5
2 (R2) and η lies in a sufficiently small neighbourhood of the origin in Z . A

function A ∈ H3(Dη)
3 solves (18)–(22) if and only if it satisfies the boundary-value problem

−∆A = α curlA in Dη ,

A ∧ e3 = 0 at z = −1,

∂zA3 = 0 at z = −1,

A · n = 0 at z = η,

(curlA)∥ = ∇Φ− α∇⊥∆−1(∇ ·A⊥
∥ ).

Corollary 2.2 Suppose that Φ ∈ Ḣ
5
2 (R2) and η lies in a sufficiently small neighbourhood of the origin in Z . A

function Ã ∈ H3(D0)
3 solves (36)–(40) if and only if it satisfies the boundary-value problem

−∆σÃ = α curlσ Ã in D0, (48)

Ã ∧ e3 = 0 at v = −1, (49)

∂vÃ3 = 0 at v = −1, (50)

Ã · n = 0 at v = 0, (51)

(curlσ Ã)∥ = ∇Φ− α∇⊥∆−1(∇ · Ã⊥
∥ ). (52)

We proceed by rewriting (48)–(52) as

−∆Ã− α curl Ã = Hσ(Ã) in D0, (53)

Ã ∧ e3 = 0 at v = −1, (54)

∂vÃ3 = 0 at v = −1, (55)

Ã · e3 = gσ(Ã) at v = 0, (56)

(curl Ã)h + α∇⊥∆−1(∇ · Ã⊥
h) = hσ(Ã) +∇Φ, (57)

where

Hσ(Ã) = ∆σÃ+ α curlσ Ã−∆Ã− α curl Ã,

gσ(Ã) = ∇η · Ãh,

hσ(Ã) = −(curlη Ã)h + (curl Ã)h −∇η(curlη Ã)3 − α∇⊥∆−1(∇ · (∇η⊥Ã3)).

(With a slight abuse of notation the underscore now denotes evaluation at v = 0). The inhomogeneous linear version
of the boundary-value problem (53)–(57) was studied by Groves & Horn [11, Proposition 4.9], who in particular
give an explicit formula for the solution.
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Lemma 2.3 Suppose that s ≥ 2 and α⋆ < 1
2π. The boundary-value problem

−∆Ã− α curl Ã = H in D0,

Ã ∧ e3 = 0 at v = −1,

∂vÃ3 = 0 at v = −1,

Ã · e3 = g at v = 0,

(curl Ã)h + α∇⊥∆−1(∇ · Ã⊥
h) = h

has a unique solution Ã ∈ Hs(D0)
3 for each g ∈ Hs− 1

2 (R2), H ∈ Hs−2(D0)
3, h ∈ Hs− 3

2 (R2)2 and
|α| ∈ [0, α⋆]. The solution operator defines a mapping Hs− 1

2 (R2) × Hs−2(D0)
3 × Hs− 3

2 (R2)2 → Hs(D0)
3

which is bounded uniformly over |α| ∈ [0, α⋆].

Lemma 2.3 can be used in particular to study the boundary-value problems

curl curl Ã0 = α curl Ã0 curl curl B̃0 = α curl B̃0 in D0, (58)

div Ã0 = 0 div B̃0 = 0 in D0, (59)

Ã0 ∧ e3 = 0 B̃0 ∧ e3 = 0 at v = −1, (60)

Ã0 · e3 = 0 B̃0 · e3 = 0 at v = 0, (61)

(curl Ã0)h = ∇Φ− α∇⊥∆−1(∇ · (Ã0)⊥h ) ∇ · (B̃0)⊥h = ∇ · g⊥ (62)

for Φ ∈ Ḣs− 1
2 (R2) and g ∈ Hs− 1

2 (R2)2 with s ≥ 2. The boundary-value problem for Ã0 has a unique solution
Ã0(Φ) ∈ Hs(D0)

3, and it follows from
H(0)Φ = ∇ · Ã0(Φ)⊥h

and the explicit formula for Ã0(Φ) given by Groves & Horn that

H(0)Φ = D2 t(D2), t(µ) =


tan(

√
α2 − µ)√

α2 − µ
, if µ < α2,

tanh(
√

µ− α2)√
µ− α2

, if µ ≥ α2

and
D = (D1, D2)

T = −i∇, D = |D|.

Note that H(0) ∈ L(Ḣs− 1
2 (R2), Ȟs− 3

2 (R2)) is an isomorphism because

∥H(0)−1Ψ∥
Ḣs− 1

2
=

∥∥∥∥⟨k⟩s− 3
2 |k| 1

|k|2t(|k|2)
Ψ̂

∥∥∥∥
0

=

∥∥∥∥⟨k⟩s− 1
2 |k|−1 ⟨k⟩−1

t(|k|2)
Ψ̂

∥∥∥∥
0

≲ ∥⟨k⟩s− 1
2 |k|−1Ψ̂∥0=∥Ψ∥

Ȟs− 3
2
,

where we have used the fact that ⟨k⟩−1/t(|k|2) is bounded.
Observe that B̃0(g) := Ã0(Φ) with Φ = H(0)−1(∇ · g⊥) solves the boundary-value problem for B̃0 because

∇ · g⊥ = H(0)Φ = ∇ · Ã0(Φ)⊥h = ∇ · B̃0(g)⊥h ;

this solution is unique because any other solution B̃0(g) is equal to Ã0(Φ) with Φ = ∆−1(∇ · curl B̃0(g)h), so
that

H(0)Φ = ∇ · Ã0(Φ)⊥h = ∇ · B̃0(g)⊥h = ∇ · g⊥.

It now follows from

M(0)g = −curl B̃0(g)h = −curl Ã0(Φ)h = −∇Φ+ α∇⊥∆−1(∇ · g⊥)

that M(0) ∈ L(Hs− 1
2 (R2)2, Hs− 3

2 (R2)2) is given by

M(0)g =
1

D2

(
αD⊥ +D c(D2)

)
D · g⊥, c(µ) =


√

α2 − µ cot(
√
α2 − µ), if µ < α2,√

µ− α2 coth(
√

µ− α2), if µ ≥ α2.

Lemma 2.3 is also the key to solving the boundary-value problem (53)–(57).
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Theorem 2.4 There exists a neighbourhood V of the origin in Z with the property that the boundary-value prob-
lem (53)–(57) has a unique solution Ã = Ã(η,Φ) in H3(D0)

3 which depends analytically upon η ∈ V and
Φ ∈ Ḣ

5
2 (R2) (and linearly upon Φ).

Proof. The analyticity of (η, Ã) 7→ Hσ(Ã) at the origin as a mapping Z ×H3(D0)
3 → H1(D0)

3 follows from
the explicit expression

Hσ(Ã) = −2
1 + v

1 + η
(ηx∂

2
vxÃ+ ηy∂

2
vyÃ)− 1 + v

1 + η
∆η ∂vÃ

+ 2
1 + v

(1 + η)2
|∇η|2∂vÃ+

(
1 + v

1 + η

)2
|∇η|2∂2

vÃ− η2 + 2η

(1 + η)2
∂2
vÃ

− α
η

1 + η
(−∂vÃ2, ∂vÃ1, 0)

T − α
1 + v

1 + η
(ηy∂vÃ3,−ηx∂vÃ3, ηx∂vÃ2 − ηy∂vÃ1)

T

by writing
1

1 + η
= 1− η

1 + η
,

1

(1 + η)2
= 1− η2 + 2η

(1 + η)2

and noting that

• the bilinear mappings (η, f̃) 7→ ηxf̃ , (η, f̃) 7→ ηy f̃ and (η, f̃) 7→ ∆η ∂v f̃ are bounded
Z ×H1(D0) → H1(D0) and Z ×H2(D0) → H1(D0) because

∥ηxf̃∥H1(D0) ≲ (∥η1x∥1,∞ + ∥η2x∥1,∞)∥f̃∥H1(D0) ≲ (∥η̂1∥L1(R2) + ∥η2∥3)∥f̃∥H1(D0),

∥ηy f̃∥H1(D0) ≲ (∥η1y∥1,∞ + ∥η2y∥1,∞)∥f̃∥H1(D0) ≲ (∥η̂1∥L1(R2) + ∥η2∥3))∥f̃∥H1(D0)

and

∥∆η ∂v f̃∥H1(D0) ≲ ∥∆η1∥1,∞∥∂v f̃∥H1(D0) + ∥∇(∆η2)∂v f̃∥L2(D0) + ∥∆η2∇(∂v f̃)∥L2(D0)

≲ ∥η1∥3,∞∥f̃∥H2(D0) + ∥η2∥3∥∂v f̃∥L∞(D0) + ∥∆η2∥L4(R2)∥∂v f̃∥W 1,4(D0)

≲ (∥η̂1∥L1(R2) + ∥η2∥3)∥f̃∥H3(D0),

• the trilinear mapping (η, ρ, f̃) 7→ ∇η · ∇ρ f̃ is bounded Z2 ×H1(D0) → H1(D0) because

∥∇η·∇ρ f̃∥H1(D0) ≲ (∥∇η1∥1,∞+∥∇η2∥1,∞)(∥∇ρ1∥1,∞+∥∇ρ2∥1,∞)∥f̃∥H1(D0) ≲ ∥η∥Z∥ρ∥Z∥f̃∥H1(D0),

• the mapping f̃ 7→ (1 + v)f̃ belongs to L(H1(D0), H
1(D0)),

• a function f : R → R which is analytic at the origin (in particular f(s) = s(1 + s)−1 and
f(s) = (s2 + 2s)(1 + s)−1) induces a mapping W 1,∞(R2) → W 1,∞(R2) and hence Z 7→ W 1,∞(R2)
which is analytic at the origin,

• the bilinear mapping (ρ, f̃) 7→ ρf̃ is bounded W 1,∞(R2)×H1(D0) → H1(D0).

Similar arguments show that (η, Ã) 7→ gσ(Ã) and (η, Ã) 7→ hσ(Ã) are analytic at the origin as mappings
Z ×H3(D0)

3 → H
5
2 (R2) and Z ×H3(D0)

3 → H
3
2 (R2)2 respectively.

It follows that the formula

H(Ã, η,Φ) =

 −∆Ã− α curl Ã−Hσ(Ã)

Ã · e3 − gσ(Ã)

(curl Ã)h + α∇⊥∆−1(∇ · Ã⊥
h)− hσ(Ã)−∇Φ

 ,

defines a mapping
H : S ×Z × Ḣ

5
2 (R) → H1(D0)

3 ×H
5
2 (R2)×H

3
2 (R2)2,

where S = {Ã ∈ H3(D0)
3 : Ã ∧ e3

∣∣
v=−1

= 0, ∂vÃ3|v=−1 = 0}, which is analytic at the origin. Furthermore,
H(0, 0, 0) = (0, 0,0), and the calculation

d1H[0, 0, 0](Ã) =

 −∆Ã− α curl Ã
Ã · e3

(curl Ã)h + α∇⊥∆−1(∇ · Ã⊥
h)


12



and Proposition 2.3 show that

d1H[0, 0, 0] : S → H1(D0)
3 ×H

5
2 (R2)×H

3
2 (R2)2

is an isomorphism. The analytic implicit-function theorem (Buffoni & Toland [3, Theorem 4.5.3]) asserts the
existence of open neighbourhoods V1 and V2 of the origin in respectively Z × Ḣ

5
2 (R) and S such that the equation

H(Ã, η,Φ) = (0, 0,0)

and hence the boundary-value problem (53)–(57) has a unique solution Ã0 = Ã0(η,Φ) in V2 for each (η,Φ) ∈ V1;
furthermore Ã0(η,Φ) depends analytically upon η and Φ. Since Ã0 depends linearly upon Φ one can without loss
of generality take V1 = V × Ḣ

5
2 (R), and clearly V2 = S (with Φ = 0 the construction yields a unique solution in a

neighbourhood of the origin in S, which is evidently the zero solution). 2

The corresponding result for the boundary-value problem (42)–(46), together with the analyticity of the operators
H and M , is now readily deduced.

Theorem 2.5

(i) The mappings η 7→ H(η) and η 7→ M(η) are analytic V → L(Ḣ
5
2 (R2), Ȟ

3
2 (R2)) and

V → L(H
5
2 (R2)2, H

3
2 (R2)2) respectively.

(ii) The boundary-value problem (42)–(46) has a unique solution B̃ = B̃(η, g) in H3(D0)
3 which depends

analytically upon η ∈ V and g ∈ H
5
2 (R2)2 (and linearly upon g).

Proof. The analyticity of H(·) : V → L(Ḣ
5
2 (R2), Ȟ

3
2 (R2)) follows from Theorem 2.4 and equation (41). Since

H(0) ∈ L(Ḣ
5
2 (R2), Ȟ

3
2 (R2)) is isomorphism we conclude that H(η) ∈ L(Ḣ

5
2 (R2), Ȟ

3
2 (R2)) is an isomorphism

for each η ∈ V and that H(η)−1 ∈ L(Ȟ
3
2 (R2), Ḣ

5
2 (R2)) also depends analytically upon η ∈ V .

The next step is to note that B̃(η, g) = Ã(η,Φ) with Φ = H(η)−1(∇ · g⊥) depends analytically upon η and g,
and solves (42)–(46) since by construction

∇ · g⊥ = H(η)Φ = ∇ · Ã(η,Φ)⊥∥ = ∇ · B̃(η,Φ)⊥∥ .

The uniqueness of this solution follows by noting that any other solution B̃(η, g) is equal to Ã(η,Φ) with
Φ = ∆−1∇ · (curlσ B̃)∥, so that

H(η)Φ = ∇ · Ã(η,Φ)⊥∥ = ∇ · B̃(η, g)⊥∥ = ∇ · g⊥,

that is Φ = H(η)−1(∇ · g⊥). Finally, the analyticity of M follows from the calculation

M(η)g = −(curlσ B̃(η, g))∥

= −(curlσ Ã(η,Φ))∥

= −∇Φ+ α∇⊥∆−1(∇ · g⊥)

with Φ = H(η)−1(∇ · g⊥). 2

We now choose M > 0 sufficiently small and note that H3(R2) is continously embedded in Z and

U = {η ∈ H3(R2) : ∥η∥Z < M}

is an open neighbourhood of the origin in H3(R2).

Proposition 2.6 The mappings η 7→ M(η) and η 7→ T (η) are analytic are analytic U 7→ L(H
5
2 (R2)2, H

3
2 (R2)2)

and U → H
3
2 (R2)2 respectively.

Proof. This result follows from Theorem 2.5(i), the formula T (η) = M(η)S(η) and the fact that η 7→ S(η) is an
analytic mapping U → H3(R2)2. 2
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Corollary 2.7 The formula (27) defines an analytic function J : U → H1(R2).

Proof. We proceed by writing the formula as

J (η) =
1

2
|T (η)|2 − 1

2
(−∇ · S(η)⊥ + T (η) · ∇η)2 +

|∇η|2(−∇ · S(η)⊥ + T (η) · ∇η)2

2(1 + |∇η|2)
+ c · T (η) + αT (η) · S(η) + η − β∆η

+ β

(
|∇η|2ηx

(1 + |∇η|2) 1
2 (1 + (1 + |∇η|2) 1

2 )

)
x

+ β

(
|∇η|2ηy

(1 + |∇η|2) 1
2 (1 + (1 + |∇η|2) 1

2 )

)
y

,

from which the result follows because η 7→ S(η), η 7→ T (η) and

η 7→ |∇η|2

1 + |∇η|2
, η 7→ |∇η|2

(1 + |∇η|2) 1
2 (1 + (1 + |∇η|2) 1

2 )

are analytic mappings U → H3(R2)2, U → H
3
2 (R2)2 and U → H2(R2) respectively and H

3
2 (R2) is a Banach

algebra. 2

2.2 Taylor expansions

The terms in the Taylor expansions

B̃(η) =

∞∑
k=0

B̃k(η), B̃k =
1

k!
dkB̃[0](η(k)), (63)

of B̃ and

M(η) =

∞∑
k=0

Mk(η), Mk =
1

k!
dkM [0](η(k)), (64)

of M : U 7→ L(H3(R2)2, H
3
2 (R2)2) can be determined recursively by substituting them into (42)–(46) and (47).

It has already been established that

M0g = −(curl B̃0)h =
1

D2
LD · g⊥, L = αD⊥ + c(D2)D, (65)

where B̃0 is the unique solution of (58)–(62). Observing that M0 also defines an operator in
L(Hs− 1

2 (R2)2, Hs− 3
2 (R2)2) (with B̃0 ∈ Hs(D0)

3) for s ≥ 2, we can also obtain an explicit expression for
M1(η)g.

Lemma 2.8 The formula

M1(η)g = M0(η(M0g)
⊥)−∇(η∇ · g⊥) + αη(M0g)

⊥

= − 1

D2
LD ·

(
η

1

D2
LD · g⊥

)
+D(ηD · g⊥) + αη

1

D2
L⊥D · g⊥ (66)

holds for each η ∈ H3(R2) and each g ∈ H3(R2)2.

Proof. Substituting the expansions (63), (64) into (42)–(46) and (47) and equating constant terms shows that
B̃0 ∈ H

7
2 (D0)

3 ⊆ H3(D0)
3 solves the boundary-value problem (58)–(62), while equating terms which are linear

in η and making the Ansatz
B̃1 = (v + 1)η∂vB̃

0 + C̃

leads to

M1(η)g̃ = −(curl C̃)h − (curl(v + 1)η∂vB̃
0)h − η(∂vB̃

0)⊥h +∇η⊥∂vB̃
0
3 −∇η∇ · (B̃0

h)
⊥
∣∣∣
v=0

,
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where

curl curl C̃ = α curl C̃ in D0,

div C̃ = 0 in D0,

C̃ ∧ e3 = 0 at v = −1,

C̃ · e3 = −η∂vB̃
0
3 +∇η · B̃0

h at v = 0,

∇ · C̃⊥
h = ∇ · (−η(∂vB̃

0)h −∇ηB0
3)

⊥ at v = 0.

Writing C̃ = C ′ + gradφ, where φ ∈ H3(D0) is the unique solution of the boundary-value problem

∆φ = 0 in D0,

φ = 0 at v = −1,

φv = −η∂vB̃
0
3 +∇η · B̃0

h at v = 0,

we find that C ′ ∈ H2(D0) is the unique solution of the boundary-value problem

curl curlC ′ = α curlC ′ in D0,

divC ′ = 0 in D0,

C ′ ∧ e3 = 0 at v = −1,

C ′ · e3 = 0 at v = 0,

∇ · (C ′)⊥h = ∇ · (−η(∂vB̃
0)h −∇ηB̃0

3)
⊥ at v = 0

and

M1(η)g̃ = −(curlC ′)h − (curl(v + 1)η∂vB̃
0)h − η(∂vB̃

0)⊥h +∇η⊥∂vB̃
0
3 −∇η∇ · (B̃0

h)
⊥
∣∣∣
v=0

(67)

because curl gradϕ = 0 and ∇ · (gradφ)⊥h = 0.
Comparing the boundary-value problem for C ′ with (58)–(62), we find that

(curlC ′)h = M0

(
η(∂vB̃

0)h +∇ηB̃0
3

)
= M0

(
η(curl B̃0)⊥h +∇(ηB̃0

3)
)

= −M0(η(M0g)
⊥)

because M∇(·) = 0, and explicit calculations show that

−∇η∇ · (B̃0
h)

⊥
∣∣∣
v=0

= −∇(η∇ · (B̃0
h)

⊥) + η∇
(
∇ · (B̃0

h)
⊥)∣∣∣

v=0
= −∇(η∇ · g⊥) + η∇

(
∇ · (B̃0

h)
⊥)∣∣∣

v=0

and

−(curl(v+1)ηB̃0
v)h−η(B̃0)⊥h +∇η⊥B̃0

3v+η∇
(
∇·(B̃0

h)
⊥)∣∣∣

v=0
= η

(
∆B̃0

h−∇ div(B̃0)
)⊥∣∣∣

v=0
= η(∆B̃0

h)
⊥
∣∣∣
v=0

.

The result follows by inserting these expressions into (67) and noting that

∆B̃0
h|v=0 = −α(curl B̃0)h = α(M0g). 2

Remark 2.9 This method leads to the loss of two derivatives in the individual terms in the formula for M1(η);
the overall validity of the formula arises from subtle cancellations between the terms (see Nicholls and Reitich [21,
§2.2] for a discussion of this phenomenon in the context of the classical Dirichlet–Neumann operator).

Explicit expressions for the first few terms in the Taylor expansion

T (η) =

∞∑
k=0

Tk(η), Tk(η) =
1

k!
dT k[0](η(k)),
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of T can be computed from the formula T (η) = M(η)S(η) using (65), (66) and the corresponding expansion

S(η) =

∞∑
k=1

Sk(η)

of S(η), where

Sk(η) :=


(−1)

k−1
2

αk−1 ηk

k!
c⊥, k = 1, 3, 5, . . . ,

(−1)
k
2
αk−1 ηk

k!
c, k = 2, 4, 6, . . . ,

In particular, we find that

T0 = 0, T1(η) = M0S1(η), T2(η) = M0S2(η) +M1(η)S1(η),

such that

T1(η) = −L
c ·D
D2

η,

T2(η) =
1
2αL

c ·D⊥

D2
η2 − αηL⊥ c ·D

D2
η +L

D

D2
·
(
ηL

c ·D
D2

η

)
−D(η(c ·D)η).

Turning to the Taylor expansion

J (η) =

∞∑
k=0

Jk(η), Jk =
1

k!
dkJ [0](η(k)),

we conclude that

J1(η) = T1(η) · c+ η − β∆η

=

(
− 1

D2
(c ·L)(c ·D) + 1 + βD2

)
η,

J2(η) =
1
2 |T1(η)|2 − 1

2 (c · ∇η)2 + T2(η) · c+ αη T1(η) · c⊥

= 1
2

∣∣∣∣Lc ·D
D2

η

∣∣∣∣2 + 1
2α

1

D2
(c ·L)(c ·D⊥)η2 +

1

D2
(c ·L)D ·

(
ηL

c ·D
D2

η

)
− 1

2 (c · ∇η)2 + c · ∇(η(c · ∇η)) (68)

and

J≥3(η) =
1

2

(
2T1(η) + T≥2(η)

)
· T≥2(η)−

(αS(η) · ∇η + T (η) · ∇η)2

2(1 + |∇η|2)
− c · ∇η(αS(η) · ∇η + T (η) · ∇η)

1 + |∇η|2

+
(c · ∇η)2|∇η|2

2(1 + |∇η|2)
+ T≥3(η) · c+ αT≥2(η) · S(η) + αT1(η) · S≥2(η)

+ β

(
|∇η|2ηx

(1 + |∇η|2) 1
2 (1 + (1 + |∇η|2) 1

2 )

)
x

+ β

(
|∇η|2ηy

(1 + |∇η|2) 1
2 (1 + (1 + |∇η|2) 1

2 )

)
y

,

where

J≥3(η) =

∞∑
k=3

Jk(η), S≥2(η) =

∞∑
k=2

Sk(η), T≥2(η) =

∞∑
k=2

Tk(η), T≥3(η) =

∞∑
k=3

Tk(η).
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3 The reduction procedure
In this section we reduce the equation

J (η) = 0

with
c = (1− ε2)c0

into a locally equivalent equation for η1. Clearly η ∈ U solves this equation if and only if

χ(D)J (η1 + η2) = 0,

(1− χ(D))J (η1 + η2) = 0,

where η1 = χ(D)η, η2 = (1− χ(D))η, which equations are given explicitly by

g(D)η1 + 2ε2
1

D2
(c0 ·D)(c0 ·L)η1

− ε4
1

D2
(c0 ·D)(c0 ·L)η1 + χ(D)

(
J2(η1 + η2) + J≥3(η1 + η2)

)
= 0, (69)

g(D)η2 + 2ε2
1

D2
(c0 ·D)(c0 ·L)η2

− ε4
1

D2
(c0 ·D)(c0 ·L)η2 + (1− χ(D))

(
J2(η1 + η2) + J≥3(η1 + η2)

)
) = 0, (70)

where
g(k) = − 1

|k|2
(α(c0 · k⊥)(c0 · k) + c(|k|2)(c0 · k)2) + 1 + β|k|2;

note that (69), (70) hold in respectively χ(D)H1(R2) and (1 − χ(D))H1(R2). We proceed by solving (70) to
determine η2 as a function of η1 and inserting η2 = η2(η) into (69) to derive a reduced equation for η1. To this end
we write (70) in the form

η2 = (1− χ(D)) g(D)−1A(η1, η2), (71)

where

A(η1, η2) = −2ε2
1

D2
(c0 ·D)(c0 ·L)η2+ε4

1

D2
(c0 ·D)(c0 ·L)η2− (1− χ(D))

(
J2(η1+η2)+J≥3(η1+η2)

)
).

(72)

Proposition 3.1 The mapping (1− χ(D)) g(D)−1 defines a bounded linear operator H1(R2) → H3(R2).

Proof. This result follows from the facts that (0, 0) is a strict global minimum of g̃(k1, k2

k1
) with g̃(0, 0) = 0 and

that g(k) ≳ |k|2 as |k| → ∞. 2

The next step is to estimate the nonlinear terms on the right-hand side of equation (71). The requisite estimates
for J2(η) are obtained by examining the explicit formula

J2(η) = m(η, η)− 2ε2m(η, η) + ε4m(η, η),

where

m(v, w) = 1
2

(
L
c0 ·D
D2

v

)
·
(
L
c0 ·D
D2

w

)
+ 1

2α
1

D2
(c0 ·L)(c0 ·D⊥)vw

+
1

2D2
(c0 ·L)D ·

(
vL

c0 ·D
D2

w

)
+

1

2D2
(c0 ·L)D ·

(
wL

c0 ·D
D2

v

)
+ 1

2 ((c0 ·D)v)((c0 ·D)w)− 1
2c0 ·D(v(c0 ·D)w)− 1

2c0 ·D(w(c0 ·D)v) (73)

(see equation (68)).

Lemma 3.2 The estimate ∥m(v, w)∥1 ≲ ∥v∥Z∥w∥3 holds for each v, w ∈ H3(R2).
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Proof. We estimate each of the terms in the formula for m, observing that∣∣∣∣ 1

|k|2
(αk⊥ + c(|k|2)k)c0 · k

∣∣∣∣ , ∣∣∣∣ 1

|k|2
(αc0 · k⊥ + c(|k|2)c0 · k)c0 · k⊥

∣∣∣∣ , ∣∣∣∣ 1

|k|2
(αc0 · k⊥ + c(|k|2)c0 · k)k

∣∣∣∣ ≲ ⟨k⟩

and that
∥f(D)v̂1∥n,∞ ≤ ∥f(k)⟨k⟩nv̂1∥L1(R) ≲ ∥v̂1∥L1(R)

for all bounded multipliers f because v̂1 has compact support. We find that∥∥∥∥(Lc0 ·D
D2

v

)
·
(
L
c0 ·D
D2

w

)∥∥∥∥
1

≲

∥∥∥∥Lc0 ·D
D2

v1

∥∥∥∥
1,∞

∥∥∥∥Lc0 ·D
D2

w

∥∥∥∥
1

+

∥∥∥∥Lc0 ·D
D2

v2

∥∥∥∥
2

∥∥∥∥Lc0 ·D
D2

w

∥∥∥∥
2

≤ (∥v̂1∥L1(R2) + ∥v2∥3)∥w∥3,

∥∥∥∥ 1

D2
(c0 ·L)(c0 ·D⊥)vw

∥∥∥∥
1

≲ ∥vw∥2

≲ (∥v1∥2,∞ + ∥v2∥2)∥w∥2
≤ (∥v̂1∥L1(R2) + ∥v2∥3)∥w∥3,

∥∥∥∥ 1

D2
(c0 ·L)D ·

(
vL

c0 ·D
D2

w

)∥∥∥∥
1

≲

∥∥∥∥vLc0 ·D
D2

w

∥∥∥∥
2

≲ (∥v1∥2,∞ + ∥v2∥2)
∥∥∥∥Lc0 ·D

D2
w

∥∥∥∥
2

≲ (∥v̂1∥L1(R2) + ∥v2∥3)∥w∥3,

∥∥∥∥ 1

D2
(c0 ·L)D ·

(
wL

c0 ·D
D2

v

)∥∥∥∥
1

≲

∥∥∥∥wLc0 ·D
D2

v

∥∥∥∥
2

≲ ∥w∥2

(∥∥∥∥Lc0 ·D
D2

v1

∥∥∥∥
2,∞

+

∥∥∥∥Lc0 ·D
D2

v2

∥∥∥∥
2

)
≲ (∥v̂1∥L1(R2) + ∥v2∥3)∥w∥3,

∥(c0 ·D)v)((c0 ·D)w)∥1 ≲ (∥(c0 ·D)v1∥1,∞∥c0 ·D)w∥1 + ∥(c0 ·D)v∥2∥(c0 ·D)w∥2
≲ (∥v̂1∥L1(R2) + ∥v2∥3)∥w∥3,

∥c0 ·D(v(c0 ·D)w)∥1 ≲ ∥v(c0 ·D)w)∥2
≲ (∥v1∥2,∞ + ∥v2∥2)∥(c0 ·D)w∥2
≲ (∥v̂1∥L1(R2) + ∥v2∥3)∥w∥3,

∥c0 ·D(w(c0 ·D)v)∥1 ≲ ∥w(c0 ·D)v∥2
≲ ∥w∥2(∥(c0 ·D)v1∥2,∞ + ∥(c0 ·D)v2∥2)
≲ (∥v̂1∥L1(R2) + ∥v2∥3)∥w∥3. 2

Corollary 3.3 The estimates
∥J2(η)∥1 ≲ ∥η∥Z∥η∥3

and
∥dJ2[η](u)∥1 ≲ ∥η∥3∥u∥Z , ∥dJ2[η](u)∥1 ≲ ∥η∥Z∥u∥3

hold for all η, u ∈ H3(R2).

18



Lemma 3.4 The estimates

∥J≥3(η)∥1 ≲ ∥η∥2Z∥η∥3,

∥dJ≥3[η](u)∥1 ≲ ∥η∥2Z∥u∥3 + ∥η∥Z∥η∥3∥u∥Z

hold for each η ∈ U and u ∈ H3(R2).

Proof. Writing

T≥2(η) = M0S≥2(η) +
(
M1(η) +M≥2(η)

)
S1(η),

T≥3(η) = M0S≥3(η) +M≥2(η)S1(η) +
(
M1(η) +M≥2(η)

)
S2(η),

we find by Theorem 2.5(i) and the fact that M0 ∈ L(H
5
2 (R2)2, H

3
2 (R2)2) that

∥T≥2(η)∥ 3
2
≲

∥∥∥∥ηS≥2(η)

η

∥∥∥∥
5
2

+ ∥η∥Z∥S1(η)∥ 5
2

≲ (∥η1∥3,∞ + ∥η2∥3)
∥∥∥∥S≥2(η)

η

∥∥∥∥
3

+ ∥η∥Z∥S1(η)∥3

≲ ∥η∥Z∥η∥3,

∥T≥3(η)∥ 3
2
≲

∥∥∥∥ηS≥3(η)

η

∥∥∥∥
5
2

+ ∥η∥2Z∥S1(η)∥ 5
2
+ ∥η∥Z

∥∥∥∥ηS2(η)

η

∥∥∥∥
5
2

≲ ∥η∥2Z∥η∥3

and hence that

∥T1(η) · T≥2(η)∥1 ≲ ∥M0S1(η1)∥1,∞∥T≥2(η)∥1 + ∥M0S1(η2)∥ 3
2
∥T≥2(η)∥ 3

2

≲ ∥η̂1∥L1(R2)∥T≥2(η)∥ 3
2
+ ∥η2∥ 5

2
∥T≥2(η)∥ 3

2

≲ ∥η∥2Z∥η∥3,

∥T≥2(η) · T≥2(η)∥1 ≲ ∥T≥2(η)∥23
2

≲ ∥η∥2Z∥η∥23,

∥T≥2(η) · S(η)∥1 ≲ ∥T≥2(η)∥1∥S(η)∥1,∞
≲ ∥η∥Z∥η∥3(∥η1∥1,∞ + ∥η2∥1,∞)

≲ ∥η∥Z∥η∥3(∥η1∥1,∞ + ∥η2∥3)
≲ ∥η∥2Z∥η∥3,

∥T1(η) · S≥2(η)∥1 ≲ ∥T1(η)∥1∥S≥2(η)∥1,∞
≲ ∥η∥3(∥η1∥1,∞ + ∥η2∥1,∞)2

≲ ∥η∥3∥η∥2Z .

Furthermore ∥∥∥∥ (αS(η) · ∇η + T (η) · ∇η)2

2(1 + |∇η|2)

∥∥∥∥
1

≲ (∥S(η)∥1 + ∥T (η)∥1)2
∥∥∥∥ |∇η|2

1 + |∇η|2

∥∥∥∥
1,∞

≲ (∥S(η)∥1 + ∥T (η)∥1)2∥∇η∥21,∞
≲ ∥η∥23(∥∇η1∥1,∞ + ∥∇η∥2)2

≲ ∥η∥23∥η∥2Z ,

∥∥∥∥c · ∇η(αS(η) · ∇η + T (η) · ∇η)

1 + |∇η|2

∥∥∥∥
1

≲ (∥S(η)∥1 + ∥T (η)∥1)
∥∥∥∥ |∇η|2

1 + |∇η|2

∥∥∥∥
1,∞

≲ ∥η∥3∥η∥2Z
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because S,T are analytic U → H1(R2)2. Finally, we note that(
|∇η|2ηx

(1 + |∇η|2) 1
2 (1 + (1 + |∇η|2) 1

2 )

)
x

+

(
|∇η|2ηy

(1 + |∇η|2) 1
2 (1 + (1 + |∇η|2) 1

2 )

)
y

= f1(ηx, ηy)ηxx + f2(ηx, ηy)ηxy + f3(ηx, ηy)ηyy,

where f1, f2, f3 are analytic functions with zeros of order two at the origin. Estimating

∥f1(ηx, ηy)ηxx∥0 ≲ ∥∇η∥2∞∥ηxx∥0 ≲ ∥η∥2Z∥η∥3,

∥∇(f1(ηx, ηy)ηxx)∥0 ≤ ∥∂1f1(ηx, ηy)ηxx∇ηx + ∂2f1(ηx, ηy)ηxx∇ηy∥0 + ∥f1(ηx, ηy)∇ηxx)∥0
≲ ∥∇η∥∞(∥∇ηx∥L4(R2) + ∥∇ηy∥L4(R2))∥η2xx∥L4(R2)

+ ∥∇η∥∞(∥∇ηx∥0 + ∥∇ηy∥0)∥η1xx∥∞ + ∥∇η∥2∞∥∇ηxx∥0
≲ ∥η∥2Z∥η∥3,

in which the last fine follows by the continuous embedding H1(R2) ⊆ L4(R2), and f2(ηx, ηy)ηxy , f3(ηx, ηy)ηyy
similarly, we conclude that∥∥∥∥∥

(
|∇η|2ηx

(1 + |∇η|2) 1
2 (1 + (1 + |∇η|2) 1

2 )

)
x

+

(
|∇η|2ηy

(1 + |∇η|2) 1
2 (1 + (1 + |∇η|2) 1

2 )

)
y

∥∥∥∥∥
1

≲ ∥η∥2Z∥η∥3.

The estimates for the derivatives are obtained in a similar fashion. 2

We proceed by solving (71) for η2 as a function of η1 using the following following fixed-point theorem, which
is proved by a straightforward application of the contraction mapping principle.

Theorem 3.5 Let X1, X2 be Banach spaces, X1, X2 be closed, convex sets in, respectively, X1, X2 containing the
origin and G : X1 ×X2 → X2 be a smooth mapping. Suppose there exists a continuous mapping r : X1 → [0,∞)
such that

∥G(x1, 0)∥ ≤ 1
2r, ∥d2G[x1, x2]∥ ≤ 1

3

for each x2 ∈ Br(0) ⊆ X2 and each x1 ∈ X1.
Under these hypotheses there exists for each x1 ∈ X1 a unique solution x2 = x2(x1) of the fixed-point equation

x2 = G(x1, x2) satisfying x2(x1) ∈ Br(0). Moreover x2(x1) is a smooth function of x1 ∈ X1 with

∥dx2[x1]∥ ≤ 2∥d1G[x1, x2(x1)]∥.

We apply Theorem 3.5 to equation (71) with

X1 = χ(D)H3(R2), X2 = (1− χ(D))H3(R2),

equipping X1 with the scaled norm ||| · ||| defined in (35) and X2 with the usual norm for H3(R2), and taking

X1 = {η1 ∈ X1 : |||η1||| ≤ R1}, X2 = {η2 ∈ X2 : ∥η2∥3 ≤ R2};

the function G is given by the right-hand side of (71). Recall that J is an analytic function U → H1(R2) (see
equation (33)). Using Proposition 1.8 we can guarantee that ∥η̂1∥L1(R2) < 1

2M for all η1 ∈ X1 for an arbitrarily
large value of R1; the value of R2 is then constrained by the requirement that ∥η2∥3 < 1

2M for all η2 ∈ X2.
We proceed by estimating each term appearing in the formula (72) for A using Corollary 3.3, Lemma 3.4,

together with Proposition 1.8 and the estimates

∥η∥Z ≲ ε|||η1|||+ ∥η2∥3, ∥η∥3 ≲ |||η1|||+ ∥η2∥3

for η ∈ H3(R2).
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Lemma 3.6 The estimates

(i) ∥A(η1, η2)∥1 ≲ ε|||η1|||2 + ε|||η1|||∥η2∥3 + |||η1|||∥η2∥23 + ∥η2∥23 + ε2∥η2∥3,

(ii) ∥d1A[η1, η2]∥L(X1,H1(R2)) ≲ ε|||η1|||+ ε∥η2∥3 + ∥η2∥23,

(iii) ∥d2A[η1, η2]∥L(X2,H1(R2)) ≲ ε|||η1|||+ |||η1|||∥η2∥3 + ∥η2∥3 + ε2

hold for each η1 ∈ X1 and η2 ∈ X2.

Theorem 3.7 Equation (71) has a unique solution η2 ∈ X2 which depends smoothly upon η1 ∈ X1 and satisfies
the estimates

∥η2(η1)∥3 ≲ ε|||η1|||2, ∥dη2[η1]∥L(X1,X2) ≲ ε|||η1|||.

Proof. Choosing R2 and ε sufficiently small, one finds r > 0 such that ∥G(η1, 0)∥3 ≤ 1
2r and

∥d2G[η1, η3]∥L(X2,X2) ≤ 1
3 for η1 ∈ X1, η2 ∈ X2, and Theorem 3.5 asserts that equation (71) has a unique

solution η2 ∈ X2 which depends smoothly upon η1 ∈ X1. More precise estimates are obtained by choosing C > 0
so that ∥G(η1, 0)∥3 ≤ Cε|||η1|||2 for η1 ∈ X1 and writing r(η1) = 2Cε|||η1|||2, so that

∥d1G[η1, η2]∥L(X1,X2) ≲ ε|||η1|||, ∥d2G[η1, η2]∥L(X2,X2) ≲ 1

for η1 ∈ X1, η2 ∈ Br(η1)(0) ⊆ X2, and the stated estimates for η2(η1) follow from Theorem 3.5. 2

Inserting η2 = η2(η1) into (69) yields the reduced equation

g(D)η1+2ε2
1

D2
(c0 ·D)(c0 ·L)η1−ε4

1

D2
(c0 ·D)(c0 ·L)η1+χ(D)

(
J2(η1+η2(η1))+J≥3(η1+η2(η1))

)
= 0

(74)
for η1, which holds in χ(D)H1(R2). This equation is invariant under the reflection η1(x, y) 7→ η1(−x,−y); a fa-
miliar argument shows that it is inherited from the corresponding invariance η1(x, y) 7→ η1(−x,−y),
η2(x, y) 7→ η2(−x,−y), of (69), (70) when applying Theorem 3.5.

4 Derivation of the reduced equation
In this section we compute the leading-order terms in the reduced equation (74). The first step is to write

J2(η1 + η2(η1)) = m(η1, η1)− 2ε2m(η1, η1) + ε4m(η1, η1)

+m(η1, η2(η1))− 2ε2m(η1, η2(η1)) + ε4m(η1, η2(η1))

+m(η2(η1), η2(η1))− 2ε2m(η2(η1), η2(η1)) + ε4m(η2(η1), η2(η1))

and examine each of the terms on the right-hand side of this expression individually. The first term is handled
by approximating the Fourier-multiplier operators by constants according to Lemma 4.1 below. The order-of-
magnitude estimates in this section are computed with respect to the L2(R2)-norm, which is equivalent to the
Hs(R2)-norm on the space χ(D)Hs(R2) for any s ≥ 0.

Lemma 4.1 The estimates

(i) η1x = O(ε|||η1|||),

(ii) η1z = O(ε|||η1|||),

(iii) L
c0 ·D
D2

η1 =

(
α cotαc0,1
−αc0,1

)
η1 +O(ε|||η1|||),
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(iv)
1

D2
(c0 ·L)(c0 ·D)η1 = αc0,1(−c0,2 + c0,1 cotα)︸ ︷︷ ︸

= 1

η1 +O(ε|||η1|||),

(v)
1

D2
(c0 ·L)(c0 ·D⊥)η1ρ1 = αc0,2(c0,2 − c0,1 cotα)η1ρ1 +O(ε2|||η1||||||ρ1|||) +B1(D)η1ρ1,

(vi)
1

D2
(c0 ·L)D · (η1ρ1w) = α(−c0,2 + c0,1 cotα)η1ρ1w1 +O(ε2|||η1||||||ρ1|||) +B2(D)η1ρ1,

hold for all η1, ρ1 ∈ X1, where w is a vector-valued constant,

|Bj(k)| ≲ |k2

k1
|(1 + k2

2

k2
1
)−1

and c0,1 = c0 cos
1
2α, c0,2 = −c0 sin

1
2α.

Proof. Parts (i)–(iv) follow from the calculations

∥η1x∥20 = ∥k1η̂1∥20
≤ ε2|||η1|||2,

∥η1z∥20 = ∥k2η̂1∥20
= ∥k1 k2

k1
η̂1∥20

≤ δ2∥k1η̂1∥20
≲ ε2|||η1|||2

and∥∥∥Lc0 ·D
D2

η1 −
(
α cotα c0,1
−α c0,1

)
η1

∥∥∥2
0

=

∥∥∥∥( 1

1 +
k2
2

k2
1

(
αk2

k1
+ c(|k|2)

)
(c0,1 + c0,2

k2

k1
)− α cotα c0,1

)
︸ ︷︷ ︸

= O(|(k1, k2

k1
|)

η̂1

∥∥∥∥2
0

+

∥∥∥∥( 1

1 +
k2
2

k2
1

(
−α+ c(|k|2)k2

k1

)
(c0,1 + c0,2

k2

k1
) + αc0,1

)
︸ ︷︷ ︸

= O(|(k1, k2

k1
|)

η̂1

∥∥∥∥2
0

≲ ∥k1η̂1∥20 + ∥k2

k1
η̂1∥20

≲ ε2|||η1|||2,

∥∥∥∥ 1

D2
(c0 ·L)(c0 ·D)η1 − αc0,1(−c0,2 + c0,1 cotα)η1

∥∥∥2
0

=

∥∥∥∥( 1

1 +
k2
2

k2
1

(
α(c0,1

k2

k1
− c0,2) + c(|k|2)(c0,1 + c0,2

k2

k1
)
)
(c0,1 + c0,2

k2

k1
)− αc0,1(−c0,2 + c0,1 cotα)

)
︸ ︷︷ ︸

= O(|(k1, k2

k1
|)

η̂1

∥∥∥∥2
0

≲ ∥k1η̂1∥20 + ∥k2

k1
η̂1∥20

≲ ε2|||η1|||2.
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Turning to parts (v) and (vi), note that∥∥∥ 1

D2
(c0 ·L)(c0 ·D⊥)η1ρ1 − αc0,2(c0,2 − c0,1 cotα)η1ρ1

∥∥∥2
0

=

∥∥∥∥( 1

1 +
k2
2

k2
1

(
α(c0,1

k2

k1
− c0,2)+c(|k|2)(c0,1+c0,2

k2

k1
)
)(
c0,1

k2

k1
− c0,2

)
−αc0,2(c0,2−c0,1 cotα)

)
︸ ︷︷ ︸

= O(|(k1, k2

k1
)|(1 + k2

2

k2
1
)−1)

F [η1ρ1]

∥∥∥∥2
0

,

∥∥∥ 1

D2
(c0 ·L)D · (η1ρ1w)− α(−c0,2 + c0,1 cotα)η1ρ1w1

∥∥∥2
0

=

∥∥∥∥( 1

1 +
k2
2

k2
1

(
α(c0,1

k2

k1
− c0,2) + c(|k|2)(c0,1 + c0,2

k2

k1
)
)
− α(−c0,2 + c0,1 cotα)

)
︸ ︷︷ ︸

= O(|(k1, k2

k1
)|(1 + k2

2

k2
1
)−1)

F [η1ρ1]w1

∥∥∥∥2
0

+

∥∥∥∥( 1

1 +
k2
2

k2
1

(
α(c0,1

k2

k1
− c0,2) + c(|k|2)(c0,1 + c0,2

k2

k1
)
)

k2

k1

)
︸ ︷︷ ︸

= O(|(k1, k2

k1
)|(1 + k2

2

k2
1
)−1)

F [η1ρ1]w2

∥∥∥∥2
0

and ∥∥∥∥ |k1|
1 +

k2
2

k2
1

F [η1ρ1]

∥∥∥∥
0

≤ ∥k1F [η1ρ1]∥0 = ∥(η1ρ1)x∥0 ≤ ∥k1η̂1∥0∥ρ1∥∞ + ∥η1∥∞∥k1ρ̂1∥0 ≤ ε2|||η1||||||ρ1|||. 2

Corollary 4.2 The estimate

m(η1, ρ1) = dαη1ρ1 +B(D)η1ρ1 +O(ε2|||η1||||||ρ1|||),

where
|B(k)| ≲ |k2

k1
|(1 + k2

2

k2
1
)−1

and dα = α cosecα+ 1
2α cotα, holds for all η1, ρ1 ∈ X1.

Proof. This result is obtained by estimating each of the terms in the formula (68) for J2 using Lemma 4.1. 2

The remaining terms in the reduced equation are treated in the next lemma, which follows directly from Lem-
mata† 3.2, 3.4, Theorem 3.7 and Corollary 4.2.

Lemma 4.3 The estimates

ε2m(η1, η1) = O(ε2|||η1|||2), m(η1, η2(η1)) = O(ε2|||η1|||3), m(η2(η1), η2(η1)) = O(ε2|||η1|||4).

and
J≥3(η1 + η2(η1)) = O(ε2|||η1|||3)

hold for all η1 ∈ X1. Here the symbol O(εγ |||η1|||r) (with γ ≥ 0, r ≥ 1) denotes a smooth function
Rε : X1 → H1(R2) which satisfies the estimates

∥Rε(η1)∥1 ≲ εγ |||η1|||r, ∥dRε[η1]∥L(X1,H1(R2)) ≲ εγ |||η1|||r−1

for each η1 ∈ X1.

Altogether we conclude that (74) can be written as

g(D)η1 + 2ε2
1

D2
(c0 ·D)(c0 ·L)η1 − ε4

1

D2
(c0 ·D)(c0 ·L)η1 + χ(D)

(
dαη

2
1 +B(D)η21 +O(ε2|||η1|||2)

)
= 0,
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and applying Lemma 4.1(iv) one can further simplify it to

g(D)η1 + 2ε2η1 + χ(D)
(
dαη

2
1 +B(D)η21 +O(ε3|||η1|||) +O(ε2|||η1|||2)

)
= 0.

The reduction is completed by introducing the KP scaling

η1(x, y) = ε2ζ(εx, ε2y),

noting that I : η1 → ζ is an isomorphism X1 → Y ε
1 and χ(D)L2(R2) → Y ε

0 and choosing R > 1 large enough
so that ζ⋆k ∈ BR(0) (and ε > 0 small enough so that BR(0) ⊆ Y ε

1 is contained in I[X1]). Here we have replaced
(χ(D)H1(R2), ∥ · ∥1) and (χε(D)L2(R2), ∥ · ∥0) by the identical spaces (χ(D)L2(R2), ∥ · ∥0) and (Y ε

0 , ∥ · ∥Y0
)

in order to work exclusively with the scales {Ys, ∥ · ∥Y s}s≥0 and {Y ε
s , ∥ · ∥Ys

}s≥0 of function spaces. We find that
ζ ∈ BR(0) ⊆ Y ε

1 satisfies the equation

ε−2gε(D)ζ + 2ζ + dαχε(D)ζ2 + χε(D)Bε(D)ζ2 +Oε
0(ε

1
2 ∥ζ∥Y1

) = 0, (75)

which now holds in Y ε
0 , where

gε(k) = g(εk1, ε
2k2), Bε(k1, k2) = B(εk1, ε

2k2)

and the symbol Oε
n(ε

s∥ζ∥rY1
) denotes a smooth function R : BR(0) ⊆ Y ε

1 → Y ε
n which satisfies the estimates

∥R(ζ)∥Yn ≲ εs∥ζ∥rY1
, ∥dR[ζ]∥L(Y1,Yn) ≲ εs∥u∥r−1

Y1

for each ζ ∈ BR(0) ⊆ Y ε
1 (with r ≥ 1, s, n ≥ 0). Note that |||η1|||2 = ε∥ζ∥2Y1

and that the change of variables from
(x, y) to (εx, ε2y) introduces a further factor of ε

3
2 in the remainder term. The invariance of the reduced equation

under η1(x, y) 7→ η1(−x,−y) is inherited by (75), which is invariant under the reflection ζ(x, y) 7→ ζ(−x,−y).

5 Solution of the reduced equation
In this section we find solitary-wave solutions of the reduced equation (75), noting that in the formal limit ε → 0 it
reduces to the stationary KP-I equation

−(β − β0)ζxx + 2ζ + sec2 1
2α

D2
2

D2
1

ζ + dαζ
2 = 0,

which has explicit solitary-wave solutions ζ⋆k . For this purpose we use a perturbation argument, rewriting (75) as a
fixed-point equation and applying the following version of the implicit-function theorem.

Theorem 5.1 Let W be a Banach space, W0 and Λ0 be open neighbourhoods of respectively w⋆ in W and the
origin in R, and H : W0 × Λ0 → W be a function which is differentiable with respect to w ∈ W0 for each λ ∈ Λ0.
Furthermore, suppose that H(w⋆, 0) = 0, d1H[w⋆, 0] : W → W is an isomorphism,

lim
w→w⋆

∥d1H[w, 0]− d1H[w⋆, 0]∥L(W,W) = 0

and
lim
λ→0

∥H(w, λ)−H(w, 0)∥W = 0, lim
λ→0

∥d1H[w, λ]− d1H[w, 0]∥L(W,W) = 0

uniformly over w ∈ W0.
There exist open neighbourhoods W ⊆ W0 of w⋆ in W and Λ ⊆ Λ0 of the origin in R, and a uniquely

determined mapping h : Λ → W with the properties that

(i) h is continuous at the origin with h(0) = w⋆,

(ii) H(h(λ), λ) = 0 for all λ ∈ Λ,

(iii) w = h(λ) whenever (w, λ) ∈ W × Λ satisfies H(w, λ) = 0.
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Theorem 5.2 For each sufficiently small value of ε > 0 equation (75) has a solution ζεk in Y ε
1+θ with

ζ(x, y) = ζ(−x− y) for all (x, y) ∈ R2 and ∥ζεk − ζ⋆k∥Y1+θ
→ 0 as ε → 0.

The first step in the proof of Theorem 5.2 is to write (75) as the fixed-point equation

ζ + ε2
(
gε(D) + 2ε2

)−1
(
dαχε(D)ζ2 + χε(D)Bε(D)ζ2 +Oε

0(ε
1
2 ∥ζ∥Y1)

)
= 0 (76)

and use the following result to ‘replace’ the nonlocal operator with the KP operator

Lα = 2− (β − β0)∂
2
x + sec2 1

2α
D2

2

D2
1

.

Proposition 5.3 Suppose that θ ∈ [0, 1]. The inequality∣∣∣∣∣∣ ε2

2ε2 + g̃(εk1, ε
k2

k1
)
− 1

2 + (β − β0)k21 + sec2 1
2α

k2
2

k2
1

∣∣∣∣∣∣ ≲ ε1−θ

(1 + |(k1, k2

k1
)|2) 1

2 (1+θ)

holds uniformly over |k1|, |k2|
|k1| < δ/ε.

Proof. Clearly ∣∣∣∣∣∣ ε2

2ε2 + g̃(εk1, ε
k2

k1
)
− 1

2 + (β − β0)k21 + sec2 1
2α

k2
2

k2
1

∣∣∣∣∣∣
=

∣∣g̃(εk1, εk2

k1
)− (β − β0)ε

2k21 − sec2 1
2α ε2

k2
2

k2
1

∣∣(
2ε2 + g̃(εk1, ε

k2

k1
)
)(

2 + (β − β0)k21 + sec2 1
2α

k2
2

k2
1

)
furthermore ∣∣∣∣g̃(s1, s2s1

)
− (β − β0)s

2
1 − sec2 1

2α
s22
s21

∣∣∣∣ ≲ ∣∣∣∣(s1, s2s1
)∣∣∣∣3 ,

and

g̃

(
s1,

s2
s1

)
≳

∣∣∣∣(s1, s2s1
)∣∣∣∣2

for |s1|, |s2|
|s1| ≤ δ and sufficiently small δ (see Remark 5.1).

It follows that ∣∣∣∣∣∣ ε2

2ε2 + g̃(εk1, ε
k2

k1
)
− 1

2 + (β − β0)k21 + sec2 1
2α

k2
2

k2
1

∣∣∣∣∣∣ ≲ ε|(k1, k2

k1
)|3

(1 + |(k1, k2

k1
)|2)2

≲
ε

(1 + |(k1, k2

k1
)|2) 1

2

uniformly over |k1|, |k2|
|k1| < δ/ε, and the stated result follows from this inequality and the observation that

ε ≲ δ(1 + t2)−
1
2 when |t| < δ/ε. 2

Lemma 5.4 Suppose that θ ∈ [0, 1]. The estimates

ε2
(
gε(D) + 2ε2

)−1 Oε
0(ε

1
2 ∥ζ∥Y1

) = Oε
1+θ(ε

1
2 ∥ζ∥Y1+θ

),

ε2
(
gε(D) + 2ε2

)−1
Bε(D)ζ2 = Oε

1+θ(ε
1
2−

θ
2 ∥ζ∥21+θ)

and (
ε2
(
gε(D) + 2ε2

)−1 − L−1
α

)
χε(D)ζ2 = Oε

1+θ(ε
1−θ∥ζ∥21+θ)

hold for all ζ ∈ Y ε
1+θ.
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Proof. It follows from Proposition 5.3 (with θ = 1) that

ε2

2ε2 + g̃(εk1, ε
k2

k1
)
≲

(
1 + k21 +

k2
2

k2
1

)−1

,

from which the first estimate is an immediate consequence (note that ∥ζ∥1 ≤ ∥ζ∥1+θ). Furthermore(
1 + k21+

k2
2

k2
1

)1
2+

θ
2 ε2

2ε2 + g̃(εk1, ε
k2

k1
)
B(εk1, ε

2k2)

≲

(
1 + k21 +

k2
2

k2
1

)− 1
2+

θ
2 ε

∣∣k2

k1

∣∣
1 + ε2

k2
2

k2
1

= ε
1
2−

θ
2

 ∣∣k2

k1

∣∣
1 + k21 +

k2
2

k2
1

1

1 + ε2
k2
2

k2
1

1
2−

θ
2
 ε

∣∣k2

k1

∣∣
1 + ε2

k2
2

k2
1

1
2+

θ
2

≲ ε
1
2−

θ
2 ,

such that∥∥∥ε2 (gε(D) + 2ε2
)−1

Bε(D)ζξ
∥∥∥
Y1+θ

≲ ε
1
2−

θ
2 ∥ζξ∥0 ≤ ε

1
2−

θ
2 ∥ζ∥L4(R2)∥ξ∥L4(R2) ≲ ε

1
2−

θ
2 ∥ζ∥Y1+θ

∥ξ∥Y1+θ
.

for all ζ, ξ ∈ Y ε
1+θ (see Proposition 1.7(i)).

The final estimate follows from the observation that∥∥∥(ε2 (gε(D) + 2ε2
)−1 − L−1

α

)
χε(D)ζξ

∥∥∥
Y1+θ

≲ ε1−θ∥ζξ∥0 ≲ ε1−θ∥ζ∥Y1+θ
∥ξ∥Y1+θ

for all ζ, ξ ∈ Y ε
1+θ, in which the first inequality follows from Proposition 5.3. 2

Using the above lemma, one can write equation (76) as

ζ + Fε(ζ) = 0,

in which
Fε(ζ) = dαL

−1
α χε(D)ζ2 +Oε

1+θ(ε
1
2−

θ
2 ∥ζ∥1+θ).

It is convenient to replace this equation with
ζ + F̃ε(ζ) = 0,

where F̃ε(ζ) = Fε(χε(D)ζ) and study it in the fixed space Y1+θ for θ ∈ ( 12 , 1) (the solution sets of the two
equations evidently coincide); we choose θ > 1

2 so that Y1+θ is embedded in Cb(R2) and θ < 1 so that the
remainder term in F̃ε(ζ) vanishes at ε = 0.

We establish Theorem 5.2 by applying Theorem 5.1 with

W = Y e
1+θ := {ζ ∈ Y1+θ : ζ(x, y) = ζ(−x,−y) for all (x, y) ∈ R2},

W0 = BR(0) ⊆ Y1+θ, Λ0 = (−ε0, ε0) for a sufficiently small value of ε0, and

H(ζ, ε) := ζ + F̃|ε|(ζ)

(here ε is replaced by |ε| so that H(ζ, ε) is defined for ε in a full neighbourhood of the origin in R).
We begin by verifying that the functions ζ⋆k belong to Y e

1+θ.

Proposition 5.5 Each lump solution ζ⋆k belongs to Y2.

Proof. First note that (ζ⋆k)
2 belongs to L2(R2) = Y0 because |ζ⋆k(x, y)| ≲ (1 + x2 + y2)−1 for all (x, y) ∈ R2 (see

Lemma 1.1(i)). Since ζ⋆k satisfies
ζ⋆k + L−1

α (ζ⋆k)
2 = 0

and L−1
α is a regularising operator of order 2 for the scale {Yr, ∥ · ∥Yr}r≥0, one finds that ζ⋆k ∈ Y2. 2
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Observe that H(·, ε) is a continuously differentiable function BR(0) ⊆ Y 1+θ
e → Y 1+θ

e for each fixed ε ≥ 0, so
that

lim
ζ→ζ⋆

k

∥d1H[ζ, 0]− d1H[ζ⋆k , 0]∥L(Y1+θ,Y1+θ) = 0.

The facts that

lim
ε→0

∥H(ζ, ε)−H(ζ, 0)∥Y1+θ
= 0, lim

ε→0
∥d1H[ζ, ε]− d1H[ζ, 0]∥L(Y1+θ,Y1+θ) = 0

uniformly over ζ ∈ BR(0) ⊆ Y 1+θ
e are obtained from the equation

H(ζ, ε)−H(ζ, 0) = L−1
α

(
χε(D) (χε(D)ζ)

2 − ζ2
)
+Oε

1+θ(ε
1
2−

θ
2 ∥ζ∥1+θ)

using Corollary 5.8 below, which is a consequence of the next two lemmas.

Lemma 5.6 Fix θ > 1
2 . The estimate

∥L−1
α χε(D)

(
((χε(D) + I)ζ)((χε(D)− I)ξ)

)
∥Y1+θ

≲ ε∥ζ∥Y1+θ
∥ξ∥Y1+θ

holds for all ζ, ξ ∈ Y1+θ.

Proof. Recall that L−1
α is a regularising operator of order 2 for the scale {Yr, ∥ · ∥Yr}r≥0 and that χε(D) is a

bounded projection on all subspaces of L2(R2). It follows that

∥L−1
α χε(D)

(
((χε(D) + I)ζ)((χε(D)− I)ξ)

)
∥Y1+θ

≤ ∥χε(D)
(
((χε(D) + I)ζ)((χε(D)− I)ξ)

)
∥0

≤ ∥((χε(D) + I)ζ)((χε(D)− I)ξ)∥0
≤ ∥(χε(D) + I)ζ∥∞∥(χε(D)− I)ξ∥0
≲ ∥(χε(D) + I)ζ∥Y1+θ

∥(χε(D)− I)ξ∥0
≤ 2∥ζ∥Y1+θ

∥(χε(D)− I)ξ∥0,

where we have used the embedding Y1+θ ↪→ Cb(R2). To estimate ∥(χε(D)− I)ζ∥0, note that

R2 \ Cε ⊂
{
(k1, k2) : |k1| >

δ

ε

}
︸ ︷︷ ︸

= C1
ε

∪
{
(k1, k2) :

∣∣∣∣k2k1
∣∣∣∣ > δ

ε

}
︸ ︷︷ ︸

= C2
ε

,

so that

∥(χε(D)− I)ζ∥20 =

∫
R2\Cε

∥ζ̂∥2 dk

≤
∫
C1

ε

∥ζ̂∥2 dk +

∫
C2

ε

∥ζ̂∥2 dk

≤ ε2

δ2

∫
C1

ε

k21∥ζ̂∥2 dk +
ε2

δ2

∫
C2

ε

k22
k21

∥ζ̂∥2 dk

≤ 2ε2

δ2
∥ζ∥2Y1

. 2

Lemma 5.7 Fix θ ∈ (0, 1). The estimate

∥L−1
α (χε(D)− I)(ζξ)∥Y1+θ

≲ ε1−θ∥ζ∥Y1
∥ξ∥Y1

≤ ε
1
2−

θ
2 ∥ζ∥Y1+θ

∥ξ∥Y1+θ
,

holds for all ζ, ξ ∈ Y1+θ.
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Proof. For ν ∈ {k1, k2

k1
} we find that

(
1 + k21 +

k22
k21

)1+θ(
1 + k21 +

k22
k21

)−2

|ν|2−2θ =

(
ν2

1 + k21 +
k2
2

k2
1

)1−θ

≤ 1,

so that

∥L−1
α (χε(D)− I)ζξ∥2Y1+θ

≲
∫
C1

ε∪C2
ε

(
1 + k21 +

k22
k21

)1+θ (
1 + k21 +

k22
k21

)−2

|F [ζξ]|2 dk

≲
(ε
δ

)2−2θ
∫
C1

ε

(
1 + k21 +

k22
k21

)1+θ (
1 + k21 +

k22
k21

)−2

|k1|2−2θ|F [ζξ]|2 dk

+
(ε
δ

)2−2θ
∫
C2

ε

(
1 + k21 +

k22
k21

)1+θ (
1 + k21 +

k22
k21

)−2 ∣∣∣∣k2k1
∣∣∣∣2−2θ

|F [ζξ]|2 dk

≤
(ε
δ

)2−2θ

∥ζξ∥20

≲
(ε
δ

)2−2θ

∥ζ∥2L4(R2)∥ξ∥
2
L4(R2)

≲
(ε
δ

)2−2θ

∥ζ∥2Y1
∥ξ∥2Y1

,

where we have used Parseval’s theorem, the Cauchy-Schwarz inequality and the embedding
Y1 ↪→ L4(R2). 2

Corollary 5.8 Fix θ ∈ ( 12 , 1). The estimate∥∥∥L−1
α

(
χε(D)

(
(χε(D)ζ)(χε(D)ξ)

)
− ζξ

)∥∥∥
Y1+θ

≲ ε1−θ∥ζ∥Y1+θ
∥ξ∥Y1+θ

holds for all ζ, ξ ∈ Y1+θ.

Proof. This result is obtained by writing

L−1
α

(
χε(D)

(
(χε(D)ζ)(χε(D)ξ)

)
− ζξ

)
= 1

2L
−1
α χε(D)

(
((χε(D) + 1)ζ)((χε(D)− 1)ξ)

)
+ 1

2L
−1
α χε(D)

(
((χε(D) + 1)ξ)((χε(D)− 1)ζ)

)
+ L−1

α (χε(D)− 1)(ζξ),

and applying Lemma 5.6 to the first two terms on the right-hand side and Lemma 5.7 to the third. 2

It thus remains to show that
d1H[ζ⋆k , 0] = I + 2dαL

−1
α (ζ⋆k ·)

is an isomorphism; this fact follows from the following result.

Lemma 5.9 The operator L−1
α (ζ⋆k ·) : Y1+θ → Y1+θ is compact.

Proof. Let {ζj} be a sequence which is bounded in Y1. We can find a subsequence of {ζj} (still denoted by {ζj})
which converges weakly in L2(R2) (because {ζj} is bounded in L2(R2)) and strongly in L2(|x| < n) for each
n ∈ N (by Proposition 1.7(ii) and a ‘diagonal’ argument). Denote the limit by ζ∞. Since

∥ζ⋆kζj − ζ⋆kζ∞∥L2(|x|<n) ≤ ∥ζ⋆k∥∞∥ζj − ζ∞∥L2(|x|<n) → 0

as j → ∞ for each n ∈ N and

sup
j

∥ζ⋆kζj∥L2(|x|>n) ≤ sup
|x|>n

|ζ⋆k(x)| sup
j

∥ζj∥0 → 0
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as n → ∞ we conclude that {ζ⋆kζj} converges to ζ⋆kζ∞ in L2(R2) as j → ∞. It follows that ζ 7→ ζ⋆kζ is compact
Y1 → L2(R) and hence Y1+θ → L2(R); the result follows from this fact and the observation that L−1

α is continuous
L2(R2) → Y1+θ. 2

Lemma 5.10 The operator I + 2dαL
−1
α (ζ⋆k ·) is an isomorphism Y1+θ → Y1+θ.

Proof. The previous result shows that I + 2dαL
−1
α (ζ⋆k ·) : Y1+θ → Y1+θ is Fredholm with index 0; it therefore

remains to show that it is injective.
Suppose that ζ ∈ Y1+θ satisfies

ζ + 2dαL
−1
α (ζ⋆kζ) = 0. (77)

It follows that

k1ζ̂ =
−2dαk

3
1

2k21 + (β − β0)k41 + sec2 1
2α k22

F [ζ⋆kζ], k2ζ̂ =
−2dαk1k2

2k21 + (β − β0)k41 + sec2 1
2α k22

F [ζ⋆kζ]

and hence ζ ∈ Hn+1(R2) whenever ζ⋆kζ ∈ Hn(R2). Since ζ ∈ L2(R2) and ζ ∈ Hm(R2) implies ζ⋆kζ ∈ Hm(R2)
we find by bootstrapping that ζ ∈ H∞(R2).

Since ζ is smooth and satisfies (77) it satisfies the linear equation(
(β − β0)ζxx + 2ζ + 2dα(ζ

⋆
kζ)
)
xx

− sec2 1
2α ζzz = 0,

and the only smooth solution to this equation with ζ(x, y) = ζ(−x,−y) for all (x, y) ∈ R2 is the trivial solution
(see Lemma 1.1(iii)). 2

To establish Theorem 1.2 it remains to confirm that the formula

η = η1 + η2(η1), η1(x, y) = ε2ζ(εx, ε2y)

leads to the estimate
η(x, y) = ε2ζ⋆k(εx, ε

2y) + o(ε2)

uniformly over (x, y) ∈ R2. This fact follows from the calculations

∥ζεk − ζ⋆k∥∞ ≲ ∥ζεk − ζ⋆k∥Y1+θ
= o(1),

such that

η1(x, y) = ε2ζ⋆k(εx, ε
2y) + ε2(ζεk − ζ⋆k)(εx, ε

2y)

= ε2ζ⋆k(εx, ε
2y) + o(1)

uniformly in (x, y), and
∥η2(η1)∥∞ ≲ ∥η2(η1)∥3 ≲ ε|||η1|||2 ≲ ε3

by Theorem 3.7 and |||η1||| = ε∥ζ∥Y1
with ζ ∈ BR(0) ⊆ Y ε

1+θ.

Appendix A Dispersion relation
Recall the dispersion relation

g(k) = 0, (78)

where
g(k) = − 1

|k|2
(α(c0 · k⊥)(c0 · k) + c(|k|2)(c0 · k)2) + 1 + β|k|2

is an analytic function g̃ of k1 and k2

k1
with g̃(0, 0) = 0 if

c0 =

(
c0 cos

1
2α

−c0 sin
1
2α

)
, c20 = 2

α tan 1
2α.
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Suppose that k ̸= 0, so that (78) is equivalent to

c(|k|2) = κ(|k|2, θ),

where

κ(µ, θ) =
1 + βµ− αc20 sin θ cos θ

c20 cos
2θ

and θ is the angle between c0 and k (note that g(k) > 0 if cos θ = 0). The function κ(µ, ·) takes every value in
[κmin(µ),∞), where

κmin(µ) =
1 + βµ

c20
− c20α

2

4(1 + βµ)
,

and the minimum is attained at

θ = − tan−1 αc20
2(1 + βµ)

.

It follows that g(k) ̸= 0 for all k with given magnitude |k| if and only if c(|k|2) < κmin(|k|2).
The functions c and κmin are both strictly increasing and concave on [0,∞) with

c(0) = κmin(0). Obviously c(µ) < κmin(µ) for µ ∈ (0,∞) if c′(µ) < κ′
min(µ) for µ ∈ [0,∞), and since

c′(µ) ≤ c′(0) =
1

2

(
−cotα

α
+ cosec2α

)
(because c is concave) and

κ′
min(µ) =

1

2
αβ

(
1

(1 + βµ)2
+ cot2 1

2α

)
tan 1

2α > 1
2αβ cot 1

2α

this condition is met if
1

2

(
−cotα

α
+ cosec2α

)
< 1

2αβ cot 1
2α,

that is if
β > β⋆ := 1

α

(
− 1

α cotα+ cosec2α
)
tan 1

2α.

Remark 5.1 The calculation

g̃(k1,
k2

k1
) =

(
β +

1

2α2
(cosα− α cosecα)

)
k21 + sec2 1

2α
k2
2

k2
1
+O(|(k1, k2

k1
)|3)

as (k1, k2

k1
) → (0, 0) shows that (0, 0) is a strict local minimum of g̃ if

β > β0 :=
1

2α2
(− cosα+ α cosecα).

Note that
β⋆ − β0 =

1

α2
cosec3 α sin4 1

2α(2α− sin 2α) ≥ 0

with equality if and only if α = 0 (the common value is 1
3 ).
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