Fully localised three-dimensional solitary water waves on
Beltrami flows with strong surface tension

M. D. Groves* E. Wahlén'

Abstract

Fully localised three-dimensional solitary waves are steady water waves which are evanescent in every hor-
izontal direction. This paper presents an existence theory for such waves under the assumptions that the rela-
tive vorticity and velocity fields are parallel (‘Beltrami flows’), that the free surface of the water takes the form
{z = n(=x,y)} for some function  : R? — R, and that the influence of surface tension is sufficiently strong. The
governing equations are formulated as a single equation for 7, which is then reduced to a perturbation of the KP-I
equation. This equation has recently been shown to have a family of nondegenerate localised solutions, and an
application of a suitable variant of the implicit-function theorem shows that they persist under perturbations.

1 Introduction

1.1  The hydrodynamic problem

Consider an incompressible perfect fluid of unit density occupying a three-dimensional domain bounded below by a
rigid horizontal plane and above by a free surface. A steady water wave is a fluid flow of this kind in which both the
velocity field and free-surface profile are stationary with respect to a uniformly (horizontally) translating frame of
reference; a (fully localised) solitary wave is a nontrivial steady wave whose free surface decays to the height of the
fluid at rest in every horizontal direction. Working in frame of reference moving with the wave and in dimensionless
coordinates, we suppose that the fluid domain is D,, = {(z,y,2) : =1 < z < n(z,y)} (so that the free surface is
the graph S, of an unknown function n : R? — R), and the flow is a (strong) Beltrami flow whose velocity and
vorticity fields w and curl w are parallel, so that curlu = au for some fixed constant a.. Irrotational flows (with
curl u = 0) are included as the special case a = 0. The hydrodynamic problem is to solve the equations

curlu = ou in Dy, (D
divu =0 in Dy, @)
u-e3 =0 at z = —1, 3)
u-n=0 atz =7, “4)
1|U|2+n—ﬁ<7h1> —5(”y> = glef? atz = 5
: v, \ar wapi), e
where V = (9,,0,)T, V+ = (9, —0:)T, ¢ == (c1,¢2)T is the dimensionless wave velocity, e3 = (0,0,1)” and
n = (—ng,—ny,1)7 is the outward normal vector at S,; we have also introduced the Bond number
B = o/gh?, where h is the depth of the fluid at rest, g is the acceleration due to gravity and o > 0 is the coefficient
of surface tension. (The pressure p in the fluid is recovered using the formula p(z,y, 2) = — 3 |u(z,y, 2)|* — y, and

the variables u and p automatically solve the stationary Euler equation in D,;.) Equations (4) and (5) are referred to
as respectively the kinematic and dynamic boundary conditions at the free surface. It is natural to write 7 and w as
a perturbations of the trivial solution

cos az sin az
n* =0, u*=c | —sinaz | +cp | cosaz 6)
0 0
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Figure 1: The trivial flow (6)
of (1)—(5) (see Figure 1), so that v = u — u* satisfies the equations
curlv = av in D,, @)
dive =0 n Dy, ®)
v-e3=0 at z = —1, ©)]
v-nt+u - -n=0 atz =1, (10)
19,,12 * Nz Ty
T S P Y NP R
(L+[Vnl?)z /, (1+[Vnl?)z ),

Our task is to find solutions (7, v) of (7)—(11) which are evanescent as |(x,y)| — oo and therefore represent fully
localised solitary waves ‘riding’ the trivial flow (6). Note that these equations are invariant under

TI(Z,y)'_}n(fxa *y)v (Ul(xvya 2)77)2(377% Z),’Ug(f,y, Z))’_)(Ul(fxa Y, Z)a UQ(fxa Y, Z)a 71}3(71'7 -Y, Z))a

and we in fact seek solutions which are themselves invariant under this transformation.

Irrotational fully localised solitary waves have been found by Groves & Sun [13] and Buffoni ez al. [1] for 5 > %
using variational methods. Their result has recently been made more precise by Gui ef al. [14, 15], who obtained
waves which are perturbations and scalings of localised ‘lump’ solutions of the KP-I equation and discussed their
stability. In this paper we use a related method to obtain the same family of waves for equations (7)—(10) for
sufficiently large values of 8 (depending upon «); the existence result of Gui ef al. is included as a special case.
Other types of three-dimensional steady water waves have also been studied, in particular doubly periodic steady
waves, that is waves which are periodic in two different horizontal directions. Their existence was established for
irrotational flows with surface tension (8 > 0) by Craig & Nicholls [4, 5], for irrotational waves without surface
tension (3 = 0) by Iooss & Plotnikov [16] and for Beltrami flows with surface tension by Lokharu, Seth & Wahlén
[20] (see also Groves et al. [12] for an existence theory in a framework similar to that used in the present paper).
Doubly periodic gravity-capillary waves with more general (but small) vorticity were recently constructed by Seth,
Varholm & Wahlén [23].

1.2 Heuristics

The KP-I equation arises in weakly nonlinear theory as a universal model equation for two-dimensional nonlinear
dispersive systems whose linearisation has a distinguished wave speed attained only by long waves. A straightfor-
ward calculation shows that the linearised version of (7)—(11) has solutions of the form 7(x,y) ~ cos(k - x), where
x=(z,y)T and k = (ky, k)T, if

g(k) =0, (12)
where

o(k) = —#wc- K4 k) + ek (e k)?) + 1+ Ak

and

Va2 —peot(y/a? —p), ifp<a?,

Vi — a2 coth(y/p — a?), ifu>a?

c(p) =



The calculation
_ 1 ko ko 1 201 4 K2 k2|2 201 4 K2
g(k) = —ﬁa(clg —c2)(e1+e2p2) - 71620(/?1(1 +3) (1 + )" + 1+ BRi(1+ 33)
1+ 4 1+ 43 : ;

shows that g is an analytic function g of k; and Z—f We find that §(0,0) = 0 if ¢ = ¢, where

1
Cp COS 5
coz< 2 ), c(%:%tan%a,

<1
—cosin 5

and it is shown in Appendix A that the dispersion relation (12) has no further solutions for sufficiently large values
of 3. Substituting the Ansatz
c=(1-¢¥co

and
n(x,y) = 2¢(X,Y), X =cz, Y =c%y (13)

into equations (7)—(11), one duly finds that to leading order ( satisfies the KP-I equation
21 D3 2
—(8 = Bo)Ceax + 2¢ + sec §QF%C +do(” =0, (14)

where
Bo = ﬁ(_ cos « + a cosec @), do = accoseca + tacot a,
we have replaced (X, Y") with (z, y) for notational simplicity and Dy = —id,, Dy = —id,,.
Equation (14) can be written in the normalised form
O2(—0%u + u + 3u?) +8§u =0, (15)
which has a family of explicit symmetric ‘lump’ solutions of the form

uip(z,y) = =207 log i (z,y),  k=1,2,..., (16)

where 7} is a polynomial of degree k(k + 1) with 77 (z,y) = 7(—z,y) = 77 (z, —y) for all (z,y) € R?; the first
two members of the family are

i (z,y) =2 +y* +3,

75 (z,y) = 2% + 3xty? + 32%y* + 9° + 252 + 90222 + 17y — 12522 + 475y + 1875.
Note that the lump solutions u;, are smooth, decaying rational functions, so that the same is true of their derivatives
of all orders. The functions (} and (3 (where (} is obtained from u;, by reversing the normalisation) are sketched

in Figure 2.
The following result was established by Liu & Wei [17] and Liu, Wei & Yang [19, 18].

Lemma 1.1

(i) Every smooth, algebraically decaying lump solution of (15) has the form u(z,y) = —202% log 7(x,y) for some
polynomial T of degree k(k + 1) with k € N and satisfies |u(x,y)| < (1 + 22 +y?)~! for all (z,y) € R2

(ii) There is a unique symmetric lump solution of the form (16) for each k € N with k(k + 1) < 600 (and it is
conjectured that this result holds for all k € N).

(iii) The lump solutions (5, (5 of (15) are nondegenerate in the sense that the only smooth, evanescent solutions
of the linearised equation
2 (—=0%u + u + 6uju) + 8§u =0

for k =1, 2 are linear combinations of Oy}, and Oyuj (and it is conjectured that this result holds for all
k € N; see Remark 1.3 below).



Figure 2: The KP lumps ¢ (left) and {5 (right).

The KP lump solution ¢, formally corresponds to a fully localised solitary water wave 1(z, z) = £2(x(ex, £2y).
In this article we rigorously reduce the hydrodynamic equations (7)—(11) to a perturbation of the KP-I equation and
combine the nondegeneracy result in Lemma 1.1(iii) with an implicit-function theorem argument to establish the
following result.

Theorem 1.2 Suppose that

c1 = co(1 —€?) cos o, ey = —co(1 — €?)sin ta
with
0(2) = % tan %a.
For each sufficiently large value of 5 > 0 and each sufficiently small value of ¢ > 0 equations (7)—(11) possess fully
localised solitary-wave solutions 0y, n3 € H?3(R?) which satisfy nj(z,y) = nj(—xz, —y) for all (z,y) € R? and

(2, y) = G (ex,€%y) + o(€?) a7
uniformly over (x,y) € R2

Remark 1.3 In fact Theorem 1.2 generates a fully localised solitary water wave from any symmetric lump solution
Cr of (14) which is nondegenerate in the sense of Lemma 1.1(iii), and a sketch of the proof of the nondegeneracy of
Cy for k > 3 was given by Liu, Wei & Yang [18].

1.3 Reformulation

We proceed using a recent formulation of (7)—(11) due to Groves & Horn [11] which generalises the Zakharov-
Craig-Sulem formulation of the irrotational problem (Zakharov [25], Craig & Sulem [6]). Let Fj denote the
horizontal component of the tangential part of a vector field F = (I}, Fy, F3)" at the free surface, so that
F” = F, + F 3V77|Z:n, where F}, = (F1, FQ)T, and write, according to the Hodge-Weyl decomposition for vector
fields in two-dimensional free space,

v =V®+ V',

where & = A7V - o)), ¥ = ATH(VE - v)) = ~A71(V - vj") and A" is the two-dimensional Newtonian
potential. Define a generalised Dirichlet-Neumann operator H (1) by

_ _ i
H(n)® =curlA-n=V-Aj,



where (f1, f2)* = (fa, —f1), the underscore denotes evaluation at z = 71 and A is the unique solution of the
boundary-value problem

curlcurl A = acurl A in Dy, (18)
divA =0 in D,), (19)
ANes=0 atz = —1, (20)
A-n=0 atz =, 21
(curl A)) = Vo — aViA~L(V . Aﬁ‘) atz = 1. (22)

(Note that ¥ = A~*(V+ - (curl A)) is necessarily given by ¥ = —a A~}(V - Aﬁ) because

U=—A"YV-curl Aﬁ‘):—A_l(curlcurlA n)=—aA curlA -n)=—a AV AJ”‘)7 (23)

and that v = curl A satisfies (7)—(9).)
A straightforward calculation shows that equations (10)—(11) are equivalent to

H(n)® +u* -m =0, (24)
1 o (H(n)® + K(n)®-Vn)?
K b - ur _ 77‘")_ (779):0 25
K0 s 1= (i ) (e , =

where
K(n)® :=V® - aV+A~Y(H(n)®),

and these equations can in fact be reduced to a single equation for the variable 7 (see Oliveras & Vashal [22] for a

simpler version of this equation for irrotational waves). Equation (24) implies that ® = —H (1) ~!(u* - n), whereby
(25) yields
J(n) =0, (26)
where
* 2
T(0) = TP - SR T
+T(n)~u;+n—6<”"‘l) —ﬁ("yl) @7
1+[VnP)z/, A +[VnP?)z/,

and
T(n)=-V (Hmn) (" n))+aVrA~ (u* n).

Equation (26) is invariant under the transformation n(z,y) — n(—z, —y) (see the discussion beneath equations
(7)—(11)), and in this paper we show that (26) has solutions 7}, n5 € H 3 (RQ) which satisfy the estimate (17) and
are invariant under this transformation.

The operator T'(n) can also be defined directly in terms of a boundary-value problem. Noting that
u*-n =V -S(n)t (and, for later use, that uj = ac + S(1)), where

Sip =& <COS(OH7) - 1) Lo ( sin(an) ) |

a \ —sin(an) a \cos(an) —1

we can define

where



and B solves the boundary-value problem

curl curl B = acurl B in Dy, (28)
divB =0 in Dy, 29)
BAes=0 atz = —1, 30)
B-n=0 atz =, (€2))
V~Bﬁ‘:V~gJ‘ atz = 1. (32)

Any solution to this boundary-value problem satisfies
(curl B)| = V® —aV+A™Y(V - Bﬁ)
for some ® (see equation (23)), so that ® = H(n)~1(V - g1) and
—(curl B) = =V(H(n) " (V-g")) + aVEAT (V- g").

In Section 2 we show that the solutions to the boundary-value problems (18)—(22) and (28)—(32) depend analyt-
ically upon 7 and use this fact to deduce that the same is true of H (n) and M (n). We proceed by ‘flattening’ the
fluid domain by means of the transformation X: Dg — D,, given by

Y (x,0) = (x,0 + o(x,v)), a(x,v) = n(x)(1 +v),

which transforms the boundary-value problems for A and B into equivalent problems for A= AoY and
B := B o ¥ in the fixed domain Dy (equations (3§)—(40) and (42)—(46) respectively), and establishing the fol-
lowing results (the function spaces Z, H*(R?) and H*(R?) are defined in Sections 1.5 and 2.1 below).

Theorem 1.4 There exists a neighbourhood V of the origin in Z such that

(i) the boundary-value problem (53)—(57) has a unique solution A = A(n, ®) in H*(Dy)? which depends
analytically uponn € V and ® € H3 (R?) (and linearly upon ®),

(ii) the boundary-value problem (42)—(46) has a unique solution B = B(n,g) in H3(Dg)? which depends
analytically uponn € V and g € H3 (R2)2 (and linearly upon g).

The analyticity of H and M follows from the above theorem and the facts that
H(n)(®) =V A},  M(n)(g) = —(cul” B)|,
where ~
curl” B(x,v) = (curl B) o ¥(x,v).

Theorem 1.5 The mappings n — H(n) and n — M(n) are analytic V. — L(H% (R?), H3 (R?)) and
V — L(H%(R%)2, H? (R2)2) respectively.

Our final result follows by noting that H3(R?) is continously embedded in Z, so that

U:={ne HR?):|n|lz < M} (33)

is an open neighbourhood of the origin in H3(R?).

Corollary 1.6 The formula (27) defines an analytic function J : U — H'(R?) for sufficiently small values of
M > 0.



1.4 Reduction

The Ansatz (13) indicates that the Fourier transform of the surface-profile function n for a fully localised solitary
wave is concentrated in the region S = {(k1, k2) : |k1], |Z—f| < §} for some 0 < 0 < 1 (see Figure 3). We therefore
decompose 7 € H3(R?) into the sum of

m=x(D)n, m=(1-x(D))n,

where  is the indicator function of the set .S, the Fourier transform 7) = F[n] of ) is defined by

5 1 —i x
k1, ko) = 2 /R? n(a,y)e Fretkay) g dy.

and D = (—id,, —i0,)T. Setting
c=(1-¢%ecy,

choosing 3 sufficiently large and writing equation (26) as
X(D)J (m +n2) = 0,
(1 =x(D))J(m +n2) =0,

we find that the second equation is solvable for 72 as a function of 7; for sufficiently small values of ¢; the first
therefore reduces to

X(D)J (m + n2(m)) =0
upon inserting 72 = 72(71 ). Finally, the scaling

m(z,y) =e*C(X,Y), X=cz, Y =c%
transforms the reduced equation into a perturbation of the equation
£729:(D)C +2¢ + dax=(D)¢? = 0, (34)
where g (k1,k2) = g(cki1,e%ks) and x(k1, ka2) = x(ck1,&%ks) (see Sections 3 and 4; the reduced equation is

stated precisely in equation (75)). Note that ¢ is a small, but fixed constant while ¢ is a small parameter whose
maximum value depends upon J.

AP

ki

Figure 3: The set S = {(k1, k2) : |k1] <4, % <6}

Equation (34) is a full-dispersion version of the stationary KP-I equation (14) since it retains the linear part of
the original equation (26); noting that

k,2
e 2g.(k1, ko) = (B — Bo)ki + secQ%ak% + O(e),
1

we recover the fully reduced model equation in the formal limit e = 0. In Section 5 we demonstrate that equation
(34) for ¢ has solutions (f, (5 which satisfy (; — +(} as € — 0 in a suitable function space (see Theorem 5.2).
The key step is the nondegeneracy result given in Lemma 1.1(iii) which allows one to apply a suitable variant of the
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implicit-function theorem. For this purpose we exploit the fact that the reduction procedure preserves the invariance
of equation (26) under n(z,y) — n(—xz,—y), so that equation (34) is invariant under ((z,y) — ((—z, —y);
restricting to a space of functions with this invariance, we find that the kernel of the appropriate linearisation is
trivial since 0}, 0y} do not have this invariance.

The perturbation argument used in Section 5 was developed by Groves [10] in the context of two-dimensional
irrotational solitary waves and applied to three-dimensional irrotational fully localised solitary waves on water of
infinite depth by Buffoni, Groves & Wahlén [2]. It has also been applied to the Whitham equation by Stefanov &
Wright [24] and to a full dispersion KP-I equation (which differs from (34)) by Ehrnstrom & Groves [9].

1.5 Function spaces

We work with the standard function spaces H"(D,;) for n € Ny in the fluid domain together with L? (R?) for p > 1,
W22 (R?) for n € Ny and

HY(R?) = {n € L*(R?) : (1+ [k|*)2%) € L*(R?)}, ||77||§=/IR (1+ |k[*)* (k)| dk

for s > 0 in the plane; the definitions are extended componentwise to vector-valued functions. The nonstandard
spaces

H*(R?) = {n € Li,.(R*) : Vo € H*'R*°Y/R, 0l g = [Vallsmr = [(R)° KlAllo, s> 1,
H*(R?) = {n e L*(R?*) : A™\n € H2(R*)},  Inll g = 1A nll g = 1K) KT llo, s >0,

where L2

2 (R?) denotes the space of locally square integrable functions in the plane, and the scale {Ys, || - ||s}s>0.
where

)

2 25 2 2‘S
KZ{UGLQ(R2)¢<1+’€2 gy eL2<R2>}, Inlly, = H (1+r4 )
0

are also used. Note that A: H*T2(R2) — H*(RR?) is injective so that the definition of F®(R?) makes sense.

Proposition 1.7
(i) The space Y7 is continuously embedded in LP(R?) for 2 < p < 6.
(ii) The space Y1 is compactly embedded in L*(|x| < R) for each R > 0.
(iii) The space Yy is continuously embedded in C,(R?) := C(R?) N L*°(R?) for s > 3.

Proof. Parts (i) and (ii) are given by respectively Ehrnstrom & Groves [8, Proposition 2.2(i)] and de Bouard & Saut
[7, Lemma 3.3]. Turning to part (iii), note that

. AN B
il 5 [ il = [ (vere3) T (1 ) e
R2 1

1:/ <1+k2 Zg) dk:/(1+|k|2)*5|k1|dk<oo
R2 R2

if and only if 5 > % The continuity of 7 follows from a standard dominated convergence argument. a

where

Observe that the spaces x(D)H*(R?) and x(D)Y,, s > 0 of ‘truncated’ functions all coincide and have
equivalent norms. In Sections 3 and 4 we identify in particular y(D)H?(R?) with x(D)Y; and equip it with the

scaled norm
_ _ok3\ .
limll* = /]R (He L ) (k)| dke (35)

in anticipation of the KP scaling.

Proposition 1.8 The estimate |11 |11 (r2) < €l||n1 || holds for each ny € x(D)Y1.
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Proof. Observe that

i) dk= [ (1R +ed) (1 e ) (k)| dk S 2,
R2 R2 1 1

where

I / L dk = 4¢2 / e / B gk < o
= - 2 1~ .
51+E—2k%+5—2:é 0 0 1+kg+k%
1

Corollary 1.9 The estimate |01 ||n,0o S €||m1 | holds for each mi € x(D)Y1 and each n € Ny.

~

Proof. The result follows from the calculation ||9;(|n,00 S [||E|™7(/21 (r2) S |11/ 21 (r2) and the previous proposi-
tion. a

Finally, we introduce the space Y7 = x.(D)Y; (with norm || - ||y,), noting the relationship

Inll* = ellCl¥,,  n(z,y) = *Clex, e%y)
for ¢ € YF. Observe that Y coincides with x.(D)H*(R?) for ¢ > 0 and with x(D)Yj in the limit ¢ — 0.

2 Analyticity

2.1 The boundary-value problems

In this section we solve the boundary-value problems (18)—(22) and (28)—(32) and use these results to deduce that
H(n) and M (7)) depend analytically upon ) € Z, where

Z={ne. " (R : il + [nls < oo}

and
m = x(D)n, n2 = (1 —x(D))n

(see Theorem 2.5(i) below for a precise statement). We proceed by transforming (18)—(22) and (28)—(32) into
equivalent boundary-value problems in the fixed domain Dy by means of the following ‘flattening’ transformation.
Define ¥: Dy — D, by

E:(z,y,0) = (@y,0+o(z,y,0),  o(z,y,0) =n(zy)(1+0),
and for f: D, — Rand F: D, — R> write f = f o %, F = F o ¥ and use the notation

grad” f(z,y,v) = (grad f) o £(z,y,v),
div? f(z,y,v) = (div f) o (z, y, v),
curl” F(z,y,v) == (curl F) o X(z,y,v),
A7 f(w,y,v) = (Af) 0 S, y,v)
and more generally
O0y0 0,0 Oy
07 =0y — m&,, 8; =0y — lnfi&)aam 0y = o0

Equations (18)—(22) are equivalent to the flattened boundary-value problem
curl” curl” A = acurl® A in Dy, (36)
divi A=0 in Dy, (37
ANe; =0 atv = —1, (38)
A n=0 atv =0, (39)
(curl” A)) = V& — aVFA~H(V - Af) (40)

9



in terms of which

H(n®=V-Aj, (41

while equations (28)—(32) are equivalent to the flattened boundary-value problem
curl® curl” B = accurl® B in Dy, 42)
div: B=0 in Dy, 43)
BAe;=0 atv = —1, (44)
B-n=0 atv =0, (45)
VB =V-g, (46)

in terms of which ~

M (n)g = —(curl” B); (47)

note that the orthogonal gradient part of (curl® B) | is equal to —a VEA™? (V-B ﬁ-) for any solution B € H?(Dy)?
of (42)—(46).

It is in fact convenient to replace (18)—(22) with an equivalent boundary-value problem. The following propo-
sition was proved by Groves & Horn [11, Proposition 4.6] (under slightly different regularity assumptions on @, n
and A, the change in which does not affect the proof).

Proposition 2.1 Suppose that ® € H3 (R2%) and n lies in a sufficiently small neighbourhood of the origin in Z. A
function A € H? (Dn)3 solves (18)—(22) if and only if it satisfies the boundary-value problem

—AA=qacurl A in Dy,
ANes=0 at z = —1,
0,A3 =0 atz = —1,
A-n=0 atz =mn,

(curl A) = V& —aV+ATH(V - A)).

Corollary 2.2 Suppose that ¢ € H3 (R?) and n lies in a sufficiently small neighbourhood of the origin in Z. A
function A € H3(Dy)? solves (36)—(40) if and only if it satisfies the boundary-value problem

—A°A=qcul’ A in Dy, (48)
ANne; =0 atv = —1, (49)
Oy Ay =0 atv=—1, (50)
A-n=0 atv =0, (51)
(curl” A)y = V& —aVFAH(V - Af). (52)

We proceed by rewriting (48)—(52) as

—AA—acurlA=H?(A) in Dy, (53)
ANe; =0 atv = —1, (54)
OyAs =0 atv = —1, (55)
A.e;=g°(A) atv =0, (56)
(curl A), + aVEA~Y(V - AL) = h7(A) + VO, (57)

where
H”(A) = AA+acul”A—AA—acurl A,
gO'(A) = V77 : A}p
h?(A) = —(curl” A);, + (curl A), — V(curl” A)s — aVIA™Y(V - (VntAy)).

(With a slight abuse of notation the underscore now denotes evaluation at v = 0). The inhomogeneous linear version
of the boundary-value problem (53)—(57) was studied by Groves & Horn [11, Proposition 4.9], who in particular
give an explicit formula for the solution.

10



Lemma 2.3 Suppose that s > 2 and o* < %ﬂ'. The boundary-value problem

~AA—acurlA=H

A/\63:0
DyA3 =0
A'63:9

(curl A)y, + aVEA~H(V-AL) =h

in Dy,
atv = —1,
atv = —1,
atv =0,

has a unique solution A € H*(Dy)? for each g € H* 2(R%), H € H* 2(Dy)? h € H*"3(R2)? and
la| € [0,a*]. The solution operator defines a mapping H*~ = (R2) x H*"2(Dg)3 x H5"3(R2)2 — H*(Dy)3

which is bounded uniformly over || € [0, o*].

Lemma 2.3 can be used in particular to study the boundary-value problems

curl curl A° = o curl A° curl curl B® = a.curl B?
divA® =0 divB" =0
AO/\63:0 BO/\63:O
AO~63:O Bo.egzo
(curl A%, = V& — VATV - (A%)y) V(B =V-g"

(58)
(39)
(60)
(61)
(62)

for ® € H5~2(R?) and g € H*" 2 (R%)? with s > 2. The boundary-value problem for A° has a unique solution

AY(®) € H?(Dy)?, and it follows from 3
H(0)® =V - A%(®)yr

and the explicit formula for AO(@) given by Groves & Horn that
tan(y/a? — p)
a? —p
tanh(y/p — a?2)
Vi—a?

Y

H(0)® = D*t(D?), t(p) =

and
D = (D, Dy)" = —iv, D = |D|.

Note that H(0) € L(H*~2(R2), H*~ % (R2)) is an isomorphism because

(k)
t(|k[?)

1

T Tt ¥
K[>t ([K[?)

1H#(0)~ |

P R

o Rl
0

0

where we have used the fact that (k) ~!/t(|k|?) is bounded.

if p < a?,

ifﬂ2a2

s—i1.1-19
< k) =2 k| M0 o = |

Hs—%?

Observe that B(g) := A%(®) with ® = H(0)~'(V - g*) solves the boundary-value problem for B® because

Vgt =H(0)2 =V -A@) = V- B(g)i;

this solution is unique because any other solution B%(g) is equal to A°(®) with ® = A~(V - curl B’(g)y,), so

that

H(0)® =V-A%®); =V-B%g)y =V-g.

It now follows from

M(0)g = —curl B%(g)y, = —curl A°(®), = —V® + aVIAH(V - gh)

that M (0) € L(H*2(R2)2, H*~ 3 (R?)?) is given by
1
M(0)g = -5 (aD*+Dc(D?) D-g*,  c(u)=

Lemma 2.3 is also the key to solving the boundary-value problem (53)—(57).

11

Va? = pcot(y/a? — p),
- D? Vi — a? coth(y/p — a?),

if p < a?,

if u > a2



Theorem 2.4 There exists a neighbourhood V. of the origin in Z with the property that the boundary-value prob-
lem (53)—(57) has a unique solution A = A(n,®) in H3(Dy)? which depends analytically upon n € V and
® € H3(R?) (and linearly upon ®).

Proof. The analyticity of (1, A) — H?(A) at the origin as a mapping Z x H3(Dy)? — H'(Dy)? follows from
the explicit expression

1+wv

o % ~ 14w
H7(A) :_21+77(77gga2 A+0n,02,A) -

AnaA

I+v an2i M2 2 1
+ 2 Vn O, A + Vn|c0:A — 0°A
e T (H)mu oA
_OKL(_&U‘A2 a’U‘Al O)T_ 1+U(778A3 nw6UA3 na:avAQ_navfil)T
1+77 ) 9 ]-+77 Yy ) 9 y
by writing
1 n 1 n* +2n
7:1— s = —
1+7n 1+17 (1+4n)2 (14 n)?

and noting that
« the bilinear mappings (1, f) — n.f. (0, f) +~ nyf and (n,f) ~ And,f are bounded
Z x HY(Dy) — H'(Dy) and Z x H*(Dy) — H'(Dg) because
192 fll ooy S (I llneo + el | F Il (o) S (lnllzs 2y + lnlla) |1l o).
Iy Fll e (Do) S (UIniylitiee + Im2yllt.co) 1l (Do) S (Il pa ey + Im2lls) I F Nz (oo
and
189 8, fll 1 (o) S 1AM 111,00 100 f Il 111 (Dg) + 1V (A12)80 fl 2250y + 1802V (80 f) 22 (Do)
S limlls, )+ 12131100 fll oo (Do) + [|1AT2]| La(r2) |00 fllw.4(Dy)
S (Illzr ey + Im2ll) 1 || 23 (Do)

+ the trilinear mapping (1, p, f) — V7 - Vp f is bounded 22 x H'(Dy) — H'(Dj) because

N0V il (pg) S IVl +1V2111,00) IV 21100 IV P2 1,00) [ Fll 112 (o) S Il 2l L F 772 (o)
« the mapping f — (1 + v)f belongs to L(H"'(Dy), H'(Dy)),
 a function f : R — R which is analytic at the origin (in particular f(s) = s(1 + s)~! and

f(s) = (s® +2s)(1 + s)~!) induces a mapping W1 (R?) — W1>°(R?) and hence Z +— W1 (R?)
which is analytic at the origin,

« the bilinear mapping (p, f) — pf is bounded W1 (R2) x H'(Dy) — H'(Dy).
Similar arguments show that (1, A) — ¢°(A) and (, A) — h°(A) are analytic at the origin as mappings
Z x H3(Dy)® — H?(R2) and Z x H3(Dy)? — H? (R?)? respectively.
It follows that the formula
) ~AA—aculA— H"(A)
H(A,’I%(I)) = _ A 63_9 (A) _ 5
(curl A), + aVEA~H(V - Af) — h7(A) - VO
defines a mapping
H:Sx Zx H35(R)— H' (Dy)? x H3(R?) x H?(R?)?,
where S = {A € H3(Dy)? : AN 63’U:_1 = 0,0,A3],—_1 = 0}, which is analytic at the origin. Furthermore,
H(0,0,0) = (0,0, 0), and the calculation
—AA — a curl A

diH[0,0,0](A) = . A-es .
(curl A), +aVEATLH(V - A7)

12



and Proposition 2.3 show that
d1H[0,0,0] : § — H'(Dy)* x H? (R?) x H?(R?)?

is an isomorphism. The analytic implicit-function theorem (Buffoni & Toland [3, Theorem 4.5.3]) asserts the
existence of open neighbourhoods V; and V5 of the origin in respectively Z x H 5 (R) and S such that the equation

H(A,7,®) = (0,0,0)

and hence the boundary-value problem (53)—(57) has a unique solution Ao = Ao(n, ®) in V5 for each (n, @) € Vy;
furthermore A (n, @) depends analytically upon 1 and ®. Since A, depends linearly upon @ one can without loss
of generality take V; = V x H 5 (R), and clearly V5 = S (with ® = 0 the construction yields a unique solution in a
neighbourhood of the origin in S, which is evidently the zero solution). O

The corresponding result for the boundary-value problem (42)—(46), together with the analyticity of the operators
H and M, is now readily deduced.

Theorem 2.5

(i) The mappings n v+~ H(n) and n +— M(n) are analytic V. — L(Hg(RQ),I:I%(RZ)) and
V — L(H?(R2)2, H2 (R2)?) respectively.

(ii) The boundary-value problem (42)—(46) has a unique solution B =B (n,g) in H3(Dg)? which depends
analytically uponn € V and g € H3 (R%)2 (and linearly upon g).

Proof. The analyticity of H(-): V — L(H3 (R2), H?(R?)) follows from Theorem 2.4 and equation (41). Since
H(0) € L(H?3(R?), H? (R?)) is isomorphism we conclude that H (1)) € L(H 3 (R2), H 3 (R2)) is an isomorphism
for each 77 € V and that H(n)~' € L(H?(R?), H?(R?)) also depends analytically upon 7 € V..

The next step is to note that B(n, g) = A(n, ®) with ® = H(n)~!(V - g*) depends analytically upon 1 and g,
and solves (42)—(46) since by construction

Vgt =Hm®=V-A@n o) =V B2

The uniqueness of this solution follows by noting that any other solution B(n,g) is equal to A(n, ®) with
® = A~'V . (curl” B)|, so that

H(n)® =V -A(n,®)j =V -B(n,g)j =V-g,
thatis ® = H(n)~(V - g1). Finally, the analyticity of M follows from the calculation

M (n)g = —(curl” B(n,g)),
—(CU.I‘]J A(??, (b))H
= -_Vd+aViAL(V.gh)

with ® = H(n)~%(V - g*). O
We now choose M > 0 sufficiently small and note that H3(R?) is continously embedded in Z and
U={neH R :|n|z <M}
is an open neighbourhood of the origin in H3(R?).

Proposition 2.6 The mappings n — M (n) and n — T'(n) are analytic are analytic U — L(H?2 (R2)2, H?2 (R2)?)
and U — H % (R2)? respectively.

Proof. This result follows from Theorem 2.5(i), the formula T'(n) = M (n)S(n) and the fact that n — S(n) is an
analytic mapping U — H3(R?)2. ]

13



Corollary 2.7 The formula (27) defines an analytic function J : U — H*(R?).

Proof. We proceed by writing the formula as

T() = 5T~ 3 (V- S+ T(m) - Vn)? +

[Vn*(=V-S(n)* +T(n) - Vn)?
2(1+[Vn?)

+c-T(n)+aT(n)-S(n)+n— LAy

Vnl?n, Vnl?
+5( ol =)+ ( Nl )
L+ Vi) (1 + 1+ |VnP2)2)/, L+ Va2 (1 + 1 +[Vnl*)2)/,
from which the result follows because 1 — S(7), n — T'(n) and

AV [Vil?
L+ |Vn?’ (1+[Vnl2)2 (1 + (1+|Vn2)?)

7=

are analytic mappings U — H3(R2)2, U — H?(R?)? and U — HZ(R2) respectively and H ? (R?) is a Banach
algebra. a

2.2 Taylor expansions

The terms in the Taylor expansions

- > . 1 ., - ,
B(n) = };}Bk(n), B = ~d*B[0](n"), (63)
of B and
= 1
M(n) = kZ:OMm), My, = d"M[0)(n), (64)

of M : U — L(H3(R?)2, H2 (R2)2) can be determined recursively by substituting them into (42)—(46) and (47).
It has already been established that

- 1
Myg = —(curl B®), = LD gt, L=aD'+c¢(D*D, (65)

where B is the unique solution of (58)—(62). Observing that M, also defines an operator in
L(H*"2(R2)2, H* 2 (R2)2) (with BY € H*(Dy)?) for s > 2, we can also obtain an explicit expression for
Mi(n)g.

Lemma 2.8 The formula

M (n)g = Mo(n(Mog)*) = V(nV - g*) + an(Mog)*
1 1 1
=—5zLD- (nDQLD - gJ‘> +D(nD-g*) + anﬁLLD gt (66)

holds for each ) € H3(R?) and each g € H3(R?)2.

Proof. Substituting the expansions (63), (64) into (42)—(46) and (47) and equating constant terms shows that
B° € H3(Dy)? C H3(Dy)? solves the boundary-value problem (58)—(62), while equating terms which are linear
in 77 and making the Ansatz

B! = (v+1)39,B°+ C

leads to

M;(n)g = —(curl C‘)h — (curl(v + 1)778UBO)h - n(&,Bo)ﬂ‘ + VT)J‘ang —VnV - (Bﬁ)J‘ ,

v=0

14



where

curlcwrl C = acurl C in Dy,
divC =0 in Dy,
Che3=0 atv = —1,
C-e3=-nd,BY +Vn- B atv =0,
V-Ci =V (=n(8,B%):, — VnB3)* atv = 0.

Writing C =C' +grad o, where ¢ € H3(Dy) is the unique solution of the boundary-value problem

Ap =0 in Dy,
80:0 at'l/:717
@y = —1dyBY + V- B atv =0,

we find that C’ € H?(Dy) is the unique solution of the boundary-value problem

curlcurl C’ = acurl ¢’ in Dy,
divC' = 0 in Dy,
C'Ne3=0 atv = —1,
C'-e3=0 atv =0,
V- (Cy =V (—n(0,B°)n — VnBY)* atv =0
and
M, (n)§ = —(curl C"),, — (curl(v + 1)nd, B®), — (8, B°)i- + Vn-0,B) — Vv - (BY)* (67)

v=0

because curl grad ¢ = 0 and V - (grad ¢)i- = 0.
Comparing the boundary-value problem for C” with (58)—(62), we find that

(curlC")y, = My (n(@ﬁo)h + Vnt)
= My (n(curl B + V(Uég))
= —My(n(Mog)™)

because M V() = 0, and explicit calculations show that

=V (B ==YV (B)Y) +0V (V- (BY))

v= v= v=0
and
~(curl(o+1)nBYu—n(B)i + V0" B+ V (V-(BY)Y)| _ =n(AB{-Vdiv(B")"| =n(AB)Y|
The result follows by inserting these expressions into (67) and noting that

ABp|u=o = —a(curl B%), = a(Mog). 0

Remark 2.9 This method leads to the loss of two derivatives in the individual terms in the formula for My (n);
the overall validity of the formula arises from subtle cancellations between the terms (see Nicholls and Reitich [21,
§2.2] for a discussion of this phenomenon in the context of the classical Dirichlet—Neumann operator).

Explicit expressions for the first few terms in the Taylor expansion

_ L

AT 0,

T(n) =Y Ti(n), T(n)
k=0

15



of T can be computed from the formula T'(n) = M (1)S(n) using (65), (66) and the corresponding expansion

n=3 S
k=1

of S(n), where

In particular, we find that

T, =0, Ty (n) = MyS1(n), Ty (n) = My Sa(n) + My (n)S1(n),

such that
c-D
Ti(n) = L?%
c- D+ c-D D c-D
Ty(n) = %QLTWZ - 0477LL D2 n+ Lﬁ : (77L D2 77) — D(n(c- D)n).

Turning to the Taylor expansion

n=> &Km), Tk= ydkj[o](ﬁ(k))a

we conclude that
Ji(n) =Ti(n) - c+n— BAn

:( ;Q(C L)(c- D)+1+,BD2)

Ja(n) = 3T ()* = 5(c- Vn)* + Ta(n) - ¢+ anTi(n) - ¢

= LCDZDU +2a§(c L)(c- D )n? —&-ﬁ(c L)D - <17chQDn)
—3(c-Vn)? +c-V(n(c-Vn)) (68)
and
1 (aS(n)-Vn+T(n)-Vn)?* c-Vn(aS(n)-Vn+T(n) - Vn)
Folt) = 30+ Toat)Tent) ~ ST oS S
C- 1 2 1 2
o Taalh) -+ aTalo) - S(a) + Ty (1) - S22(0)
V)20, [Vnl*ny
ﬁ((1+|V77|) 2(1+ (1 + |Vnl? )%)> +ﬁ<(1+lvnlz) (1+(1+|V77I2)5))
where

J>3(n ij S>2(n Zsk ), Tsa(n) =Y _ Ti(n), Te3(n ZTk
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3 The reduction procedure

In this section we reduce the equation

J(m) =0

with
c=(1-¢¥cy

into a locally equivalent equation for 7);. Clearly n € U solves this equation if and only if

where 11 = x(D)n, n2 = (1 — x(D))n, which equations are given explicitly by
9(D)m + 2e*—(co - D)(co - L)m

— et —5(co - D)(co - L)yn + x(D)(Ja(m +12) + T=3(m +12)) =0, (69)

—e'—5(co - D)(co - L)nz + (1 = x(D)) (Fa(m + m2) + T=3(m +12))) = 0, (70)

where
g(k) = _#(O‘(CO k) (co - k) + (k) (co - k)?) + 1+ BlK[%;

note that (69), (70) hold in respectively x(D)H*(R?) and (1 — x(D))H*(R?). We proceed by solving (70) to
determine 7)o as a function of 7; and inserting 72 = 12(n) into (69) to derive a reduced equation for ;. To this end
we write (70) in the form

n2 = (1—x(D))g(D) A(n1,m2), (71)

where

A, m2) = —252§(00 D)(eo-L)ne +54%(Co “D)(co- L)z — (1 — x(D)) (T2(m +12) + T>3(m +12)))-
(72)

Proposition 3.1 The mapping (1 — x(D)) g(D)~! defines a bounded linear operator H'(R?) — H3(R?).

Proof. This result follows from the facts that (0, 0) is a strict global minimum of (&, ’Z—f) with §(0,0) = 0 and
that g(k) > |k|? as |k| — oc. m]

The next step is to estimate the nonlinear terms on the right-hand side of equation (71). The requisite estimates
for J2(n) are obtained by examining the explicit formula

T2(n) = m(n,n) — 2e>m(n,n) + *m(n,n),

where

co-D cy-D 1
m(v,w) = % (L UD2 v> . (L ODQ w) + %aﬁ(co -L)(co - DF)vw

1 CO'D 1 CO'D
+2D2(CO~L)D~(1)L D2 w)+2D2(cooL)D~<wL 2 v)

+ L((eo - D)v)((eo - D)w) — Leg - D(v(eo - D)w) — Leg- D(w(eo- D)) (73)

(see equation (68)).

Lemma 3.2 The estimate |m(v,w)||1 < |[v| z||wl||s holds for each v, w € H3(R?).
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Proof. We estimate each of the terms in the formula for m, observing that

1
‘|k|2(ak¢+c(kz| Vk)co k:‘ ‘|k|2(ac0 kL +c(|kP)co - k)eo - k|, ‘|k|2(aco kL 4+ (|k|2)cokz)k:‘
and that
[ £(D)o1[n,c0 < [[f(R)(K)" D1]lL1(R) < |01]lL1(R)

for all bounded multipliers f because v; has compact support. We find that

D D
(5570 (557+)

1

H;?(co -L)(¢co - DY vw

1

1 C()'D
HD2(c0-L)D-(vL D2 w)

1

C()'D
-(wL D2

')

1

[[(co - D)v)((co - D)w)l|x

[eo - D(v(eo - D)w)lx
lleo - D(w(eo -

D)v)lh

Corollary 3.3 The estimates

and

[dZa[n) (W)l < lnllsflullz,

hold for all n, u € H3(R?).

C()'D CO'D CO'D CO'D
slepn] =] o), [
< (o1l 22 rey + llv2lls)llwlls,

S [lvwl2
S ([[vill2,00 + [[v2l2)[[wll2
< ([[91lz1 ®2) + llvz2ll3)|wlls,

Co - D

S ||vL

D2 9

Cp - D

< . &~
S (oo + o) [ 252 ]|
S (101l gey + [lo2l[3) lwlls,

Co - D
< HwL Tz v

2
co-D co- D
< w2 (HL 0 = + HLODQUQ )
2,00 2

S (101l 22 w2y + [lo2lls)l[wl]s,
< ([[(eo - D) D)wl1 + [[(co - D)vl|2[/(co - D)w]|2
S (101l ey + [lo2([3) lwlls,
< llv(eo - D)w)ll2
< (HU1||2 oo 1 [lv2]l2) (€0 - D)wl|2
S (01l @ey + [lv2([3) lwlls,
S llw(eo - D)v|2
S llwll2(][(eo - D) (co - D)vall2)

S (101l 21 r2y + [[vz2l3)[|w]ls-

1Z2(m)llx < lInllzlInlls

ldZ ()l < lInllzlulls
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Lemma 3.4 The estimates
17>l < InlZllnls,
4T3[l < lInllZlulls + Inllzlnllsllullz
hold for eachn € U and u € H?(R?).
Proof. Writing

T>2(n) = MoS>2(n) + (Mi(n )+M>2(77))Sl(77)
T>3(n) = MoS>3(n) + M>2(n)S1(n) + (My(n) + M>2(n)) Sa2(n),

we find by Theorem 2.5(i) and the fact that My € L(H 3 (R2)2, H2 (R2)2) that

S
T2l 5 5222

_HlnlizlS1l s

2

S (I llz,e0 + [[m2]l3)

’ S22(1)
0

+lnllzl1S:1()lls
3
S lmllzlinlls,

IT>s3(m)lls < HUSZZ(U)H

52(77)
t Il Z 1S (s + lInll= =
3

S nliZlinlls
and hence that

1T () - To2(m)l1 < [1MoS1 (1) l1,00 | To2(m)[l1 + [ Mo S1(n2)l 5 [ T>2(n) 5
S il @) 1 T2z + 2l s 1 T2 ()] 2
< InliZ s,

IT>2(n) - To2 ()1 S IT>2(0)]13

< InliZlnl3,

[T>2(n) - Sy S (T2 1S (M)]l1,00
S InllzlinllsCimlisee + lIm2ll1,00)
S InllzlinllsCinllsee + llm2lls)
< Inllzlnlls,

1T1(n) - S>2(m)llx S [T (m)[11[1S>2(n)[|1
S lnlls(lmlloe + In2ll1,00)®
S Inllslnliz-

Furthermore

(aS(n) - Vi +T(n) - Vn)?
2(1+|Vnl?)

V|
SUSOl+ ITo)? |

1
S IS+ 1T V1T o
S I3Vl + [1Vn]2)?
< Inllzlinl%

1,00

c-Vn(aS(n)-Vn+T(n)-Vn)
1+ |Vn)?

|Vn|?

S (IS + 1T @)l) T+ VP,

1

< lnllslinl%
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because S, T are analytic U — H'(R?)2. Finally, we note that

( V1. ) +( [Vap[?ny )
L+ V)21 + @+ 1[Vn*)z)/, \NA+[Vn)z(1+(1+[Vn[*)z)/,
= f1(77x777y)77m + f2(77x777y)77xy + f3(779ca ny)nyyv

where f1, fo, f3 are analytic functions with zeros of order two at the origin. Estimating

11 (s ) llo S NV 112z llo S ImllZ lInlls,
IV (f1(Nzs 1) N2z o < 1101 f1 (s My )Nae Ve + 02 f1 Ny 1y )0 Vi llo + 1 f1 (02, 1y) Vzz) o
S AIVIlleo (1VNzllLa@ey + 1Vl e r2)) 1222 | L4 (r2)
+ 1Vlloo (VN2 llo + IV o) 112210 + (V71126 [ V22 ]l0
< nliZ linlls,

in which the last fine follows by the continuous embedding H'(R?) C L*(R?), and fa (1, 7y)Nays £3(Mas M) Ny
similarly, we conclude that

< InllZlnlls.
1

( V1. ) +( [Vn[*n, )
L+ [VR)EA+ (1 +|VoP)2) /), N+ [VnR)E(1+ (14 |Vn?)2) ),
The estimates for the derivatives are obtained in a similar fashion. O

We proceed by solving (71) for 75 as a function of 7; using the following following fixed-point theorem, which
is proved by a straightforward application of the contraction mapping principle.

Theorem 3.5 Let Xy, X5 be Banach spaces, X1, X2 be closed, convex sets in, respectively, X1, X5 containing the
originand G: X1 X Xo — X be a smooth mapping. Suppose there exists a continuous mapping r: X1 — [0, 00)
such that

1G(21,0)]| < 37, [[d2Glarr, 2]l < g

for each x5 € B,.(0) C X5 and each x1 € X;.
Under these hypotheses there exists for each 1 € X1 a unique solution xo = 3 (1) of the fixed-point equation
o = G(x1, x2) satisfying x2(x1) € B-(0). Moreover xo(x1) is a smooth function of x1 € X1 with

[dza[z1]]| < 2[|d1G[z1, z2(21)]||-

We apply Theorem 3.5 to equation (71) with
X =x(D)H*(R?), X =(1-x(D))H*(R?),
equipping X with the scaled norm || - || defined in (35) and X with the usual norm for H3(IR?), and taking
Xi={m e Xi:[Imll < R}, Xo={m € Xa: [n2lls < Ra};

the function G is given by the right-hand side of (71). Recall that 7 is an analytic function U — H!(R?) (see
equation (33)). Using Proposition 1.8 we can guarantee that ||}, || ;1 (z2y < $M for all y; € X for an arbitrarily
large value of Ry ; the value of Ry is then constrained by the requirement that ||72||3 < 2 M for all iy € X,.

We proceed by estimating each term appearing in the formula (72) for A using Corollary 3.3, Lemma 3.4,
together with Proposition 1.8 and the estimates

Inllz < ellmll+ lln2lls, lnlls < Ml + linzlls

forn € H3(R?).
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Lemma 3.6 The estimates

3

(D) [AGm,m2)llh < ellmll® + ellmlllinzlls + limlllinzl3 + In2l3 + [l

2
3

(i) |dr A, me]ll o, mr @)y S Ellmll + ellnzlls + (192
(iii) [|d2 A0y, n2)ll Ly, e @2y) S ellmll + lm llimells + [In2lls + €2
hold for each my € X1 and ny € Xo.

Theorem 3.7 Equation (71) has a unique solution no € X9 which depends smoothly upon n, € X1 and satisfies
the estimates

Inz(no)lls < ellmll?, Ndnzlmllin i, a) S llmll-

Proof. Choosing R and ¢ sufficiently small, one finds » > 0 such that ||G(n1,0)|lz < %r and

1d2G 1, 3]l Lz, ) < % for ;3 € X1, n2 € Xo, and Theorem 3.5 asserts that equation (71) has a unique

solution 75 € X, which depends smoothly upon n; € X;. More precise estimates are obtained by choosing C' > 0
so that ||G(n1,0)||3 < Ce||m]|? for m € X and writing r(n1) = 2Ce||n1 |2, so that

Id1Gne melllLies,a) S ellmll,  [d2G e, melll L,y S 1

for m1 € X1, m2 € By(y,)(0) € X5, and the stated estimates for 72 (1) follow from Theorem 3.5. O

Inserting 72 = 72(n1) into (69) yields the reduced equation

oD +26> 5 (0 D)eo- Ly =<5 (eo- D) (eo- L)in +x(D) (Tl +1a0)) + T +12(0m))) = 0
(74)

for 11, which holds in (D) H!(R?). This equation is invariant under the reflection 7 (z,y) + n1(—x, —y); a fa-
miliar argument shows that it is inherited from the corresponding invariance ny(z,y) — m(—z,—vy),
na(z,y) = na(—x, —y), of (69), (70) when applying Theorem 3.5.

4 Derivation of the reduced equation

In this section we compute the leading-order terms in the reduced equation (74). The first step is to write

Jo(m +12(m)) = m(ni,m) = 2¢m(nu,m) + e*m(ni, m)
+m(n1,m2(m)) = 2e°m(n1, 12(m)) + €'m(, n2(m))
+m(n2(m),n2(m)) — 2*m(na(m), m2(m)) + e*m(n2(m), n2(m))
and examine each of the terms on the right-hand side of this expression individually. The first term is handled
by approximating the Fourier-multiplier operators by constants according to Lemma 4.1 below. The order-of-

magnitude estimates in this section are computed with respect to the L?(R?)-norm, which is equivalent to the
H*(R?)-norm on the space y(D)H*(R?) for any s > 0.

Lemma 4.1 The estimates

(i) maz = O(ellmll),

(ii) = = O(el[ml),

co- D _ [acotacy
(iii) Lﬁm = ( —aco.1 >T]1 + O(elm I,
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1

(iv) ﬁ(

co-L)(co- D)m = acp1(—co2 + co1 cota) m + O(el|m
=1

),

1
() T(eo - L)(eo- DY )mpr = acoa(co — o cot ayupy + OE ol + Br(Dympu,

. 1
(vi) S53(co- D)D - (mprw) = al=co + co1 cot @) prws + O milllosll) + Ba(Dmpa,

hold for all n1, p1 € X1, where w is a vector-valued constant,

B (k)| < |32 |(1+k2) !
and cy;1 = ¢ cos %a, €o,2 = —Cp sin %0{.
Proof. Parts (i)—(iv) follow from the calculations

1 = e I3

< &2[lml?

112115 = [l2 115
= [k 213

< 82| kain |I3
S Ellmll?
and
co-D acotacyq H2
L =, ,
H Dz h ( —acoq )771 0
2
H < k2 ((1% + C(|k|2)) (6071 + 6072%) — OzCOtOzCOJ) m
1+ 2 0
O(|(k1, 1)
1 2
+ H <k72 (—Q+C(|k|2)%) (001 +C02k )+C¥CO 1) ]
1 + k2 0

= O(I(k1, 21)
< W g + N2l

< e llmll?,

2
H ﬁ(co - L)(eg - D)m — acp,1(—co,2 + co,1 cOt a)mHO

H ( 2 ( (co1 72 — co2) + c(|k|*)(con + Co,z%)) (con + co272) — aco(—co2 + co,1 cot a)) i

1+k2

= O(I(k1, 1)
< W g + N2l
< e flmllP.
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Turning to parts (v) and (vi), note that

1 2
HE(CO . L)(CO . DL)’I]1p1 — 046072(6072 — Cp,1 cot 04)7’]1/)1”0
2

)

1
= H(kQ (Oé(CO’l% - 00’2)+C(‘k|2)(60’1 +CO’2%))<CO’1% - 60,2) —OZCO}Q(CO’Q_COJ cot Oé)) ]:[771[)1}
1 3 0

k k3\—1

= O(|(k1, g+ 7))
1 2
HE(CO : L)D : (771P1w) - Oé(—Co,z + ¢o,1 cot 04)771/)1101 Ho

I
1+

= (04(00,1% — co.2) + c([k|*)(co + CO@%)) — a(—co,2 + co,1 cot a)) Flmpiwr

ki

2

0

= O(I(k1, )1 (14 73)7)
2

1

’ H (1% <a(co’ll’2f —co2) +c(k*)(co1 + 00’2%)) Z?) (171 p1]w
+ 3

1

0

= 0|k, )| 1+ 13)7)

and

< k1 Flmpalllo = lmp1)ello < Mk llollorlloe + InillsollE1itllo < e lmullllonl]. ©
0

=7 lmpi]
1+

H k1]

Corollary 4.2 The estimate

m(i, p1) = dampr + BD)nip1 + O mlllloall),

where

k2\—
1Bk)| < 1211+ 32) 7"
and d,, = o cosec o + %a cot o, holds for all ny, p1 € X1.

Proof. This result is obtained by estimating each of the terms in the formula (68) for /> using Lemma 4.1. O

The remaining terms in the reduced equation are treated in the next lemma, which follows directly from Lem-
matat 3.2, 3.4, Theorem 3.7 and Corollary 4.2.

Lemma 4.3 The estimates

Emn,m) = OE(Imll*),  mn,n2(m)) = OEIml),  mnzlm),n2(m)) = OE*|lmI*).

and
T=3(m +n2(m)) = OE*|Iml*)

hold for all 71 € X,. Here the symbol O(e”||m||") (with v > 0, r > 1) denotes a smooth function
Re : Xy — HY(R?) which satisfies the estimates

IR (n)lly S llmll”s (AR )l L, o reyy S &7 lllmall™ "
foreachn € X;.

Altogether we conclude that (74) can be written as

1 1
9(D)m + 252 5 (co - D)(eo - Lym — & 5 (eo - D)o - Ly + (D) (danf + BD)n: + O(* ) =0,
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and applying Lemma 4.1(iv) one can further simplify it to

g(D)m + 2%, + x(D) (danf +B(D)i; + O Imall) + Q(€2|||771\H2)) =
The reduction is completed by introducing the KP scaling

m(z,y) = e((ex, e%y),

noting that I : 7; — ( is an isomorphism X; — Y7 and x(D)L?(R?) — Y§ and choosing R > 1 large enough
so that } € Bg(0) (and € > 0 small enough so that Br(0) C Y is contained in /[X]). Here we have replaced
(x(D)H'(R?), ] - [|1) and (xc(D)L*(R?), || - [lo) by the identical spaces (x(D)L*(R?), | - [lo) and (Y5, || - [|v;)
in order to work exclusively with the scales {Y5, || - ||y= }s>0 and {YE, || - ||v, }s>o0 of function spaces. We find that
¢ € Br(0) C YT satisfies the equation

£72g.(D)C + 2 + dux (D)C? + xe (D) B(D)¢? + 052 [|¢|lvy) = 0, (75)
which now holds in Y5, where
9=(k) = g(ek1,€°k2),  Be(k1, ko) = Bleka, %k)

and the symbol O7, (¢°[|¢||3, ) denotes a smooth function R : Br(0) € Y — Y7 which satisfies the estimates

N

ROy,

v SEICIy IR e v S €¥llullyy !

for each ¢ € Bg(0) C Y7 (withr > 1, s,n > 0). Note that [ [|* = [|C||3, and that the change of variables from

(z,y) to (ex, e2y) introduces a further factor of £ in the remainder term. The invariance of the reduced equation
under 7y (z,y) — m (—x, —y) is inherited by (75), which is invariant under the reflection {(x, y) — ((—z, —y).

S Solution of the reduced equation

In this section we find solitary-wave solutions of the reduced equation (75), noting that in the formal limit ¢ — 0 it
reduces to the stationary KP-I equation

—(B = Bo)Caz + 2¢ + sec —a—g +do? =0,

which has explicit solitary-wave solutions ¢j;. For this purpose we use a perturbation argument, rewriting (75) as a
fixed-point equation and applying the following version of the implicit-function theorem.

Theorem 5.1 Let W be a Banach space, Wy and ANy be open neighbourhoods of respectively w* in W and the
originin R, and H: Wy x Ag = W be a function which is differentiable with respect to w € Wy for each A € Ay.
Furthermore, suppose that H(w*,0) = 0, dyH[w*,0]: W — W is an isomorphism,

wli)HJ)* ||d17-l[w, 0] — le[w*, O]HL(W,W) =0

and

lim ||7'[(U) )\) H(w, O)”W = 0, lim ||d17-l[w, )\} — le[w, OH|L(W,W) =0
A—0 A—0

uniformly over w € Wy,
There exist open neighbourhoods W C Wy of w* in W and A C Ay of the origin in R, and a uniquely
determined mapping h: N — W with the properties that

(i) h is continuous at the origin with h(0) = w*,
(ii) H(h(X),\) =0 forall A € A,
(iii) w = h(\) whenever (w, \) € W x A satisfies H(w, ) = 0.
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Theorem 5.2 For each sufficiently small value of € > 0 equation (75) has a solution (j in Y7, , with
C(z,y) = ((—z —y) forall (z,y) € R? and ||¢f — f|lvi,y — Oase — 0.

The first step in the proof of Theorem 5.2 is to write (75) as the fixed-point equation

-1 1
C+2% (9:(D) +25%) 7" (daxe (D)C* + xe(D) Bo(D)¢ + O3 ClIv,)) = 0 76)
and use the following result to ‘replace’ the nonlocal operator with the KP operator
2 21 D3
Lo =2— (B~ )07+ sec’ s D2
Proposition 5.3 Suppose that 0 € [0, 1]. The inequality
g2 1 < gl=?
2¢2 +§(sk1,s’,§—j) 24 (B — Bo)k? + sec?La % ~ 1+ | (K, %Nz)%(ue)
holds uniformly over |k;|, % < d/e.
Proof. Clearly
g2 1
2e% + g(‘gklvg%) 24 (B — Bo)k? + SeC2%04 %
2
}g(skhs%) — (B — Bo)e?k? — secQ%Q 52:—%|

2
(252 + f](akl,s%)) (2 + (B — Bo)k? + sec?ia :—%)

furthermore 3

_ s s

o (52) 0 80 -tk 5[] (2

1 1 S1
and )
(2 2)2](02)
S1 S1
for |s1], ::’} < ¢ and sufficiently small § (see Remark 5.1).
It follows that
g2 1 el(ky, 12)°

262 + G(ek, e 2) 2+(5—5O)k%+se02%a% T (R, ) 2)2

< 9
T (R 2))2

uniformly over |k1], % < §/e, and the stated result follows from this inequality and the observation that
e < O(1+12)"2 when [t| < §/e. m

Lemma 5.4 Suppose that 0 € [0,1]. The estimates
-1 1 1
e (9:(D) +2¢)  O3(e2 [ICllyvi) = O 1o (2 [IClIvis),
-1 10
e (9:(D) +2¢)  B=(D)¢* = Of 15(e7 72 IC]1740)

and
-1 _ —
(2 (9:(D) +2¢%) 7 = L31) Xe(D)E? = Of (e I )
hold for all ¢ € Y7 ,.
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Proof. It follows from Proposition 5.3 (with § = 1) that

2 2\ —1
€ k
S 14K+ 2) ,
262 + G(cky,e42) < R

from which the first estimate is an immediate consequence (note that ||¢||1 < ||¢]|1+6). Furthermore

o k3 L e? 2
14 k2452 Bleky, e2k
< L k2) 2e2 + G(eky, ek2) (€1, €72)

1 6
2\~2T3 glk2
5<1+k%+k2> el

K 1+62%
ks 375 ki \212

_ it i 1 el 2|

N 1+k2+ 514028 142253

TR TR =R
Setms,

such that
—1 1_6 1_6 1_9
e (D) +2¢%) 7" BuD)Ce| 5 BRIl < B €l o) S 2 EClvica i

146

forall ¢, § € Y4 (see Proposition 1.7(i)).
The final estimate follows from the observation that

(e (ge(D) +26%) " = 12 ) xelD)ce]| S e 0lCEllo S & ONClvaca € v

Yito

for all ¢, § € Y, 4, in which the first inequality follows from Proposition 5.3. O

Using the above lemma, one can write equation (76) as

C + FE(C) = 07
in which L
FE(C) = daLzZlXE(D)CQ + Qi-{-@(gg_i H<H1+9)
It is convenient to replace this equation with R
(+Fe(¢) =0,

where F.(¢) = F.(x-(D)¢) and study it in the fixed space Y; ¢ for 6 € (3,1) (the solution sets of the two

equations evidently coincide); we choose 6§ > % so that Y74 is embedded in C},(R?) and § < 1 so that the

remainder term in F () vanishes at ¢ = 0.
We establish Theorem 5.2 by applying Theorem 5.1 with

W= Y10+9 ={( € Y1y9: ((2,y) = ((—x,—y) forall (z,y) € R2}7
Wo = Br(0) C Y149, Ag = (—&0, €0) for a sufficiently small value of &¢, and
H(¢ ) = ¢+ F(Q)

(here ¢ is replaced by |¢| so that H(C, ¢) is defined for ¢ in a full neighbourhood of the origin in R).
We begin by verifying that the functions ¢; belong to Y’ 4.

Proposition 5.5 Each lump solution (; belongs to Ys.

Proof. First note that ((})? belongs to L?(R?) = Y} because | (z,y)| < (1 + 2% +y?) ! forall (z,y) € R? (see
Lemma 1.1(i)). Since (}; satisfies

Gt Lo (G)* =0
and L_ ! is a regularising operator of order 2 for the scale {Y., || -

v, }r>0, one finds that (} € Y5. O
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Observe that (-, £) is a continuously differentiable function Br(0) C Y.+? — Y.!*? for each fixed ¢ > 0, so

that
hm* ||d1H[<, O] — le[C;:, 0} HL(Y1+9,Y1+9) = 0
=G

The facts that

il_rf%) ||H(C75> - H(C, 0)||Y1+0 =0, il_{% ||d1H[C75] - le[C7O]|‘L(Y1+e,Y1+9) =0

uniformly over ¢ € Br(0) C Y1 *? are obtained from the equation

H(C, ) = H(C0) = La" (xe(D) (xe(D)O)® = ¢2) + O 45 (2 #Cl1140)

using Corollary 5.8 below, which is a consequence of the next two lemmas.
Lemma 5.6 Fix 0 > % The estimate

1L x=D) ((x=(D) + D)) (xe(D) = D)) Iviso S ellClvise 1€llvas

holds for all (,& € Yi4¢.

Proof. Recall that L' is a regularising operator of order 2 for the scale {Y,., || - ||y, },>0 and that x.(D) is a

bounded projection on all subspaces of L?(R?). It follows that

125 xe (D) (((xe (D) + 1E) (xe (D) = 1)) v
< [Ix-D)((x=(D) + DO ((x=(D) = 1)) llo
< (D) + DO ((x(D) = 1)E)llo
< 1O (D) + IClloo | (xe (D) = 1€l
S 10ce(D) + D) Cllva ol (xe (D) = DEllo
< 2/[Cllviso [ (xe (D) = D)E o0,

where we have used the embedding Y719 < Cp,(IR?). To estimate ||(x-(D) — I)(||o, note that

1) k 1)
R?\ C: C {(kl,b): ] > }u{(kl,kz): kal }
€ k1 €
:Cl :02

so that

I(xe(D) = 12 = / o I o

g/ HfH2dk+/ 16112 dk

ct c2

€2\/ 2 k2 R
R+ S /—2||<H2dk
52 32 Joo K2

< ICl;

IN

Lemma 5.7 Fix 0 € (0, 1). The estimate

_ _ 10
IL3 (x=(D) = D(¢E)llviyo S P NClwallElvs < €272 ¢y llEllva o
holds for all (,€ € Y1 4¢.
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Proof. For v € {k1, %} we find that
1+6 o\ —2 ) 1-6
( + k7 + k2) (1 + ki + k;2) e 2 <1,
k ki L+ kf+ 33

IL3  (x=(D) = D)3,

k 1+0 kQ -2

/C ) (1+l<:1 kQ) (1+k:2 kQ) FICE) i
ruc

2_99 ]{ 146 k2 -2 -

) /C <1+k2 k2> (1+k2 kQ) |k 2720 | F(¢E) P dk
o\ 2-20 - 2 146 - K2 -2 Ky 2-20
+(5) /cz <1+k k2) <1+k k2> P
ey 2—20

<(3) licell
e\ 2-20

S(5) el ey

e\ 2-20
< (= 2 2
S(5) ICI el

where we have used Parseval’s theorem, the Cauchy-Schwarz inequality and the embedding
Yy < L4(R?). 0

so that

A

A
/N
SR

|FI¢E]? dk

Corollary 5.8 Fix 0 € (3,1). The estimate

holds for all ¢, £ € Y149.

Lot (@) (e 0e)8) = &) | <, el

Proof. This result is obtained by writing

L (x-(D) (D)) (x=(D)9)) - ¢€)

)
= 3L "X (D) ((x(D) + 1)) ((x=(D) — 1)¢))
+5La X=(D) ((x=(D) + DE)((x=(D) = 1)) + L (x=(D) — 1)(¢¢),

and applying Lemma 5.6 to the first two terms on the right-hand side and Lemma 5.7 to the third. O

It thus remains to show that
diH[GF, 0] = T +2do L3 (GF)

is an isomorphism; this fact follows from the following result.
Lemma 5.9 The operator L' ((f) : Yite — Y149 is compact.

Proof. Let {(;} be a sequence which is bounded in Y;. We can find a subsequence of {¢;} (still denoted by {(;})
which converges weakly in L?(IR?) (because {(;} is bounded in L?(IR?)) and strongly in L?(|x| < n) for each
n € N (by Proposition 1.7(ii) and a ‘diagonal’ argument). Denote the limit by (... Since

16k = GiCooll2(1x1<n) < 1Sk lIoolICs = Cooll L2 (x| <ny =+ O

as 7 — oo for each n € N and

SupHCkC]||L2(\x|>n) < sup [¢(x)|sup|[¢jllo — O
J

[x|>n
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as n — oo we conclude that {(;(;} converges to (} (s in L?(R?) as j — oo. It follows that ¢ — (¢ is compact
Y7 — L?(R) and hence Y719 — L%(R); the result follows from this fact and the observation that L_;! is continuous
L2(R?) = Y. O

Lemma 5.10 The operator I + 2d, L} (¢f-) is an isomorphism Y119 — Yi4e.

Proof. The previous result shows that I + 2daL;1(C,: ) : Y149 — Y149 is Fredholm with index 0; it therefore
remains to show that it is injective.
Suppose that { € Y74 satisfies

¢ +2da L3 (GiC) = 0. a7

It follows that

s —2d,k3

b —2d, k1 ks
T2k 4 (B — Bo)k? + sec?la k2

PR ke = 5 Byt + o a1

F¢k]

and hence ¢ € H""!(R?) whenever (;¢ € H"(R?). Since ¢ € L?(R?) and ¢ € H™(R?) implies (;¢ € H™(R?)
we find by bootstrapping that ( € H°°(IR?).
Since ( is smooth and satisfies (77) it satisfies the linear equation

((B = Bo)Cax + 2 +2da(CiQ)) . —sec’ba (.. = 0,

and the only smooth solution to this equation with ((x,y) = ((—=, —y) for all (x,y) € R? is the trivial solution
(see Lemma 1.1(iii)). O

To establish Theorem 1.2 it remains to confirm that the formula

n=mn+mnm), mzy) =c>((ez, )

leads to the estimate

n(x,y) = 52@(595, e%y) + 0(52)
uniformly over (x,y) € R2. This fact follows from the calculations

16k = Gilloo S NGk — Cillvaye = 0(1),
such that
m(z,y) = *Cilex, e%y) + (G — ¢ (em, €y)
= %(i(ex,€%y) + o(1)

uniformly in (z,y), and
In2(n1)lloe < lln2(m)lls < ellmll* < €°
by Theorem 3.7 and |71 || = ¢l[¢][y; with ¢ € Br(0) C Y7 ,.

Appendix A Dispersion relation

Recall the dispersion relation
g9(k) =0, (78)

where
g(k) = *#(a(co ) (eo k) + (k) (e k)?) + 1+ Bl

is an analytic function g of k; and % with §(0,0) = 0 if

1
Cp COS 5
— 2 2 _ 2 1
co—< 1 ), ¢y = 5, tan sa.

—cp sin 5
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Suppose that k # 0, so that (78) is equivalent to
c(lk*) = r(|kl*,0),

where

14 Bu — actsinfcos
r(n, 0) = .

2 cos20

and 0 is the angle between ¢y and k (note that g(k) > 0 if cosf = 0). The function x(y, -) takes every value in
[Fmin (1), 00), where

H,()flJrﬂ“_ C%QQ
min (4 C% 4(1 +ﬂﬂ)’
and the minimum is attained at
0 — _tan-l_ %
2(1+Bp)’

It follows that g(k) # 0 for all k with given magnitude |k/| if and only if c(|k|?) < fmin(|k|?).
The functions ¢ and Ky, are both strictly increasing and concave on [0,00) with
c(0) = Kmin(0). Obviously c(p) < Kmin(t) for g € (0,00) if ¢’ (u) < k!, (1) for p € [0, 00), and since

min

1 t
c(pu) <c'(0) = 3 <—CO ey cosec2a)
a

(because c is concave) and

1 1
Fnin (1) = 508 (MW + Cot2§a> tan 3o > jafcot 3o

this condition is met if

1 cot o
3 <— 5 +cosecQa) < %aﬁ cot %a,

that is if
*._ 1 (_1 2 1
B>p" =z (_E cot o + cosec a) tan 5a.

Remark 5.1 The calculation
o 1 2 ,
g(k1, %) = (ﬁ + ﬁ(cosa — o cosec a)) k? 4 secQ%a ]Z—% + O(|(kq, %)\3)
as (k1, Z—f) — (0, 0) shows that (0,0) is a strict local minimum of § if

1
B> Py = ﬁ(_ cos o + a cosec ).

Note that

1 . .
B* — Bo = e cosec® asin® 2a(2a — sin2a)) > 0

with equality if and only if o = 0 (the common value is % ).
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