THE WATER-WAVE PROBLEM

y =h+n(x,zt)

Y

y=0
Kinematic boundary condition:

Nt = @y — NxPx — NzPz
Dynamical boundary condition:

/l
Pt (@5 + oyt @7) +an

T [ ]=O
VA1+n2+nz | [ WJA+nZ+nZ |

Difficulties:

® A free-boundary value problem
#® Nonlinear boundary conditions

Solitary waves:

n(x z,t) = n(x—ct, z), @(x,y.z,t) = @(x—ct, y,z)
n(x —ct,z) = O, |x —ct]| = @
Parameter:
a=gh/c®, P=o/h?



DIMENSION BREAKING

Periodically modulated solitary waves bifurcate from
line solitary waves

# Strong surface tension (p > 1/3)
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#® Weak surface tension (p < 1/3)
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MODELLING

Strong surface tension (B > 1/3):

® Dispersion relation:
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® Write a =1+ ¢°
® The Ansatz

n(x, z) = 6°C(ex, 6°z) + O(e™)
leads to the Kadomtsev-Petviashvili equation

5xx(€xx—5+ggz)—gzz=o

#® The KP equation admits line (KdV) and
periodically modulated solitary-wave solutions



MODELLING

Weak surface tension (p < 1/3):

® Dispersion relation:

® Write a = ap + £°
® The Ansatz
n(x z) = & (C(ex, £2)e"™ + L (ex, £2)e ) + O(¢°)
leads to the Davey-Stewartson system
¢~ Cx— Gz~ ICI°C — Gpx = O,
~We— Wz + (|0 = O

® The DS system has explicit line (NLS) and
periodically modulated solitary-wave solutions




SPATIAL DYNAMICS

#® Formulate the water-wave problem as an
evolutionary equation

uz = Lu + N(u), ueXx

e z IS the ‘time-like’ variable
e X is a phase space of functions which vanish
as x — +ow
#® Equilibrium solutions are line solitary waves

® Periodic solutions in the form of periodic orbits
surrounding a nearby equilibrium are periodically
modulated perturbations of the line solitary wave

X

® Search for periodic orbits surrounding the
equilibrium corresponding to the the KdV
or NLS line solitary wave



LYAPUNOV CENTRE THEOREM

® Classical form for Hamiltonian systems

L
1" opy YT g
Linearise around an equilibrium u*

j=1,...,n

® iw Nonresonance condition:

e—iw inw, n# x4 is not an eigenvalue

There exists a family {u,} of 21 /w,-periodic
solutions with

Us = U*, ws— w ass—0

® Devaney extension: (infinite-dimensional)
reversible systems

0=Lu+Nu), S°=I SL=-LS, SN=-NS
® |ooss extension:

® Nonresonance condition violated:

® O € Tues(L)

Additional condition:
Lu = N(u™)
is solvable for each ut



VARIATIONAL PRINCIPLE

® Luke’s variational principle:

® po 1+n ~ 1 5 5 5 y
o . Pxt 5P+ @y +@z) | dy

1
+ §an2 +B(3/1 +n2 +n2 — ’I)}dxdz =0

® New variables:
y=y/(1+nx2).,  @xyz2)=ox§ 2)

(00]

= 6L=0, 6L= J L(n, D, 5 D) dz

—0

® |egendre transform:
= oL ’ £ = oL
on; odb,
= N=n(nw ),  P;=P(nwP7)

® Hamiltonian:

H(m @, ®,2) =r r ¥ dydz+J

—0dJd0
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ﬂzO) dZ—L(n, d), qz, dDz)
(0 0]

#® Hamilton’s equations:

6H 6H oH oH

—, == &, =—, = —_——

o ey T T T e
(with boundary conditions for® aty =0, 1)

® Reversibility: (1, w, ®,&) — (1, —w, P, —E)

Nz =



LINEAR SPECTRAL ANALYSIS

® Resolvent equations for u = (h, w, P, §):
(L—ikeu=ul,  O<k< Kkmax
® Solve for w, &, ® as functions of n, u'

= g(D)n=N(n.u"),

where
2

g(y) = ao + pg- — %coth 9 q=+pR+e%k2

® 4(u) > O with equality iff p = %pp
® Write

m=xOn,  n2=1-xD)n
where y is the indicator function of [£po—0, po+6]
® Solve for n as a function of n4 and ut

® Write
ni(x, z) = ZC (ex, 522)

or

n1(x z) = & (C(ex. 62)e“” + {(ex, £2)e~)
to arrive at the reduced system

Cox — G + 3T T)x + B(LC3)x + O(6) + k¢ = ¢
or

C = G = B(G*)°C — (T*)°C — Chyu + O(6) + K¢ = T,
—qzxx—Z(ReC*C)x+k2qJ =0



LINEAR SPECTRAL ANALYSIS

#® Reduced equation:

® B IS known explicity, is self-adjoint and does
not depend upon k

e Spectrum of Bpy:

H'Wﬁ%"

—wi O

® Spectral perturbation for k € [Kmin, Kmaxl:
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;‘a,k 0

e The point —k? lies inside the ellipse

e B, + k?l is invertible if and only if A, + k* # O,
otherwise it has a simple eigenvalue

e .« + k% = O has exactly one solution k, with
ks = w + 0(e)

® +ick, are simple eigenvalues of L and L —iAl is
invertible for all other values of [A| > gk,

#® looss condition:
o Lu = N(u") leads to C,uf = ¢t
e Cop IS known explicity and invertible
e Hence C, is invertible



