THE WATER-WAVE PROBLEM

$$
y=h+\eta(x, z, t)
$$

$$
\begin{aligned}
& \underline{u}=\nabla \varphi \\
& y=0
\end{aligned}
$$

Kinematic boundary condition:

$$
\eta_{t}=\varphi_{y}-\eta_{x} \varphi_{x}-\eta_{z} \varphi_{z}
$$

Dynamical boundary condition:

$$
\begin{aligned}
\varphi_{t} & +\frac{1}{2}\left(\varphi_{x}^{2}+\varphi_{y}^{2}+\varphi_{z}^{2}\right)+g \eta \\
& -\sigma\left[\frac{\eta_{x}}{\sqrt{1+\eta_{x}^{2}+\eta_{z}^{2}}}\right]_{x}-\sigma\left[\frac{\eta_{z}}{\sqrt{1+\eta_{x}^{2}+\eta_{z}^{2}}}\right]_{z}=0
\end{aligned}
$$

Difficulties:

- A free-boundary value problem
- Nonlinear boundary conditions

Solitary waves:

$$
\begin{gathered}
\eta(x, z, t)=\eta(x-c t, z), \varphi(x, y, z, t)=\varphi(x-c t, y, z) \\
\eta(x-c t, z) \rightarrow 0, \quad|x-c t| \rightarrow \infty
\end{gathered}
$$

Parameter:

$$
a=g h / c^{2}, \quad \beta=\sigma / h c^{2}
$$

DIMENSION BREAKING

Periodically modulated solitary waves bifurcate from line solitary waves

- Strong surface tension $(\beta>1 / 3)$

- Weak surface tension $(\beta<1 / 3)$

MODELLING

Strong surface tension ($\beta>1 / 3$):

- Dispersion relation:

- Write $a=1+\varepsilon^{2}$
- The Ansatz

$$
\eta(x, z)=\varepsilon^{2} \zeta\left(\varepsilon x, \varepsilon^{2} z\right)+O\left(\varepsilon^{4}\right)
$$

leads to the Kadomtsev-Petviashvili equation

$$
\partial_{x x}\left(\zeta_{x x}-\zeta+\frac{3}{2} \zeta^{2}\right)-\zeta_{z z}=0
$$

- The KP equation admits line (KdV) and periodically modulated solitary-wave solutions

MODELLING

Weak surface tension ($\beta<1 / 3$):

- Dispersion relation:

- Write $a=a_{0}+\varepsilon^{2}$
- The Ansatz

$$
\eta(x, z)=\varepsilon\left(\zeta(\varepsilon x, \varepsilon z) e^{i \mu_{0} x}+\overline{\zeta(\varepsilon x, \varepsilon z)} e^{-i \mu_{0} x}\right)+O\left(\varepsilon^{2}\right)
$$

leads to the Davey-Stewartson system

$$
\begin{aligned}
\zeta-\zeta_{x x}-\zeta_{z z}-|\zeta|^{2} \zeta-\zeta \psi_{x} & =0, \\
-\psi_{x x}-\psi_{z z}+\left(|\zeta|^{2}\right)_{x} & =0
\end{aligned}
$$

- The DS system has explicit line (NLS) and periodically modulated solitary-wave solutions

SPATIAL DYNAMICS

- Formulate the water-wave problem as an evolutionary equation

$$
u_{z}=L u+N(u), \quad u \in X
$$

- z is the 'time-like' variable
- X is a phase space of functions which vanish as $x \rightarrow \pm \infty$
- Equilibrium solutions are line solitary waves
- Periodic solutions in the form of periodic orbits surrounding a nearby equilibrium are periodically modulated perturbations of the line solitary wave

- Search for periodic orbits surrounding the equilibrium corresponding to the the KdV or NLS line solitary wave

LYAPUNOV CENTRE THEOREM

- Classical form for Hamiltonian systems

$$
\dot{q}_{j}=\frac{\partial H}{\partial p_{j}}, \quad \dot{p}_{j}=-\frac{\partial H}{\partial q_{j}}, \quad j=1, \ldots, n
$$

Linearise around an equilibrium u^{\star}

Nonresonance condition:

There exists a family $\left\{u_{s}\right\}$ of $2 \pi / \omega_{s}$-periodic solutions with

$$
u_{s} \rightarrow u^{\star}, \quad \omega_{s} \rightarrow \omega \quad \text { as } s \rightarrow 0
$$

- Devaney extension: (infinite-dimensional) reversible systems

$$
\dot{u}=L u+N(u), \quad S^{2}=I, \quad S L=-L S, S N=-N S
$$

- looss extension:

Nonresonance condition violated:
$0 \in \sigma_{\text {ess }}(L)$
Additional condition:

$$
L u=N\left(u^{\dagger}\right)
$$

is solvable for each u^{\dagger}

VARIATIONAL PRINCIPLE

- Luke's variational principle:
$\delta \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left\{\int_{0}^{1+\eta}\left(-\varphi_{x}+\frac{1}{2}\left(\varphi_{x}^{2}+\varphi_{y}^{2}+\varphi_{z}^{2}\right)\right) d y\right.$

$$
\left.+\frac{1}{2} a \eta^{2}+\beta\left(\sqrt{1+\eta_{x}^{2}+\eta_{z}^{2}}-1\right)\right\} d x d z=0
$$

- New variables:

$$
\begin{aligned}
& \tilde{y}=y /(1+\eta(x, z)), \quad \varphi(x, y, z)=\Phi(x, \tilde{y}, z) \\
& \Rightarrow \quad \delta \mathcal{L}=0, \quad \delta \mathcal{L}=\int_{-\infty}^{\infty} L\left(\eta, \Phi, \eta_{z}, \Phi_{z}\right) d z
\end{aligned}
$$

- Legendre transform:

$$
\begin{gathered}
\omega=\frac{\delta L}{\delta \eta_{z}}, \quad \xi=\frac{\delta L}{\delta \Phi_{z}} \\
\Rightarrow \quad \eta_{z}=\eta_{z}(\eta, \omega, \Phi, \xi), \quad \Phi_{z}=\Phi_{z}(\eta, \omega, \Phi, \xi)
\end{gathered}
$$

Hamiltonian:
$H(\eta, \omega, \Phi, \xi)=\int_{-\infty}^{\infty} \int_{0}^{1} \Phi_{z} \xi d \tilde{y} d z+\int_{-\infty}^{\infty} \eta_{z} \omega d z-L\left(\eta, \Phi, \eta_{z}, \Phi_{z}\right)$
Hamilton's equations:

$$
\eta_{z}=\frac{\delta H}{\delta \eta}, \quad \omega_{z}=-\frac{\delta H}{\delta \rho}, \quad \Phi_{z}=\frac{\delta H}{\delta \xi}, \quad \xi_{z}=-\frac{\delta H}{\delta \Phi}
$$

(with boundary conditions for Φ at $y=0,1$)

- Reversibility: $(\eta, \omega, \Phi, \xi) \mapsto(\eta,-\omega, \Phi,-\xi)$

LINEAR SPECTRAL ANALYSIS

- Resolvent equations for $u=(\eta, \omega, \Phi, \xi)$:

$$
(L-i k \varepsilon l) u=u^{\dagger}, \quad 0<k \leq k_{\max }
$$

- Solve for ω, ξ, Φ as functions of η, u^{\dagger}

$$
\Rightarrow \quad g(D) \eta=\mathcal{N}\left(\eta, u^{\dagger}\right)
$$

where

$$
g(\mu)=a_{0}+\beta q^{2}-\frac{\mu^{2}}{q} \operatorname{coth} q, \quad q=\sqrt{\mu^{2}+\varepsilon^{2} k^{2}}
$$

- $g(\mu) \geq 0$ with equality iff $\mu= \pm \mu_{0}$
- Write

$$
\eta_{1}=\chi(D) \eta_{0}, \quad \eta_{2}=(1-\chi(D)) \eta
$$

where χ is the indicator function of $\left[\pm \mu_{0}-\delta, \pm \mu_{0}+\delta\right]$

- Solve for η_{2} as a function of η_{1} and u^{\dagger}
- Write

$$
\eta_{1}(x, z)=\varepsilon^{2} \zeta\left(\varepsilon x, \varepsilon^{2} z\right)
$$

Or

$$
\eta_{1}(x, z)=\varepsilon\left(\zeta(\varepsilon x, \varepsilon z) e^{\mathrm{i} \omega x}+\overline{\zeta(\varepsilon x, \varepsilon z)} e^{-\mathrm{i} \omega x}\right)
$$

to arrive at the reduced system

$$
\zeta_{x x x x}-\zeta_{x x}+3\left(\zeta^{\star} \zeta_{x}\right)_{x}+3\left(\zeta \zeta_{x}^{\star}\right)_{x}+O(\varepsilon)+k^{2} \zeta=\zeta^{\dagger}
$$

or

$$
\begin{aligned}
\zeta-\zeta_{x x}-3\left(\zeta^{\star}\right)^{2} \zeta-\left(\zeta^{\star}\right)^{2} \bar{\zeta}-\zeta^{\star} \psi_{x}+O(\varepsilon)+k^{2} \zeta & =\zeta^{\dagger}, \\
-\psi_{x x}-2\left(\operatorname{Re} \zeta^{\star} \zeta\right)_{x}+k^{2} \psi & =0
\end{aligned}
$$

LINEAR SPECTRAL ANALYSIS

- Reduced equation:

$$
\left(B_{\varepsilon, k}+k^{2} l\right) w=w^{\dagger}
$$

- $B_{0, k}$ is known explicity, is self-adjoint and does not depend upon k
- Spectrum of $\mathrm{B}_{0, k}$:

- Spectral perturbation for $k \in\left[k_{\min }, k_{\max }\right]$:

- The point $-k^{2}$ lies inside the ellipse
- $B_{\varepsilon, k}+k^{2}$ I is invertible if and only if $\lambda_{\varepsilon, k}+k^{2} \neq 0$, otherwise it has a simple eigenvalue
- $\lambda_{\varepsilon, k}+k^{2}=0$ has exactly one solution k_{ε} with $k_{\varepsilon}=\omega+O(\varepsilon)$
- $\pm i \varepsilon k_{\varepsilon}$ are simple eigenvalues of L and $L-i \lambda l$ is invertible for all other values of $|\lambda|>\varepsilon k_{\text {min }}$
- looss condition:
- $L u=N\left(u^{\dagger}\right)$ leads to $C_{\varepsilon, k} \zeta=\zeta^{\dagger}$
- $\mathrm{C}_{0,0}$ is known explicity and invertible
- Hence $\mathrm{C}_{\varepsilon, 0}$ is invertible

