
THE KDV EQUATION
KdV equation:
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The KdV equation has solitary-wave solutions:
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Whitham equation (full dispersion KdV equation):

ut + (mfKdV(D)u + u2)x = 0, mfKdV(k) =
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The Whitham equation has small-amplitude solitary waves
which are approximated by rescalings of KdV solitary waves
(Ehrnström, Groves & Wahlén 2012).



THE KP-I EQUATION
KP-I equation:
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The KP-I equation has fully localised solitary-wave solutions:
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Full dispersion KP-I equation:
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Does the full dispersion KP-I equation have small-amplitude fully
localised solitary waves which are approximated by rescalings of
KP-I fully localised solitary waves?



FORMAL REDUCTION
Dispersion relation for one-dimensional linear wave trains:
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The Ansatz
c = 1 − ε2, u(x, z) = ε2ζ(εx, ε2z) + O(ε4)

reduces the steady fKP-I equation
−cu + mfKP(D) +

3
2u

2 = 0

to the stationary KP-I equation
mKP(D)ζ +

3
2ζ

2 + O(ε) = 0

mfKP is an analytic function of k1 and k2
k1

with

mfKP(k) = mKP(k) + O(|(k1, k2k1 )|
4)



STATIONARY KP-I EQUATION
mKP(D)ζ +

3
2ζ

2 = 0

An explicit solitary-wave solution

ζ(x, z) = −8
3 − (x2 − z2)/(β − 1

3 )

(3 + (z2 + z2)/(β − 1
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This solution is a critical point of the functional

Ĩ0(ζ) =
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
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with function space
X = ∂xC∞0 (R2)



A VARIATIONAL PRINCIPLE

Fully localised solitary-wave solutions of the full-dispersion KP-I
equation

ut + (mfKP(D)u +
3
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2)x = 0,

are critical points of the functional
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REDUCTION
Modelling:
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c = 1 − ε2,

u(x, z) = ε2ζ(εx, ε2z) + O(ε4)

Write
u1 = χ(D)u, u2 = (1 − χ(D))u,

where χ is the characteristic function of this set:

|k1| < δ,


k2
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 < δk1

k2



REDUCTION

J(u) = 0 ⇒
χ(D)J(u1 + u2) = 0,

(1 − χ(D))J(u1 + u2) = 0

Solve for u2 = u2(u1), set J̃(u1) = J(u1 + u2(u1)), consider J̃(u1) = 0

Write
u1(x, z) = ε2ζ(εx, ε2z)

Arrive at the reduced variational functional

Ĩε(ζ) =
1
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
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mKP(k)|ζ̂|2 dk1 dk2 −
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
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ζ3 dx dz
  

= Ĩ0(ζ)

+O(ε1/2ζ2)

Study this functional in

BR(0) ⊆ Xε := χ(εD1, ε
2D2)X, X = ∂xC∞0 (R2)



NATURAL CONSTRAINT SET
Find critical points of

Ĩ0(ζ) =
1

2
ζ2 − K(η), K(η) =

1
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
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ζ3 dx dz

using the natural constraint set

N := {ζ = 0 : ̃I0(ζ), ζ = 0}

Every critical point of Ĩ0 lies on N

Any critical point of ζ of Ĩ0|N is a critical point of Ĩ0:
– Set F(ζ) = ̃I0(ζ), ζ
– There is a Lagrange multiplier μ with Ĩ0(ζ

) − μF(ζ) = 0

– However
μ = −

̃I0(ζ) − μ F(ζ), ζ
F(ζ), ζ

= 0

because
F(ζ), ζ = −3ζ2 < 0, ζ ∈ N

Look for minimisers of Ĩ0 over N



GEOMETRICAL
INTERPRETATION

N = {ζ = 0 : ̃I0(ζ), ζ = 0}

Any point ζ ∈ N satisfies K(ζ) > 0

Any ray
{λζ : K(ζ) > 0, λ > 0}

intersects N in precisely one point and the value of Ĩ0 along such
a ray attains a strict maximum at this point (examine Ĩ0(λζ))
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Ĩ0(ζ) (and K(ζ), ζ) are bounded below above zero on N



EXISTENCE THEORY
How to find a minimiser for Ĩ0(ζ) = 1

2ζ
2 − K(η) over

N = {ζ = 0 : ̃I0(ζ), ζ  
:= F(ζ)

= 0}?

Lemma (Palais-Smale sequence):
There exists a minimising sequence {ζn} for Ĩ0|N with Ĩ0(ζn)→ 0

– Take a minimising sequence {ζn} for Ĩ0|N
– By Ekelandʼs variational principle there exists a sequence
of real numbers with Ĩ0(ζn) − μn F(ζn)→ 0

– Our previous argument shows that μn → 0

Theorem (concentration-compactness):
There is a sequence {wn} ⊂ R2 such that that a subsequence
of {ζn(· + wn)} converges weakly to a minimiser ζ∞ of Ĩ0|N
– Vanishing leads to K(ζn)→ 0

– Dichotomy leads to n critical points with
Ĩ0(ζ1) + · · · + Ĩ0(ζ n) = inf Ĩ0|N


