THE KDV EQUATION

KdV equation:
g+ (1+ 3o+ 17), =0
or
Up + (M Q)+ P =0,  mea(K) =1 — 22

The KdV equation has solitary-wave solutions:
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Whitham equation (full dispersion KdV equation):

tanh(k)\?
U + (Maxav(Du+ ¥y =0,  meav(k) = (%)
The Whitham equation has small-amplitude solitary waves
which are approximated by rescalings of KdV solitary waves
(Ehrnstrom, Groves & Wahlén 2012).



THE KP-I EQUATION

KP-I equation:
s+ ((B— 3 —u+ 3P)  — Uz =0

or

us + (mee(Du+ 302 =0,  mee(k) =1+ (B— )5 +

Tol8®

The KP-I equation has fully localised solitary-wave solutions:

/X
Full dispersion KP-I equation:
23
ug+(me (D)u+30P) = 0,  myp(k)= ((4 + p[k[z)t"'l‘:l 'kl) (4 + Z—g)
1

Does the full dispersion KP-1 equation have small-amplitude fully
localised solitary waves which are approximated by rescalings of
KP-I fully localised solitary waves?



FORMAL REDUCTION

Dispersion relation for one-dimensional linear wave trains:
c
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The Ansatz
c=1-6%  u(x%2)=¢62(ex 6°2) + O(e*)
reduces the steady fKP-I equation
—cu+ mgp(D) + 27 =0
to the stationary KP-1 equation
mp(D) + 3C% +0(6) = 0

mgxp iS an analytic function of k4 and ’-‘kf with

mecp(k) = mie(K) + O(1 (k1. 2)I)



STATIONARY KP-1 EQUATION

me(D); + 302 =0

® An explicit solitary-wave solution

3-(¢~2)/(P-3

Cloz)=-8

B+ (2 +22)/@- )2

/ X
® This solution is a critical point of the functional

o0 = 5 | motltP dkadhe -5 | ¢ axaz

with function space
X = 5,C3 (R?)



A VARIATIONAL PRINCIPLE

Fully localised solitary-wave solutions of the full-dispersion KP-I
equation
ug + (mae(D)u + 2uP), = 0,

are critical points of the functional

J(u):—icj uzdxdz+ij mmp(k)lﬁlzdk4dk2—ij ? dxdz
2 Jge 2 |re 3 |re



REDUCTION

® Modelling:
c
c=1-¢2
1 u(x, z) = 62¢(ex, 62z) + O(g*)
o] k,
® Write

ug =D,  uz=(1-x(D)u,
where y is the characteristic function of this set:
ko
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k1 |k4| <6» k—4|




REDUCTION

X(PV (ur +u2) =0,
(1= 2O (u1 +u2) =0

Solve for uz = up(u), setJ(us) = J(us + uz(uq)), consider F(uq) =0
» Write

® JSW=0 =

u(x% 2) = 624 (ex, 6°2)

® Arrive at the reduced variational functional

10 = 1[ e (I dko dkz—ij 12 dxdz +0(s" %)
2lre d Jgre N

>
=T(0)
® Study this functional in

Br(0) C X; := x(eD1,6°D2)X, X = 5L (R?)



NATURAL CONSTRAINT SET

Find critical points of
1 1
B = SIClP -Km),  K() = —j {9 dxdz
2 3 ) ge

using the natural constraint set
N:={C#0: (I().C) =0}

® Every critical point of To lies on N
® Any critical point of Z* of To|y is a critical point of To:

— Set F(¢) = (I(5).C)
— There is a Lagrange multiplier p with T(Z*) — pF’(*) = 0
— However

_ (e -pFEne) _

bET Ry O

because

(F@L0) =-3lclP <o, CeN

® Look for minimisers of To over N



GEOMETRICAL
INTERPRETATION

N={C+#0:(l().C) =0}

Any point £ € N satisfies K({) >0
Any ray

o

{A7:K()>0,4>0}

intersects N in precisely one point and the value of Tp along such
a ray attains a strict maximum at this point (examine To(AZ))
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® T5(2) (and K(Z), |I]]) are bounded below above zero on N




EXISTENCE THEORY

How to find a minimiser for To(¢) = 2||¢|[2 — K(n) over

N={l#0: (73_(4;)(;’)) =0}?

® lLemma (Palais-Smale sequence):
There exists a minimising sequence {g,} for To|y with T(Z,) — O

— Take a minimising sequence {Z,} for To|y

— By Ekeland’s variational principle there exists a sequence
of real numbers with T(Z) — pn F'(Gn) — O

— Our previous argument shows that y, — O
® Theorem (concentration-compactness):

There is a sequence {w,} C R? such that that a subsequence
of {Za(+ + wa)} converges weakly to a minimiser , of To|y

— Vanishing leads to K(g,) —» O
— Dichotomy leads to n critical points with

")+ +To(C") = infTo|n



