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Difficulties:
® A free-boundary value problem
® Nonlinear boundary conditions
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Difficulties:

® A free-boundary value problem
® Nonlinear boundary conditions
Parameter: y = D/pgh*




SOLITARY WAVES

® n(xt) =n(x—ct)
® f(x—ct) o> 0asx—ct—tw



MODELLING

Dispersion relation for periodic wave trains (n ~ coskx):

The Ansatz
A=cg(1=17),  n(x) = p (T + Z(x)e™) +0(°)

leads to the nonlinear Schroédinger equation

Gu—Cx[cPC=0

‘Focussing’ (+) — with solitary waves e“*Zy.s(x + xo) — for
v>yo > 3.37 x 10~10
Typical values:

- y ~ 1078 (McMurdo sound)

- y ~ 1072 (Lake Saroma)



VARIATIONAL PRINCIPLE

Minimise the energy

@ i+ g 1 2
soer=[ {[)" (ot e o) v 3 vzt
subject to fixed momentum
o
0:9)= | npbade=2an  O<u<s

the Lagrange multiplier is the wave speed.

® Hand | are conserved quantities
® Yields conditional, energetic stability of the set of minimisers



DIRICHLET-NEUMANN
OPERATOR

® Use a Dirichlet-Neumann operator:

/%
G(NE = V1 + nZ @aly=14n Ap=0
Pyly=0 =0

® Minimise

Hon8) = { SEO0E + 3+ +":2)5/2}dx

subject to fixed

Le/]

0.) = J 1 dx = 2608,

-0

where & = ¢|y=141



REFORMULATION

)‘f(n, = { 56('1)54‘ ﬂ2+Y(4 +q:2)5/2}

subject to fixed

Minimise

a0
I(n.8) = J G dx = 260u
-
® Fix nand minimise H(n, ) over I(n,§) = 2cop. There is a unique
minimiser &, with
G(n)En = ok
® Minimise P
J(n) =Hn, Kin)+ —
(n) = H(m.&) = K(m) + 775

where

® (4 2, 1% ~
eo=[ {3ty =3 neor,

® We show that
- J(n) has a minimiser
— Minimising sequences converge (up to subsequences/translations)



ANALYTICITY

K(n)Z = —0G(n) %)
B (n,&) — K(n)¢ is analytic at the origin

® Flatten the domain:

VS S y y=1
y= T+n
e ——
y=0 uxy) =@xy) ¥ =0
K()E = —(eply=n)x K& = —txly=1
Ap=0, A'u—4F4(n,u) — ByFa(n,u) =0,
¢y—ﬂxqox—§x=0, Uy—Fz(fl’U)—fx:O’

@y =0, uy =0
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ANALYTICITY

A'u—d,F4(n,u) — ByFa(n,u)
uy = Fa(mu) =&,y +=0
uy |y=o

The left-hand side is an analytic function of u, n and &
(u,n,&) = (0,0,0) is a solution

The linearisation of the left-hand side with respect to u at
(n,&) = (0,0) is invertible:

AMu = G
uy| y=1 = 9
Uy |y=o = do

has a unique solution for each G, g4, 90

By the analytic implicit function theorem u is an analytic function
of (n, &) at the origin.

Hence (n,&) — K(n)¢ is also analytic at the origin (since

K(E = —ugly=1)



MINIMISATION PROCEDURE

Pretend R is bounded!
#® Work in a ball of radius R in H3(R)

1/2
Il = ([ +2)
® A standard argument shows that

wo=[ {5t +raiemmt+ f

has a minimiser iy, over Bg(0)
9 1min IS Obviously not zero
#® How to show that fm, is not on the boundary of Bg(0)?
= |Inllg < J(n) in Bx(0)
— The test function
N*(x) = pns(X) 608 kox — ApPZuis (ux)? 6o8(2kox) — B?Gys (ux)
satisfies J(n*) < 2cop



SOLITARY WAVES

Use concentration-compactness — minimising sequences
undergo concentration, vanishing or dichotomy

Rule out dichotomy by showing that i, = infJ satisfies
It <y + iy, (‘strict sub-additivity’)

Difficulties:

— Nonlocal equations
— Inhomogeneous nonlinearities

Our equations are ‘almost’ local

We show that the functions in a minimising sequence {n,} ‘scale’
like the test function

1*(x) = pns (ux) cos kox — AP luis (ux) cos(2kox) — B Guis (ux)

for which

J) = 2000 — O j(n*)‘ +o()



SOLITARY WAVES

J(m) =0 and ||nl3 S

Write
M = XOMn  Naz2 = (1= X(D))Nns

where y is the characteristic function of this set:

e - - lk —ko| <6
—ko kO

Variational reduction:

X0V (M4 + nn2) =0,
(1 = x(D) (M4 + fn2) =0

Solve for fion = Nan(in4), 58t Atlna) = (a4 + N2n(fin4)) @nd
consider J(f4) = 0

Write

J(m)=0 =

(%) = ZuCa(px)** + AuTa(ux)e ">
and show that ||Z:[12 < . [Inzall? < i°.



CONVERGENCE TO NLS

#® The set D, of minimisers of J, satisfies

8 inf —“Cus(- + -0
n:DS werol oer (12 Onis(+ + %0)|[4

as p | O, where we write
M(x) = pCa(px)e"® + FuCy (px)e ™"
® Furthermore, the wave speed for a minimiser n satisfies

on = 60— Cuish® + o(4?)

uniformly over Dy,



