HYDRODYNAMIC PROBLEM

Kinematic boundary condition:

$$\eta_t = \varphi_y - \eta_x \varphi_x$$

Dynamical boundary condition:

$$\begin{split} \varphi_t + \frac{1}{2} |\nabla \varphi|^2 + g \eta \\ + \frac{D}{\rho} & \left(\frac{1}{(1 + \eta_x^2)^{1/2}} \left[\frac{1}{(1 + \eta_x^2)^{1/2}} \left(\frac{\eta_{xx}}{(1 + \eta_x^2)^{3/2}} \right)_x \right]_x + \frac{1}{2} \left(\frac{\eta_{xx}}{(1 + \eta_x^2)^{3/2}} \right)^3 \right) = 0 \end{split}$$

Difficulties:

- A free-boundary value problem
- Nonlinear boundary conditions

HYDRODYNAMIC PROBLEM

Kinematic boundary condition:

$$\eta_t = \varphi_y - \eta_x \varphi_x$$

Dynamical boundary condition:

$$\begin{split} \varphi_t + \frac{1}{2} |\nabla \varphi|^2 + \eta \\ + \gamma \Biggl(\frac{1}{(1 + \eta_x^2)^{1/2}} \left[\frac{1}{(1 + \eta_x^2)^{1/2}} \Biggl(\frac{\eta_{xx}}{(1 + \eta_x^2)^{3/2}} \right)_x \right]_x + \frac{1}{2} \left(\frac{\eta_{xx}}{(1 + \eta_x^2)^{3/2}} \right)_y^3 \Biggr) = 0 \end{split}$$

Difficulties:

- A free-boundary value problem
- Nonlinear boundary conditions

Parameter: $\gamma = D/\rho g h^4$

SOLITARY WAVES

MODELLING

Dispersion relation for periodic wave trains (η ~ cos kx):

The Ansatz

$$c^2 = c_0^2 (1 - \mu^2), \qquad \eta(x) = \mu \left(\zeta(\mu x) e^{\mathrm{i} k_0 x} + \overline{\zeta(\mu x)} e^{-\mathrm{i} k_0 x} \right) + \mathcal{O}(\mu^2)$$

leads to the nonlinear Schrödinger equation

$$\zeta_{xx} - \zeta \pm |\zeta|^2 \zeta = 0$$

- 'Focussing' (+) with solitary waves $e^{i\omega x}\zeta_{NLS}(x+x_0)$ for $y > y_0 \ge 3.37 \times 10^{-10}$
- Typical values:
 - $\gamma \sim 10^{-5}$ (McMurdo sound)
 - $v \sim 10^{-2}$ (Lake Saroma)

VARIATIONAL PRINCIPLE

Minimise the energy

$$\mathcal{H}(\eta, \varphi) = \int_{-\infty}^{\infty} \left\{ \int_{0}^{1+\eta} \left(\frac{1}{2} (\varphi_{x}^{2} + \varphi_{y}^{2}) \right) dy + \frac{1}{2} \eta^{2} + \gamma \frac{\eta_{xx}^{2}}{(1 + \eta_{x}^{2})^{5/2}} \right\} dx$$

subject to fixed momentum

$$I(\eta,\phi) = \int_{-\infty}^{\infty} \eta_x \varphi|_{y=\eta} dx = 2c_0 \mu, \qquad 0 < \mu \ll 1;$$

the Lagrange multiplier is the wave speed.

- H and I are conserved quantities
- Yields conditional, energetic stability of the set of minimisers

DIRICHLET-NEUMANN OPERATOR

Use a Dirichlet-Neumann operator:

$$G(\eta)\xi = \sqrt{1 + \eta_x^2} \varphi_n|_{y=1+\eta}$$

$$\Delta \varphi = 0$$

$$\varphi_y|_{y=0} = 0$$

Minimise

$$\mathcal{H}(\eta, \xi) = \int_{-\infty}^{\infty} \left\{ \frac{1}{2} \xi G(\eta) \xi + \frac{1}{2} \eta^2 + \gamma \frac{\eta_{xx}^2}{(1 + \eta_x^2)^{5/2}} \right\} dx$$

subject to fixed

$$I(\eta,\xi)=\int_{-\infty}^{\infty}\eta_{x}\xi\,dx=2c_{0}\mu,$$

where $\xi = \phi|_{y=1+\eta}$

REFORMULATION

Minimise

$$\mathcal{H}(\eta, \xi) = \int_{-\infty}^{\infty} \left\{ \frac{1}{2} \xi G(\eta) \xi + \frac{1}{2} \eta^2 + \gamma \frac{\eta_{xx}^2}{(1 + \eta_x^2)^{5/2}} \right\}$$

subject to fixed

$$I(\eta,\xi) = \int_{-\infty}^{\infty} \eta_{x}\xi \, dx = 2c_{0}\mu$$

Pix η and minimise H(η, ξ) over $I(η, ξ) = 2c_0μ$. There is a unique minimiser $ξ_n$ with

$$G(\eta)\xi_n = c_n\eta_x$$

Minimise

$$J(\eta) = H(\eta, \xi_{\eta}) = \mathcal{K}(\eta) + \frac{\mu^2}{\mathcal{L}(\eta)},$$

where

$$\mathcal{K}(\eta) = \int_{-\infty}^{\infty} \left\{ \frac{1}{2} \eta^2 + \gamma \frac{\eta_{xx}^2}{(1 + \eta_x^2)^{5/2}} \right\}, \qquad \mathcal{L}(\eta) = \frac{1}{2} \int_{-\infty}^{\infty} \eta_x G(\eta)^{-1} \eta_x$$

- We show that
 - J(η) has a minimiser
 - Minimising sequences converge (up to subsequences/translations)

ANALYTICITY

$$K(\eta)\xi = -\partial_x(G(\eta)^{-1}\xi_x)$$

• $(\eta, \xi) \mapsto K(\eta)\xi$ is analytic at the origin

 $y=1+\eta$

Flatten the domain:

$$y = \frac{1}{1+\eta}$$

$$y = 0$$

$$u(x,y') = \varphi(x,y)$$

$$y' = 0$$

$$K(\eta)\xi = -(\varphi|_{y=\eta})_x \qquad K(\eta)\xi = -u_x|_{y'=1}$$

$$\Delta \varphi = 0, \qquad \Delta' u - \partial_x F_1(\eta, u) - \partial_{y'} F_2(\eta, u) = 0,$$

$$\varphi_y - \eta_x \varphi_x - \xi_x = 0, \qquad u_{y'} - F_2(\eta, u) - \xi_x = 0,$$

 $u_{v'}=0$

 $\varphi_{v}=0$,

y' = 1

ANALYTICITY

$$\Delta' u - \partial_x F_1(\eta, u) - \partial_{y'} F_2(\eta, u) u_{y'} - F_2(\eta, u) - \xi_x|_{y'=1} u_{y'}|_{y'=0}$$
 = 0

- Provided Interest Indicate The left-hand side is an analytic function of u, η and ξ
- $(u, \eta, \xi) = (0, 0, 0)$ is a solution
- The linearisation of the left-hand side with respect to u at (η, ξ) = (O, O) is invertible:

$$\Delta' u = G$$

$$u_{y'}|_{y'=1} = g_1,$$

$$u_{y'}|_{y'=0} = g_0$$

has a unique solution for each G, g1, g0

- **9** By the analytic implicit function theorem u is an analytic function of (η, ξ) at the origin.
- Hence $(η, ξ) \mapsto K(η)ξ$ is also analytic at the origin (since $K(η)ξ = -u_x|_{y'=1}$)

MINIMISATION PROCEDURE

Pretend R is bounded!

▶ Work in a ball of radius R in $H^2(\mathbb{R})$

$$||\eta||_2 = \left(\int (\eta^2 + \eta_{xx}^2)\right)^{1/2}$$

A standard argument shows that

$$J(\eta) = \int_{-\infty}^{\infty} \left\{ \frac{1}{2} \eta^2 + \gamma \frac{\eta_{xx}^2}{(1 + \eta_x^2)^{5/2}} \right\} + \frac{\mu^2}{\mathcal{L}(\eta)}$$

has a minimiser η_{min} over $\overline{\mathcal{B}}_{\mathcal{R}}(O)$

- η_{min} is obviously not zero
- **●** How to show that η_{min} is not on the boundary of $\overline{\mathcal{B}}_{R}(O)$?
 - $||\eta||_2^2 \lesssim J(\eta)$ in $\overline{\mathcal{B}}_{\mathcal{R}}(0)$
 - The test function

$$η^*(x) = μζ_{NLΘ}(μx) coo k_0 x - Aμ^2 ζ_{NLΘ}(μx)^2 coo(2k_0 x) - Bμ^2 ζ_{NLΘ}(μx)^2$$
 satisfies $J(η^*) < 2c_0 μ$

SOLITARY WAVES

- Use concentration-compactness minimising sequences undergo concentration, vanishing or dichotomy
- Rule out dichotomy by showing that $i_{\mu} = \inf J$ satisfies $i_{\mu_1 + \mu_2} < i_{\mu_1} + i_{\mu_2}$ ('strict sub-additivity')

Difficulties:

- Nonlocal equations
- Inhomogeneous nonlinearities
- Our equations are 'almost' local
- We show that the functions in a minimising sequence $\{\eta_n\}$ 'scale' like the test function

$$η^*(x) = μζ_{NLΘ}(μx) coe k_O x - Aμ^2 ζ_{NLΘ}(μx)^2 coe(2k_O x) - Bμ^2 ζ_{NLΘ}(μx)^2$$
 for which

$$J(\eta^*) = 2c_0\mu - C\mu^3 \int (\eta^*)^4 + o(\mu^3)$$

SOLITARY WAVES

- Write

$$\eta_{n,1} = \chi(D)\eta_n, \qquad \eta_{n,2} = (1 - \chi(D))\eta_n,$$

where γ is the characteristic function of this set:

Variational reduction:

$$J'(\eta_n) = 0 \qquad \Rightarrow \qquad \frac{\chi(D)J'(\eta_{n,1} + \eta_{n,2}) = 0}{(1 - \chi(D))J'(\eta_{n,1} + \eta_{n,2}) = 0}$$

Solve for $\eta_{2,n} = \eta_{2,n}(\eta_{n,1})$, set $\widetilde{J}(\eta_{n,1}) = J(\eta_{n,1} + \eta_{2,n}(\eta_{n,1}))$ and consider $\widetilde{J}'(\eta_{n,1}) = O$

Write

$$\eta_{1,n}(x) = \frac{1}{2}\mu\zeta_n(\mu x)e^{ik_0x} + \frac{1}{2}\mu\overline{\zeta_n(\mu x)}e^{-ik_0x}$$

and show that $||\zeta_n||^2 \lesssim \mu$, $||\eta_{2,n}||^2 \lesssim \mu^3$.

CONVERGENCE TO NLS

• The set D_{μ} of minimisers of J_{μ} satisfies

$$\sup_{\eta \in D_u} \inf_{\omega \in [0,2\pi], x_0 \in \mathbb{R}} \|\zeta_\eta - e^{i\omega} \zeta_{\mathsf{NLS}}(\cdot + x_0)\|_1 \to 0$$

as $\mu \downarrow 0$, where we write

$$\eta_1(x) = \frac{1}{2}\mu\zeta_\eta(\mu x)e^{ik_0x} + \frac{1}{2}\mu\overline{\zeta_\eta(\mu x)}e^{-ik_0x}$$

Purthermore, the wave speed for a minimiser η satisfies

$$c_{\eta} = c_{\rm O} - C_{\rm NLS}\mu^2 + o(\mu^2)$$

uniformly over \mathcal{D}_{μ} .