Birational methods in hyperkähler geometry

Winter School, University of Bonn, 1−5 December 2014

Recommended literature for the School

M. Gross, D. Huybrechts, D. Joyce, Calabi-Yau manifolds and related geometries, Springer-Verlag, Berlin, 2003.
D. Huybrechts, The Kähler cone of a compact hyperkähler manifold, Math. Ann. 326 (2003), no. 3, 499−513.
J. Kollár, S. Mori, Birational Geometry of Algebraic varieties, Cambridge University Press, 1998.
J. Kollár, Singularities of pairs, Proc. Symp. Pure Math. 62, Part 1, 221−287.
A. Corti, V. Lazić, New outlook on the Minimal Model Program, II, Math. Ann. 356 (2013), no. 2, 617−633.
C. D. Hacon, J. McKernan, Flips and Flops, Proceedings of the International Congress of Mathematicians Hyderabad, India, 2010.
E. Sernesi, Deformations of algebraic schemes, Springer-Verlag, Berlin, 2006.
D. Matsushita, D.-Q. Zhang, Zariski F-decomposition and Lagrangian fibration on hyper-Kähler manifolds, arXiv:0907.5311.
C. Lehn, G. Pacienza, On the log minimal model program for irreducible symplectic varieties, arXiv:1405.5649.
D. Matsushita, On isotropic divisors on irreducible symplectic manifolds, arXiv:1310.0896.
E. Markman, A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Complex and Differential Geometry, Springer Proceedings in Mathematics, vol. 8, Springer Berlin Heidelberg, 2011, pp. 257−322.
E. Markman, K. Yoshioka, A proof of the Kawamata-Morrison Cone Conjecture for holomorphic symplectic varieties of K3[n] or generalized Kummer deformation type, arXiv:1402.2049.