next | previous | forward | backward | up | top | index | toc | Macaulay2 website
NumericalGodeaux :: NumericalGodeaux

NumericalGodeaux -- Construction of numerical Godeaux surfaces

Description

This package contains the implementation of our construction method for numerical Godeaux surfaces from An 8-dimensional family of simply connected Godeaux surfaces and Marked Godeaux surfaces with special bicanonical fibers. The articles focus on numerical Godeaux surfaces whose bicanonical systems have 4 distinct base points. The main construction has two big steps. The first step consists of choosing a line $$\ell \subset Q \subset \mathbb{P}^{11}. $$ The variety $ Q \subset \mathbb{P}^{11} $ is a complete intersection of four quadrics and plays, together with the corresponding Fano variety of lines $F(Q)$ a crucial part in our construction.

The second step of our construction consists of solving a linear system of equations which depends on the line $\ell \subset Q$ from the first step. For a general line $\ell$ one has a $\mathbb{P}^3$ of solutions. A general line together with a general solution specify a simply connected Godeaux surface. We call this the dominant component. Special lines lead to different components. We describe the family of lines in $Q$ leading to numerical Godeaux surfaces with torsion group $\mathbb{Z}/3$ and $\mathbb{Z}/5$. Another highlight is the parametrization of the hyperelliptic locus in $Q$ which leads to torsion-free numerical Godeaux surfaces with hyperelliptic bicanonical fibers.

An important result of the package not covered by the preprints above, is the construction of a 8-dimensional locally complete unirational family of $\mathbb{Z}/2-$Godeaux surfaces.

Random construction over finite fields and the rational numbers

Setup for the construction

We compute a model of the variety of lines $ F(Q)$ in $\mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}^3$. The additional grading is coming from the $G = (G_m)^3$-action, and a quotient of this action is computed in two steps. First we collapse one $ G_m$-action and obtain a hypersurface $H_{4,6}$ of bidegree (4,6) in a $\mathbb{P}^3 \times \mathbb{P}^5$.The final result is a model of the quotient $F(Q)//G$ realized as a hypersurface $Y$ in a toric variety. The hypersurface $H_{4,6}$ contains some codimension 1 rational subvariety $Z$ and given a randomly chosen point in $Z$, functions are added which recover a line in the corresponding $G$-orbit of lines in $ F(Q)$.

Models of F(Q) and its quotients

Precomputed models

Recovering lines

We have precomputed parametrizations leading to the hyperelliptic locus in $Q$ and special lines.

Precomputed Parametrization of Special Points and Lines

Steps of the construction

From free resolutions to different models of Godeaux surfaces

Calculation of the Unirational Parametrization of the Loci of Special Points and Lines

Authors

Version

This documentation describes version 1.1 of NumericalGodeaux.

Source code

The source code from which this documentation is derived is in the file NumericalGodeaux.m2.

Exports

  • Functions and commands
  • Methods
    • "allLoci(Matrix,Matrix,Matrix)" -- see allLoci -- compute all exceptional loci at which the dimension of the solution space may rise
    • "allLociTors0(Matrix,List)" -- see allLociTors0 -- compute all exceptional loci for torsion-free numerical Godeaux surfaces
    • "associatedLineInP11(Matrix,Matrix)" -- see associatedLineInP11 -- compute the associated line in the P11 of a-variables
    • "bihomogeneousModel(Ideal)" -- see bihomogeneousModel -- compute a birational model of a numerical Godeaux surface in P1xP3
    • "calculationOfTheUnirationalParametrizationOfTorsZ5Lines(String)" -- see calculationOfTheUnirationalParametrizationOfTorsZ5Lines -- describe the unirational parametrization of the locus of Z/5-lines
    • "canonicalRing(Matrix)" -- see canonicalRing -- computes the canonical ring of a numerical Godeaux surface
    • "collapsingOneCStar(Ideal)" -- see collapsingOneCStar -- compute the hypersurface of bidegree (4,6) in P3xP5
    • "complexModuloRegularSequence(Ring,String)" -- see complexModuloRegularSequence -- set-up for minimal free resolution modulo x0,x1
    • "computeParametrizationOfHypLocus(Ring)" -- see computeParametrizationOfHypLocus -- print commands which compute the parametrization
    • "findPointInP3xP5(Ring)" -- see findPointInP3xP5 -- find a point on the model in P3xP5
    • "fromLineToGodeauxSurface(Matrix)" -- see fromLineToGodeauxSurface -- compute a birational model of a numerical Godeaux surface from a given line
    • "fromLineToStandardResolution(Matrix)" -- see fromLineToStandardResolution -- compute a standard resolution F of an S-module R from a given line
    • "fromPointInP3xP3xP3xP3ToLine(Matrix)" -- see fromPointInP3xP3xP3xP3ToLine -- compute a line in Q from a point in the model in P3xP3xP3xP3
    • "fromPointInP3xP5ToPointInP3xP3xP3xP3(Matrix)" -- see fromPointInP3xP5ToPointInP3xP3xP3xP3 -- compute a point in the model in P3xP3xP3xP3
    • "furtherCollapsing(Ring)" -- see furtherCollapsing -- computes the 5-dimensional anti-canonical hypersurface in the cox ring of a toric variety
    • "getAMatrix(Matrix)" -- see getAMatrix -- compute the a-matrix of a given matrix
    • "getChainComplexes(Matrix,Matrix)" -- see getChainComplexes -- resolve the two linear submatrices of the solution matrices over the coordinate ring of the Pfaffians
    • "getEMatrix(Matrix)" -- see getEMatrix -- compute the e-matrix of a given matrix
    • "getP11(Matrix)" -- see getP11 -- the polynomial ring which depends only on the a-variables
    • "getRelationsAndNormalForm(Matrix,Matrix,Matrix)" -- see getRelationsAndNormalForm -- compute a minimal set of the relations and a normal form for d1' and d2
    • "globalVariables(Ring,String)" -- see globalVariables -- introduce the main variables for the construction
    • "homologyLocus(Matrix,Matrix)" -- see homologyLocus -- compute the homology of the two chain complexes C1 and C2
    • "isSmoothBihomModel(Ideal)" -- see isSmoothBihomModel -- check whether the model in P1xP3 is smooth or not
    • "isSmoothModelInP5(Ideal)" -- see isSmoothModelInP5 -- check whether the model in the weighted P5 is smooth or not
    • "jacobianQ(Matrix)" -- see jacobianQ -- compute the Jacobian matrix of the quadratic relations
    • "lineConditionsTorsZ2(Matrix,Matrix)" -- see lineConditionsTorsZ2 -- compute a list of possible loci for Z/2Z-Godeaux surfaces
    • "lineConditionsTorsZ4(Ideal,Ideal,Matrix,Matrix)" -- see lineConditionsTorsZ4 -- compute a list of possible loci for Z/4Z-Godeaux surfaces
    • "lineConditionsTorsZ5(Ideal,Ideal,Matrix,Matrix)" -- see lineConditionsTorsZ5 -- compute a list of possible loci for Z/5Z-Godeaux surfaces
    • "lowerRankLociA(Matrix,Matrix)" -- see lowerRankLociA -- compute the loci at which the rank of the a-matrix drops
    • "lowerRankLociA(Matrix,Matrix,Ring)" -- see lowerRankLociA -- compute the loci at which the rank of the a-matrix drops
    • "lowerRankLociE(Matrix,Matrix)" -- see lowerRankLociE -- compute the loci at which the rank of the e-matrix drops
    • "modelInP1BundleOverP2xP5(Matrix)" -- see modelInP1BundleOverP2xP5 -- compute the projection from a double point of H_{4,6}
    • "modelInP3xP3xP3xP3(Ring)" -- see modelInP3xP3xP3xP3 -- compute the model of the Fano variety F(Q) in P3xP3xP3xP3
    • "modelInP13(Ideal)" -- see modelInP13 -- compute the image of a variety in P(2,2,3,3,3,3) under a embedding to P13
    • "normalBundleLineInQ(Matrix,Matrix)" -- see normalBundleLineInQ -- compute the normal bundle of a line in Q
    • "pointOnARationalCodim1Hypersurface(ZZ)" -- see pointOnARationalCodim1Hypersurface -- choose a QQ-rational point on a codimension 1 rational subvariety of the model in P3xP5
    • "precomputedCoxModel(Ring)" -- see precomputedCoxModel -- load the equation of the 5-dimensional hypersurface in a Cox ring of a toric variety
    • "precomputedHyperellipticLocus(Ring)" -- see precomputedHyperellipticLocus -- get the ideal of the hyperelliptic locus
    • "precomputedHyperellipticPoint(Ring)" -- see precomputedHyperellipticPoint -- compute a point in the hyperelliptic locus using the unirational parametrization
    • "precomputedModelInP3xP3xP3xP3(Ring)" -- see precomputedModelInP3xP3xP3xP3 -- load the precomputed ideal of the model of F(Q) in P3xP3xP3xP3
    • "precomputedModelInP3xP5(Ring)" -- see precomputedModelInP3xP5 -- load the precomputed model
    • "precomputedTorsZ2Line(Ring)" -- see precomputedTorsZ2Line -- compute a line leading generically to a Z/2-Godeaux surface using a unirational parametrization
    • "precomputedTorsZ3Line(Ring)" -- see precomputedTorsZ3Line -- compute a line leading generically to a Z/3-Godeaux surface using a unirational parametrization
    • "precomputedTorsZ4Line(Ring)" -- see precomputedTorsZ4Line -- compute a line leading generically to a Z/4-Godeaux surface using a unirational parametrization
    • "precomputedTorsZ5Line(Ring)" -- see precomputedTorsZ5Line -- compute a line leading generically to a Z/5-Godeaux surface using a unirational parametrization
    • "randomGodeauxSurface(Ring)" -- see randomGodeauxSurface -- compute a birational model of a numerical Godeaux surface
    • "randomGodeauxSurface(Ring,String)" -- see randomGodeauxSurface -- compute a birational model of a numerical Godeaux surface
    • "randomGodeauxSurface(Ring,String,ZZ)" -- see randomGodeauxSurface -- compute a birational model of a numerical Godeaux surface
    • "randomGodeauxSurface(Ring,String,ZZ,ZZ)" -- see randomGodeauxSurface -- compute a birational model of a numerical Godeaux surface
    • "randomLine(Ideal,Ideal,Matrix,Ring)" -- see randomLine -- compute a line through a given point which is completely contained in the Pfaffian variety
    • "randomLine(Ideal,Matrix,Ring)" -- see randomLine -- compute a line through a given point which is completely contained in the Pfaffian variety
    • "randomLineTors0(Matrix,Matrix)" -- see randomLineTors0 -- compute a line for a torsion-free numerical Godeaux surface
    • "randomLineTors0(Matrix,Matrix,List,ZZ)" -- see randomLineTors0 -- compute a line for a torsion-free numerical Godeaux surface
    • "randomLineTorsZ2(Matrix,Matrix)" -- see randomLineTorsZ2 -- compute a line for a numerical Godeaux surface with a cyclic torsion group of order 2
    • "randomLineTorsZ3(Matrix,Matrix)" -- see randomLineTorsZ3 -- compute a line for a numerical Godeaux surface with a cyclic torsion group of order 3
    • "randomLineTorsZ4(Matrix,Matrix)" -- see randomLineTorsZ4 -- compute a line for a numerical Godeaux surface with a cyclic torsion group of order 4
    • "randomLineTorsZ5(Matrix,Matrix)" -- see randomLineTorsZ5 -- compute a line for a numerical Godeaux surface with a cyclic torsion group of order 5
    • "randomPoint(Ideal)" -- see randomPoint -- compute a rational point in a variety
    • "randomPoint(Ideal,List)" -- see randomPoint -- compute a rational point in a variety
    • "randomPoint(Ideal,Ring)" -- see randomPoint -- compute a rational point in a variety
    • "randomSection(Matrix,Matrix,Matrix)" -- see randomSection -- choose a point in the solution space defined by the linear relations
    • "randomStandardResolution(Ring)" -- see randomStandardResolution -- compute a random standard resolution of an S-module R
    • "randomStandardResolution(Ring,String)" -- see randomStandardResolution -- compute a random standard resolution of an S-module R
    • "randomStandardResolution(Ring,String,ZZ)" -- see randomStandardResolution -- compute a random standard resolution of an S-module R
    • "randomStandardResolution(Ring,String,ZZ,ZZ)" -- see randomStandardResolution -- compute a random standard resolution of an S-module R
    • "setupGeneralMatrices(ChainComplex,Matrix,Matrix)" -- see setupGeneralMatrices -- compute the general set-up for the construction
    • "setupGodeaux(Ring,String)" -- see setupGodeaux -- summarize the single steps for the general set-up of the construction
    • "setupSkewMatrices(Matrix,String)" -- see setupSkewMatrices -- compute four skew-symmetric matrices whose Pfaffians are among the quadratic relations
    • "singleSolutionMatricesLine(Matrix,Matrix)" -- see singleSolutionMatricesLine -- evaluate the single solution matrices at a line
    • "singleSolutionMatricesOverP11(Matrix)" -- see singleSolutionMatricesOverP11 -- display the single solution matrices over the P^n of a-variables
    • "singularLocusQ(Matrix)" -- see singularLocusQ -- compute the minimal primes of the singular locus of the Pfaffian relations
    • "solutionMatrix(Matrix)" -- see solutionMatrix -- display the relations linear in the c- and o-variables as a matrix
    • "standardResolution(Matrix,Matrix,Matrix,String)" -- see standardResolution -- compute a standard resolution of an S-module R obtained from the given input
    • "surfaceInWeightedP5(ChainComplex)" -- see surfaceInWeightedP5 -- compute the surface in P(2,2,3,3,3,3)
    • "surfaceInWeightedP5(Matrix)" -- see surfaceInWeightedP5 -- compute the surface in P(2,2,3,3,3,3)
    • "tangentSpacePoint(Ideal,Ideal,Matrix)" -- see tangentSpacePoint -- compute the complete intersection of quadrics in the tangent space at a given point
    • "tangentSpacePoint(Ideal,Matrix)" -- see tangentSpacePoint -- compute the complete intersection of quadrics in the tangent space at a given point
    • "tricanonicalModelInP3(Ideal)" -- see tricanonicalModelInP3 -- computes the tricanonical model of a numerical Godeaux surface in P3
    • "verifyAssertions(Matrix)" -- see verifyAssertions -- verify the ring condition
    • "verifyThmHypLocus(Ring)" -- see verifyThmHypLocus -- print commands which verify the assertions on the hyperelliptic locus
  • Symbols
    • Attempts -- optional argument in randomGodeauxSurface
    • Certify -- optional argument in randomGodeauxSurface
    • PrecomputedParametrization -- optional argument for using a precomputed unirational parametrization

For the programmer

The object NumericalGodeaux is a package.