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A Laurent polynomial has the form f :=
∑d

j=1 bj · z
α(j).

The variety of a Laurent polynomial f is denoted as V(f ).

For fixed exponents we denote the corresponding set as

A := {α(j) ∈ Z
n : 1 ≤ j ≤ d} .

The Newton polytope New(f ) of a Laurent polynomial f
is the polytope obtained by taking the convex hull of all its
exponent vectors, i.e. here we have New(f ) = convA.
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New(f ) do always exist (Forsberg, Passare, Tsikh).
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For α ∈ A we define UA
α ⊆ C

A as the set
{

f ∈ C
A
⋄ : Eα(f ) 6= ∅
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Since every f in C
A
⋄ is determined by its coefficient vector, we

may interpret CA
⋄ as projective space with dimension d = #A.
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Let f := b0 +
∑n

j=1 bj · zj . Then

C
A
⋄ = UA

α(0) = · · · = UA
α(n).

Unfortunately, this is the only example where all UA
α are known . . .

But:

Theorem (Rullg̊ard)

All UA
α are non–empty, pseudo–convex, semialgebraic sets. The

intersection of (UA
α )

c with an arbitrary projective line in C
A
⋄ is

non–empty and connected.
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A
⋄ :
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α?

How can the UA
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α connected? (“Jackpot question”)

MESSAGE OF THE TALK:
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n such that α(1), . . . , α(n + 1)
span up a simplex with barycenter α(0). Then:

UA
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Let f := 1 + b0 · z1 · · · zn +
∑n

j=1 z
n+1
j . Then A(f ) is solid if and

only if A(f ) contains the origin which is the case if and only if

b0 6∈ Kn := {−t0 − · · · − tn : tj ∈ C, |tj | = 1, t0 · · · tn = 1} .
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Example (Passare, Rullg̊ard)

Let f := 1 + b0 · z1 · · · zn +
∑n

j=1 z
n+1
j . Then A(f ) is solid if and

only if A(f ) contains the origin which is the case if and only if

b0 6∈ Kn := {−t0 − · · · − tn : tj ∈ C, |tj | = 1, t0 · · · tn = 1} .

K2 looks approximately the following way:
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1 Let P∆ be the class f := b0 +
∑n+1

j=1 bi · z
α(j) of Laurent–

polynomials with conv{α(1), . . . , α(n + 1)} being a simplex
containing the origin in the interior.

2 Let P∗
∆ ⊂ P∆ be the subclass with α(1) = −

∑n+1
j=2 α(j).
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Definition

Let f ∈ P∆. We define the equilibrium point eq(f ) ⊂ R
n as

the point with

|b1 · (Log
−1(eq(f )))α(1)| = · · · = |bn+1 · (Log

−1(eq(f )))α(n+1)|.
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The equilibrium point

Definition

Let f ∈ P∆. We define the equilibrium point eq(f ) ⊂ R
n as

the point with

|b1 · (Log
−1(eq(f )))α(1)| = · · · = |bn+1 · (Log

−1(eq(f )))α(n+1)|.

Remark

eq(f ) is the unique vertex of the tropical variety T (Trop(f − b0))
obtained by “naive” tropicalization via Log–valuation

Trop(f − b0) :=

n+1
⊕

j=1

log |bj | ⊙ 〈Log(z), α(j)〉
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Example

Let fb0 := 1 + b0 · z1 · · · zn +
∑n

j=1 z
n+1
j .
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Example

Let fb0 := 1 + b0 · z1 · · · zn +
∑n

j=1 z
n+1
j . After rescaling by

f → f · z−(1,...,1) we have f ∈ P∗
∆.
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Let fb0 := 1 + b0 · z1 · · · zn +
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j=1 z
n+1
j . After rescaling by

f → f · z−(1,...,1) we have f ∈ P∗
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∣
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The inner complement component of A(f ) with f ∈ P∗
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Theorem (Theobald, dW.)

Let fb0 be a family of parametric polynomials in P∗
∆ with

parameter b0 ∈ C.
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The inner complement component of A(f ) with f ∈ P∗
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Theorem (Theobald, dW.)

Let fb0 be a family of parametric polynomials in P∗
∆ with

parameter b0 ∈ C. Then the following statements are equivalent:

1 fb0 ∈ UA
0 (i.e. A(fb0) has genus 1),
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Theorem (Theobald, dW.)

Let fb0 be a family of parametric polynomials in P∗
∆ with

parameter b0 ∈ C. Then the following statements are equivalent:

1 fb0 ∈ UA
0 (i.e. A(fb0) has genus 1),

2 eq(f ) ∈ E0(fb0),

T. de Wolff The Configuration Space of Amoebas with barycentric Simplex Newton



Introduction
Complement components of amoebas for P∗

∆
Geometrical and topological structure of (UA

0 )c

The Jackpot question for P∗

∆

The inner complement component of A(f ) with f ∈ P∗
∆

Theorem (Theobald, dW.)

Let fb0 be a family of parametric polynomials in P∗
∆ with

parameter b0 ∈ C. Then the following statements are equivalent:

1 fb0 ∈ UA
0 (i.e. A(fb0) has genus 1),

2 eq(f ) ∈ E0(fb0),

3 b0 6∈
{

−|Θ| ·
∑n

j=0 e
i ·(arg(bj )+〈α(j),φ〉) : φ ∈ [0, 2π)n

}

.
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∆

The inner complement component of A(f ) with f ∈ P∗
∆

Sketch of proof for (1) ⇒ (2):

For every w ∈ R
n there is a fiberfunction

Fw,fb0
: [0, 2π)n → C, φ 7→ f (Log−1(w), φ).
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Sketch of proof for (1) ⇒ (2):

For every w ∈ R
n there is a fiberfunction

Fw,fb0
: [0, 2π)n → C, φ 7→ f (Log−1(w), φ).

Let w ∈ E0(fb0) with w 6= eq(f ).
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The inner complement component of A(f ) with f ∈ P∗
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Sketch of proof for (1) ⇒ (2):

For every w ∈ R
n there is a fiberfunction

Fw,fb0
: [0, 2π)n → C, φ 7→ f (Log−1(w), φ).

Let w ∈ E0(fb0) with w 6= eq(f ).
Investigate the tropical hypersurface T given by

n+1
⊕

j=1

log |bj | ⊙ 〈Log(z), α(j)〉
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The inner complement component of A(f ) with f ∈ P∗
∆

Sketch of proof for (1) ⇒ (2):

For every w ∈ R
n there is a fiberfunction

Fw,fb0
: [0, 2π)n → C, φ 7→ f (Log−1(w), φ).

Let w ∈ E0(fb0) with w 6= eq(f ).
Investigate the tropical hypersurface T given by

n+1
⊕

j=1

log |bj | ⊙ 〈Log(z), α(j)〉

Let A0, . . . ,An be the regions of Rn\T and let w.l.o.g.
w ∈ A0.

T. de Wolff The Configuration Space of Amoebas with barycentric Simplex Newton



Introduction
Complement components of amoebas for P∗

∆
Geometrical and topological structure of (UA

0 )c

The Jackpot question for P∗

∆

The inner complement component of A(f ) with f ∈ P∗
∆

Sketch of proof for (1) ⇒ (2):

For every w ∈ R
n there is a fiberfunction

Fw,fb0
: [0, 2π)n → C, φ 7→ f (Log−1(w), φ).

Let w ∈ E0(fb0) with w 6= eq(f ).
Investigate the tropical hypersurface T given by

n+1
⊕

j=1

log |bj | ⊙ 〈Log(z), α(j)〉

Let A0, . . . ,An be the regions of Rn\T and let w.l.o.g.
w ∈ A0.
Key step: For every Aj 6= A0 there exists a w(j) ∈ R

n such
that there is an isomorphism πw(j) on [0, 2π)n with

Fw,fb0
(φ) = Fw(j),fb0

(πw(j)(φ)).
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Sketch of proof for (1) ⇒ (2):

Key step: For every Aj 6= A0 there exists a w(j) ∈ R
n such

that there is an isomorphism πw(j) on [0, 2π)n with

Fw,fb0
(φ) = Fw(j),fb0

(πw(j)(φ)).

Thus, in particular w ∈ E0(fb0) ⇒ w(j) ∈ E0(fb0) for all j .
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The inner complement component of A(f ) with f ∈ P∗
∆

Sketch of proof for (1) ⇒ (2):

Key step: For every Aj 6= A0 there exists a w(j) ∈ R
n such

that there is an isomorphism πw(j) on [0, 2π)n with

Fw,fb0
(φ) = Fw(j),fb0

(πw(j)(φ)).

Thus, in particular w ∈ E0(fb0) ⇒ w(j) ∈ E0(fb0) for all j .

Hence, w ∈ E0(fb0) ⇒ conv{w,w(1), . . . ,w(n)} ⊂ E0(fb0)
since E0(fb0) is convex.
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The inner complement component of A(f ) with f ∈ P∗
∆

Sketch of proof for (1) ⇒ (2):

Key step: For every Aj 6= A0 there exists a w(j) ∈ R
n such

that there is an isomorphism πw(j) on [0, 2π)n with

Fw,fb0
(φ) = Fw(j),fb0

(πw(j)(φ)).

Thus, in particular w ∈ E0(fb0) ⇒ w(j) ∈ E0(fb0) for all j .

Hence, w ∈ E0(fb0) ⇒ conv{w,w(1), . . . ,w(n)} ⊂ E0(fb0)
since E0(fb0) is convex.

Therefore, w ∈ E0(fb0) ⇒ eq(f ) ∈ E0(fb0) since eq(f ) is
unique vertex of T .

�
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The inner complement component of A(f ) with f ∈ P∗
∆

Theorem (Theobald, dW.)

Let fb0 be a family of parametric polynomials in P∗
∆ with

parameter b0 ∈ C. Then the following statements are equivalent:

1 fb0 ∈ UA
0 (i.e. A(fb0) has genus 1),

2 eq(f ) ∈ E0(fb0),

3 b0 6∈
{

−|Θ| ·
∑n

j=0 e
i ·(arg(bj )+〈α(j),φ〉) : φ ∈ [0, 2π)n

}

.

Aim: Describe the geometric struture of the set

S :=
{

b0 ∈ C : V(Feq(f ),fb0
) 6= ∅

}
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Hypocycloids

Definition

For R > r , a hypocycloid with parameters R , r ∈ R>0 is the
parametric curve in R

2 ∼= C given by

(R − r) · e i ·φ + r · e i ·(
r−R
r )·φ, φ ∈ [0, 2π).
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Definition

For R > r , a hypocycloid with parameters R , r ∈ R>0 is the
parametric curve in R

2 ∼= C given by

(R − r) · e i ·φ + r · e i ·(
r−R
r )·φ, φ ∈ [0, 2π).

Geometrically, it is the trajectory of some fixed point on a circle
with radius r rolling (from the interior) on a circle with radius R .
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For R > r , a hypocycloid with parameters R , r ∈ R>0 is the
parametric curve in R

2 ∼= C given by

(R − r) · e i ·φ + r · e i ·(
r−R
r )·φ, φ ∈ [0, 2π).

Geometrically, it is the trajectory of some fixed point on a circle
with radius r rolling (from the interior) on a circle with radius R .
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Definition

For R > r , a hypocycloid with parameters R , r ∈ R>0 is the
parametric curve in R

2 ∼= C given by

(R − r) · e i ·φ + r · e i ·(
r−R
r )·φ, φ ∈ [0, 2π).

Geometrically, it is the trajectory of some fixed point on a circle
with radius r rolling (from the interior) on a circle with radius R .
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0 )

c

Theorem (Theobald, dW.)

Let A := {0, α(1), . . . , α(n + 1)} ⊂ Z
n such that convA is a

simplex with barycenter 0.
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0 )

c

Theorem (Theobald, dW.)

Let A := {0, α(1), . . . , α(n + 1)} ⊂ Z
n such that convA is a

simplex with barycenter 0. For b1, . . . , bn+1 ∈ C
∗ the intersection

of ∂(UA
0 )

c with h := {(b0 : b1 : · · · : bn+1) : b0 ∈ C} is the
hypocycloid with parameters R = (n + 1) · |Θ|, r = |Θ| and cusps
at

arg(b0) = π ·

(

1 +
2k −

∑n
i=1 arg(bi)

n + 1

)

, k ∈ {0, . . . , n}.

T. de Wolff The Configuration Space of Amoebas with barycentric Simplex Newton



Introduction
Complement components of amoebas for P∗

∆
Geometrical and topological structure of (UA

0 )c

The Jackpot question for P∗

∆

Geometrical and topological structure of (UA
0 )

c

Theorem (Theobald, dW.)

Let A := {0, α(1), . . . , α(n + 1)} ⊂ Z
n such that convA is a

simplex with barycenter 0. For b1, . . . , bn+1 ∈ C
∗ the intersection

of ∂(UA
0 )

c with h := {(b0 : b1 : · · · : bn+1) : b0 ∈ C} is the
hypocycloid with parameters R = (n + 1) · |Θ|, r = |Θ| and cusps
at

arg(b0) = π ·

(

1 +
2k −

∑n
i=1 arg(bi)

n + 1

)

, k ∈ {0, . . . , n}.

Furthermore, (UA
0 )

c is simply connected.
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Example

We investigate the parametric family of polynomials

fb0 = b0 + z−1
1 z−3

2 + 2.4 · z11z
−2
2 + (1 + 1.3i) · z52 .
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Example

Example

We investigate the parametric family of polynomials

fb0 = b0 + z−1
1 z−3

2 + 2.4 · z11z
−2
2 + (1 + 1.3i) · z52 .

Then C
A
⋄ ∩ {(b0 : 1 : 2.4 : 1 + 1.3 · i) : b0 ∈ C} looks approximately

the following way:
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Sketch of proof

By former theorem: ∂S = ∂(UA
α(0))

c ∩ h with

S =
{

b0 ∈ C : V(Feq(0),fb0
) 6= ∅

}

.
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Sketch of proof

By former theorem: ∂S = ∂(UA
α(0))

c ∩ h with

S =
{

b0 ∈ C : V(Feq(0),fb0
) 6= ∅

}

.

Let k := −n + 1 + (−1)n+1 and

F : [k , n]× [0, 2π) → C,

(µ,ψ) 7→ |Θ| · µ · e i ·ψ + |Θ| · e i ·(−n·ψ+
∑n

j=1 arg(bj )).
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α(0))

c ∩ h with

S =
{

b0 ∈ C : V(Feq(0),fb0
) 6= ∅

}

.

Let k := −n + 1 + (−1)n+1 and

F : [k , n]× [0, 2π) → C,

(µ,ψ) 7→ |Θ| · µ · e i ·ψ + |Θ| · e i ·(−n·ψ+
∑n

j=1 arg(bj )).

1 The image of F is contained in S ,
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By former theorem: ∂S = ∂(UA
α(0))

c ∩ h with

S =
{

b0 ∈ C : V(Feq(0),fb0
) 6= ∅

}

.

Let k := −n + 1 + (−1)n+1 and

F : [k , n]× [0, 2π) → C,

(µ,ψ) 7→ |Θ| · µ · e i ·ψ + |Θ| · e i ·(−n·ψ+
∑n

j=1 arg(bj )).

1 The image of F is contained in S ,
2 Up to a rotation, the curve parametrized by φ 7→ F (n, φ) for
φ ∈ [0, 2π) is a hypocyloid with R = (n + 1) · |Θ|, r = |Θ|.
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Sketch of proof

By former theorem: ∂S = ∂(UA
α(0))

c ∩ h with

S =
{

b0 ∈ C : V(Feq(0),fb0
) 6= ∅

}

.

Let k := −n + 1 + (−1)n+1 and

F : [k , n]× [0, 2π) → C,

(µ,ψ) 7→ |Θ| · µ · e i ·ψ + |Θ| · e i ·(−n·ψ+
∑n

j=1 arg(bj )).

1 The image of F is contained in S ,
2 Up to a rotation, the curve parametrized by φ 7→ F (n, φ) for
φ ∈ [0, 2π) is a hypocyloid with R = (n + 1) · |Θ|, r = |Θ|.

Let T denote the region whose boundary is the hypocycloid
given by φ 7→ F (n, φ) for φ ∈ [0, 2π). Then S ⊆ T and
∂T ⊆ ∂S .
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Sketch of proof

Let T denote the region whose boundary is the hypocycloid
given by φ 7→ F (n, φ) for φ ∈ [0, 2π). Then S ⊆ T and
∂T ⊆ ∂S .
The set S equals the region T whose boundary is the
hypocycloid with parameter R = (n + 1) · |Θ|, r = |Θ| given
by φ 7→ F (n, φ) for φ ∈ [0, 2π). In particular, S is simply
connected.
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∆

The Jackpot question for P∗
∆

Theorem (Theobald, dW.)

Let CA ⊂ P∗
∆. Then UA

0 is pathconnected.

It suffices to show:

Theorem (Theobald, dW.)

Let A := {α(1), . . . , α(d)}. If for every b the set

{(λ · b1 : · · · : bd ) : λ ∈ C} ∩
(

UA
α(1)

)c

is simply connected, then UA
α(1) is pathconnected.
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The Jackpot question for P∗

∆

Proof

b := (b1 : b2 : · · · : bd )
�� b′ := (b′1 : b′2 : · · · : b′d )

HH

g := {(λ : b2 : · · · : bd ) : λ ∈ C}�� g′ := {(λ : b′2 : · · · : b′d ) : λ ∈ C}HH

Im(b1)

Re(b1)

b2, . . . , bd

Let b, b′ ∈ UA
α(1) ⊂ C

A
⋄ in complex lines g , g ′.
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Proof

g ∩
(

UA
α(1)

)c��
g′ ∩

(

UA
α(1)

)cHH

Im(b1)

Re(b1)

b2, . . . , bd

g ∩
(

UA
α(1)

)c

, g ′ ∩
(

UA
α(1)

)c

simply connected.
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The Jackpot question for P∗

∆

Proof

σ(b, b′)
A
A

Im(b1)

Re(b1)

b2, . . . , bd

Investigate line segment σ(b, b′) := b − λ · (b′ − b),
λ ∈ [0, 1].
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Proof

Im(b1)

Re(b1)

b2, . . . , bd

∀p ∈ σ(b, b′) ⊂ C
A
⋄ compute minimal value of |b1|, such

that ∃w ∈ R
n with fp{w} being lopsided with dominating

term b1 · z
α(1).
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Im(b1)

Re(b1)

b2, . . . , bd

∀p ∈ σ(b, b′) ⊂ C
A
⋄ compute minimal value of |b1|, such

that ∃w ∈ R
n with fp{w} being lopsided with dominating

term b1 · z
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The Jackpot question for P∗

∆

Proof

Im(b1)

Re(b1)

b2, . . . , bd

Take the maximum |b̃1| of all these values.
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The Jackpot question for P∗

∆

Proof

b̃ := (|b̃1| · arg(b1) + 1 : b2 : · · · : bd )
��

b̃′ := (|b̃1| · arg(b
′

1) + 1 : b′2 : · · · : b′d )

HH

Im(b1)

Re(b1)

b2, . . . , bd

Investigate the points b̃, b̃′;
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The Jackpot question for P∗

∆

Proof

γ1
��

γ2
H

Im(b1)

Re(b1)

b2, . . . , bd

Investigate the points b̃, b̃′; construct pathes γ1 from b to
b̃ and γ2 from b̃′ to b′.
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Proof

contained in UA
α(1)

contained in UA
α(1)

Im(b1)

Re(b1)

b2, . . . , bd

γ1 can be constructed in UA
α(1) since b, b̃ ∈ UA

α(1) and

(UA
α(1))

c ∩ g is simply connected (analogue for γ2).
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The Jackpot question for P∗
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Proof

b̃′′ := (|b̃′1| · arg(b
′

1) + 1 : |b2| · arg(b
′

2) : · · · : |bd | · arg(b
′

d ))

HH
Im(b1)

Re(b1)

b2, . . . , bd

Investigate b̃′′;
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The Jackpot question for P∗

∆

Proof

γ3
HH

Im(b1)

Re(b1)

b2, . . . , bd

Investigate b̃′′; construct path γ3 from b̃ to b̃′′ in
Tb̃ := {(e i ·φ1 · |b̃1| · arg(b1) : e

i ·φ2 · b2 : · · · : e
i ·φd · bd ) :

φ1, . . . , φd ∈ [0, 2π)}.
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Proof

contained in T
b̃
and thus in UA

α(1)Im(b1)

Re(b1)

b2, . . . , bd

γ3 ∈ UA
α(1) since: if fb{w} is lopsided for some w ∈ R

n,

then fb′{w} is lopsided for every b′ ∈ Tfb .
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The Jackpot question for P∗

∆

Proof

γ4
HH

Im(b1)

Re(b1)

b2, . . . , bd

Construct γ4 as line segment b̃′′ + λ · (b̃′ − b̃′′), λ ∈ [0, 1].
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The Jackpot question for P∗

∆

Proof

contained in UA
α(1) by construction of |b̃1|

Im(b1)

Re(b1)

b2, . . . , bd

γ4 lies on affine line b̃′′+µ · (0, |b2| − |b2|
′, . . . , |bd | − |bd |

′).
Every point of this line between b̃′′ and b̃′ is lopsided due
to construction of |b̃1|. Hence, γ4 ∈ UA

α(1).
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0 )c
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∆

Proof

contained in UA
α(1) by construction of |b̃1|

Im(b1)

Re(b1)

b2, . . . , bd

Thus, γ := γ2 ◦ γ4 ◦ γ3 ◦ γ1 is contained in UA
α(1) and

therefore b and b′ are pathconnected.
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Thank you for your attention!
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