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The variety of a polynomial f is denoted as V(f ).

C
n will always be interpreted as R

n ×
(
S1

)n
(i.e.: in polar

coordinates). Hence every point c ∈ C has the form

c = |c | · e iπ·arg(c)
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Notation

All polynomials are in C[z] with z := z1 · · · zn.

The variety of a polynomial f is denoted as V(f ).

C
n will always be interpreted as R

n ×
(
S1

)n
(i.e.: in polar

coordinates). Hence every point c ∈ C has the form

c = |c | · e iπ·arg(c)

with arg(c) ∈ [0, 2] and |c | denoting the modulus.

The Newton polytope of a polynomial f is the polytope
obtained by taking the convex hull of all its exponent vectors
interpreted as points in Z

n and will be denoted as New(f ).
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Notation

Example

Let f := z2
1z3

2 + 2z2
1z2

2 + 4z1z
2
2 + z1z2 + 3z2

2 + 1. Then we have

New(f ) := conv

{
(2, 3)t , (2, 2)t , (1, 2)t , (1, 1)t , (0, 2)t , (0, 0)t

}
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What is an amoeba?

Definition (Gelfand, Kapranov, Zelevinsky)

Let f ∈ C[z] with variety V(f ) ⊂ (C∗)n. Define the Log-map as:

Log : (C∗)n → R
n,

(|z1| · e
i ·φ1, . . . , |zn| · e

i ·φn) 7→ (log |z1|, . . . , log |zn|)
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What is an amoeba?

Definition (Gelfand, Kapranov, Zelevinsky)

Let f ∈ C[z] with variety V(f ) ⊂ (C∗)n. Define the Log-map as:

Log : (C∗)n → R
n,

(|z1| · e
i ·φ1, . . . , |zn| · e

i ·φn) 7→ (log |z1|, . . . , log |zn|)

Then the amoeba A(f ) of f is the image of V(f ) under the
Log-map.
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Basic properties of amoebas

Let f ∈ C[z] with amoeba A(f ). Then:

A(f ) is a closed set with non–empty complement (Gelfand,
Kapranov, Zelevinksy).

Each complement component of A(f ) is convex (Forsberg,
Passare, Tsikh).

Each complement component of A(f ) corresponds uniquely to
a lattice point in New(f ) and hence to a monomial in f (via
the so called order map). Wether a complement component
of A(f ) exists or not depends on the choice of the coefficients
of f . The complement components corresponding to the
vertices of New(f ) do always exist (Forsberg, Passare, Tsikh).

Every configuration of existing and non-existing inner
complement components is possible (Rullg̊ard).
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Two major problems on amoebas

For which choices of the coefficients of a polynomial do
specific complement components exist?

At which points of the amoeba do inner complement
components appear?

MESSAGE OF THE TALK:
These two problems are hard in general but may be solved

for a rich subclass of polynomials!
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Motivation

Observation (Forsberg)

An amoeba A(f ) in dimension 2 looks like a thickened graph being
in some way dual to New(f ).

Aim

Define a nice polyhedral complex structure on A(f ) preserving the
homotopy of A(f ).
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The Ronkin function

Definition (Ronkin)

Let f ∈ C[z]. Then the Ronkin function is defined as

Nf : Log ((C∗)n) → R,

w 7→
1

(2πi)n

∫

Log−1(w)

log |f (z1, . . . , zn)|

z1 · · · zn

dz1 · · · dzn.
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The Ronkin function

Definition (Ronkin)

Let f ∈ C[z]. Then the Ronkin function is defined as

Nf : Log ((C∗)n) → R,

w 7→
1

(2πi)n

∫

Log−1(w)

log |f (z1, . . . , zn)|

z1 · · · zn

dz1 · · · dzn.

The Ronkin function maps every point w to the average
log–value of f on the fibre of w under the Log–map.
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The Ronkin function

Definition (Ronkin)

Let f ∈ C[z]. Then the Ronkin function is defined as

Nf : Log ((C∗)n) → R,

w 7→
1

(2πi)n

∫

Log−1(w)

log |f (z1, . . . , zn)|

z1 · · · zn

dz1 · · · dzn.

The Ronkin function maps every point w to the average
log–value of f on the fibre of w under the Log–map.

The Ronkin function is convex and piecewise linear on each
complement component of A(f ).
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The spine of an amoeba

Define

f :=

m∑

i=1

bi · z
x (i)

∈ C[z]

with x(i) ∈ Z
n.
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The spine of an amoeba

Define

f :=

m∑

i=1

bi · z
x (i)

∈ C[z]

with x(i) ∈ Z
n.

On each complement component of A(f ) we have

Nf (w) = βx (i) +
〈
w, x(i)

〉
.
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The spine of an amoeba

Define

f :=

m∑

i=1

bi · z
x (i)

∈ C[z]

with x(i) ∈ Z
n.

On each complement component of A(f ) we have

Nf (w) = βx (i) +
〈
w, x(i)

〉
.

Idea:

1 Extend each of these hyperplanes on complete R
n,
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Define

f :=

m∑

i=1

bi · z
x (i)

∈ C[z]

with x(i) ∈ Z
n.

On each complement component of A(f ) we have

Nf (w) = βx (i) +
〈
w, x(i)

〉
.

Idea:

1 Extend each of these hyperplanes on complete R
n,

2 take the maximum at each point of R
n,
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The spine of an amoeba

Define

f :=

m∑

i=1

bi · z
x (i)

∈ C[z]

with x(i) ∈ Z
n.

On each complement component of A(f ) we have

Nf (w) = βx (i) +
〈
w, x(i)

〉
.

Idea:

1 Extend each of these hyperplanes on complete R
n,

2 take the maximum at each point of R
n,

3 take the subset of R
n where the maximum is attained at least

twice.
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The spine of an amoeba

Definition (Passare, Rullg̊ard)

Define

A :=
{
x(i) ∈ Z

n
∣∣∣ A(f ) has compl. comp. of order x(i)

}
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The spine of an amoeba

Definition (Passare, Rullg̊ard)

Define

A :=
{
x(i) ∈ Z

n
∣∣∣ A(f ) has compl. comp. of order x(i)

}

Then the spine S(f ) of f is defined as the set of points where

S(w) := max
x (i)∈A

(
βx (i) +

〈
x(i),w

〉)
.

is not smooth.
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Advantages:

The spine S(f ) is a polyhedral complex.

S(f ) is a deformation retraction of the amoeba A(f )
(Passare, Rullg̊ard).

S(f ) is dual to some regular, integral subdivision of New(f ).
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Properties of the spine

Advantages:

The spine S(f ) is a polyhedral complex.

S(f ) is a deformation retraction of the amoeba A(f )
(Passare, Rullg̊ard).

S(f ) is dual to some regular, integral subdivision of New(f ).

The spine is the zero locus of the tropical polynomial

⊕

x (i)∈A

log |βx (i) | ⊙
〈
w, x(i)

〉

T. de Wolff Amoebas of genus at most 1



Introduction
The spine and the amoebas equilibrium

Boundaries for the inner complement component
Lopsidedness and A–discriminants

Properties of the spine

Disadvantages:

T. de Wolff Amoebas of genus at most 1



Introduction
The spine and the amoebas equilibrium

Boundaries for the inner complement component
Lopsidedness and A–discriminants

Properties of the spine

Disadvantages:

The spine is defined over the existing complement
components of A(f ).

T. de Wolff Amoebas of genus at most 1



Introduction
The spine and the amoebas equilibrium

Boundaries for the inner complement component
Lopsidedness and A–discriminants

Properties of the spine

Disadvantages:

The spine is defined over the existing complement
components of A(f ). Therefore one has to know the
homotopy of A(f ) to compute the spine.
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Properties of the spine

Disadvantages:

The spine is defined over the existing complement
components of A(f ). Therefore one has to know the
homotopy of A(f ) to compute the spine.

The Ronkin coefficients βx (i) may not be described in a
combinatorial way out of the original polynomial f since they
are given by

βx (i) = log |bi |︸ ︷︷ ︸
coefficient of zx(i)

+ convergent laurent series
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The amoebas equilibrium

Definition

Let f :=
∑m

i=1 bi · z
x (i)

∈ C[z] and A denote the lattice points
whose corresponding compl. comp. in A(f ) exists. Then we define:
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The amoebas equilibrium

Definition

Let f :=
∑m

i=1 bi · z
x (i)

∈ C[z] and A denote the lattice points
whose corresponding compl. comp. in A(f ) exists. Then we define:

(a) The equilibrium E(f ) of f as the set of all w ∈ Log ((C∗)n)
s.t. at least two monomials of f have the same modular value
on Log−1(w).
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The amoebas equilibrium

Definition

Let f :=
∑m

i=1 bi · z
x (i)

∈ C[z] and A denote the lattice points
whose corresponding compl. comp. in A(f ) exists. Then we define:

(a) The equilibrium E(f ) of f as the set of all w ∈ Log ((C∗)n)
s.t. at least two monomials of f have the same modular value
on Log−1(w).

(b) The amoebas equilibrium V(Trop(f|A)) as the zero locus of

Trop(f|A) :=

n⊕

i∈{j | x (j)∈A}

log |bi | ⊙ 〈w, x(i)〉.
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The amoebas equilibrium

Remark

We have
V(Trop(f|A)) ⊆ E(f ).

T. de Wolff Amoebas of genus at most 1



Introduction
The spine and the amoebas equilibrium

Boundaries for the inner complement component
Lopsidedness and A–discriminants

The amoebas equilibrium

Remark

We have
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The amoebas equilibrium

Remark

We have
V(Trop(f|A)) ⊆ E(f ).

Both structures are polyhedral complexes.

V(Trop(f|A)) is dual to a regular integral subdivision of
New(f ).

We call the vertices of E(f ) where n + 1 monomials have the
same weight the equilibrium points of f .
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Example
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Restriction to genus at most 1

From now on we restrict ourselves to polynomials f with

simplex Newton polytope,

besides vertices only one additional monomial with lattice
point in the interior of New(f ).

f =
n∑

i=0

bi · z
x (i)

︸ ︷︷ ︸
vertices of New(f )

+ c · zy
︸ ︷︷ ︸

inner lattice point

∈ C[z].

.
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Restriction to genus at most 1

From now on we restrict ourselves to polynomials f with

simplex Newton polytope,

besides vertices only one additional monomial with lattice
point in the interior of New(f ).

f =
n∑

i=0

bi · z
x (i)

︸ ︷︷ ︸
vertices of New(f )

+ c · zy
︸ ︷︷ ︸

inner lattice point

∈ C[z].

W.l.o.g. we define b0 := 1, x(0) := (0, . . . , 0)T and say f is (∆, ·).
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Rough boundary theorem

Aim

Let b1, . . . , bn be arbitrary. Find general boundaries for |c |
depending on b1, . . . , bn and arg(c) s.t. A(f ) has genus 0 resp.
genus 1.
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Rough boundary theorem

Theorem (Theobald, dW.)

Let f =
∑n

i=0 bi · z
x (i)

+ c · zy .
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Rough boundary theorem

Theorem (Theobald, dW.)

Let f =
∑n

i=0 bi · z
x (i)

+ c · zy . Define

Θ :=




n∏

i=1

|bi |
det

„

M(x(i):=y)

«




1/ det(M)

.

Then we have:
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Rough boundary theorem

Theorem (Theobald, dW.)

Let f =
∑n

i=0 bi · z
x (i)

+ c · zy . Define

Θ :=




n∏

i=1

|bi |
det

„

M(x(i):=y)

«




1/ det(M)

.

Then we have:

(a) For all arg(c) A(f ) has genus 1 if

|c | > (n + 1) · Θ.
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Rough boundary theorem

Theorem (Theobald, dW.)

Let f =
∑n

i=0 bi · z
x (i)

+ c · zy . Define

Θ :=




n∏

i=1

|bi |
det

„

M(x(i):=y)

«




1/ det(M)

.

Then we have:

(a) For all arg(c) A(f ) has genus 1 if

|c | > (n + 1) · Θ.

(b) For all arg(c) A(f ) has genus 0 if

|c | ≤ Θ.
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δ ρ(0)ρ(1)

ρ(2)
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Sketch of proof

δ ρ(0)ρ(1)

ρ(2)

Lemma (Theobald, dW.)

All the equilibrium points δ, ρ(0), . . . , ρ(n) may be calculated in
terms of b0, . . . , bn, c and the exponents of f .
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Sketch of proof

Observe:

There is a choice for |c | s.t. δ = ρ(0) = · · · = ρ(n).
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Sketch of proof

δ ρ(0)ρ(1)

ρ(2)

Observe:

If V(Trop(f|A)) has genus 1, then |c | has to be larger than this

choice and δ will lie inside the simplex spaned up by the ρ(i).
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Observe:

There is a choice for |c | s.t. δ = ρ(0) = · · · = ρ(n).

If V(Trop(f|A)) has genus 1, then |c | has to be larger than this

choice and δ will lie inside the simplex spaned up by the ρ(i).
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Sketch of proof

Observe:

There is a choice for |c | s.t. δ = ρ(0) = · · · = ρ(n).

If V(Trop(f|A)) has genus 1, then |c | has to be larger than this

choice and δ will lie inside the simplex spaned up by the ρ(i).

Idea:

Investigate the fibre Log−1(δ) of δ under the Log–map.
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Sketch of proof

The fibre under the Log–map is an n–Torus

(C∗)n = R
n
>0 ×

(
S1

)n
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Sketch of proof

f
(
Log−1(δ)

)
=

|c |

Θ
· e i ·π·(arg(c)+〈φ,y〉) +

n∑

j=0

e i ·π·(arg(bj )+〈φ,x (j)〉)
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Sketch of proof

f
(
Log−1(δ)

)
=

|c |

Θ
· e i ·π·(arg(c)+〈φ,y〉) +

n∑

j=0

e i ·π·(arg(bj )+〈φ,x (j)〉)

If A(f ) has genus 1: Trop(f|A) = Trop(f ) and δ 6∈ V(Trop(f ))
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Sketch of proof

f
(
Log−1(δ)

)
=

|c |

Θ
· e i ·π·(arg(c)+〈φ,y〉) +

n∑

j=0

e i ·π·(arg(bj )+〈φ,x (j)〉)

If A(f ) has genus 1: Trop(f|A) = Trop(f ) and δ 6∈ V(Trop(f ))

⇒ |c | > Θ.

This is part (b).

T. de Wolff Amoebas of genus at most 1



Introduction
The spine and the amoebas equilibrium

Boundaries for the inner complement component
Lopsidedness and A–discriminants

Sketch of proof

f
(
Log−1(δ)

)
=

|c |

Θ
· e i ·π·(arg(c)+〈φ,y〉) +

n∑

j=0

e i ·π·(arg(bj )+〈φ,x (j)〉)

If A(f ) has genus 1: Trop(f|A) = Trop(f ) and δ 6∈ V(Trop(f ))

⇒ |c | > Θ.

This is part (b). Furthermore:

∀φ ∈ [0, 2]n :
n∑

j=0

e i ·π·(arg(bj )+〈φ,x (j)〉) ≤ n + 1
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f
(
Log−1(δ)

)
=

|c |

Θ
· e i ·π·(arg(c)+〈φ,y〉) +

n∑

j=0

e i ·π·(arg(bj )+〈φ,x (j)〉)

If A(f ) has genus 1: Trop(f|A) = Trop(f ) and δ 6∈ V(Trop(f ))

⇒ |c | > Θ.

This is part (b). Furthermore:

∀φ ∈ [0, 2]n :
n∑

j=0

e i ·π·(arg(bj )+〈φ,x (j)〉) ≤ n + 1

Hence: ∀φ ∈ [0, 2]n : |c | > (n + 1) · Θ ⇒ f
(
Log−1(δ)

)
(φ) 6= 0
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f
(
Log−1(δ)

)
=

|c |

Θ
· e i ·π·(arg(c)+〈φ,y〉) +

n∑

j=0

e i ·π·(arg(bj )+〈φ,x (j)〉)

If A(f ) has genus 1: Trop(f|A) = Trop(f ) and δ 6∈ V(Trop(f ))

⇒ |c | > Θ.

This is part (b). Furthermore:

∀φ ∈ [0, 2]n :
n∑

j=0

e i ·π·(arg(bj )+〈φ,x (j)〉) ≤ n + 1

Hence: ∀φ ∈ [0, 2]n : |c | > (n + 1) · Θ ⇒ f
(
Log−1(δ)

)
(φ) 6= 0

⇒ δ 6∈ A(f )
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Sketch of proof

f
(
Log−1(δ)

)
=

|c |

Θ
· e i ·π·(arg(c)+〈φ,y〉) +

n∑

j=0

e i ·π·(arg(bj )+〈φ,x (j)〉)

If A(f ) has genus 1: Trop(f|A) = Trop(f ) and δ 6∈ V(Trop(f ))

⇒ |c | > Θ.

This is part (b). Furthermore:

∀φ ∈ [0, 2]n :
n∑

j=0

e i ·π·(arg(bj )+〈φ,x (j)〉) ≤ n + 1

Hence: ∀φ ∈ [0, 2]n : |c | > (n + 1) · Θ ⇒ f
(
Log−1(δ)

)
(φ) 6= 0

⇒ δ 6∈ A(f )

⇒ genus of A(f ) is 1.
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Questions on the rough boundary theorem

Questions:

Where does the inner complement component appear? At δ?

Is the upper bound sharp for some particular arg(c)?

Answer:
Only if

y =
1

n + 1
·

n∑

i=0

x(i)

i.e. only if y is the barycenter of the simplex New(f ).
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The position of y in New(f )

Obervation:

The inner complement component appears at the point δ + ν of
A(f ) were — roughly spoken — the “inner monomial” has
maximum weight with respect to the sum of all others.
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The position of y in New(f )

Obervation:

The inner complement component appears at the point δ + ν of
A(f ) were — roughly spoken — the “inner monomial” has
maximum weight with respect to the sum of all others.

Idea:

Compute this extremal point, investigate its fibre and compute a
sharp boundary in b1, . . . , bn for |c | to switch from genus 0 to
genus 1.
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The position of y in New(f )

Idea:

Compute this extremal point, investigate its fibre and compute a
sharp boundary in b1, . . . , bn for |c | to switch from genus 0 to
genus 1.
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The position of y in New(f )

Idea:

Compute this extremal point, investigate its fibre and compute a
sharp boundary in b1, . . . , bn for |c | to switch from genus 0 to
genus 1.

In general nasty because δ + ν and the boundary depends on
the choice of arg(c).
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The position of y in New(f )

Idea:

Compute this extremal point, investigate its fibre and compute a
sharp boundary in b1, . . . , bn for |c | to switch from genus 0 to
genus 1.

In general nasty because δ + ν and the boundary depends on
the choice of arg(c).

BUT: Everything becomes nice if we are allowed to choose
arg(c) s.t. |c | has to be maximal with respect to arg(c) until
A(f ) has genus 1.
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Main Theorem

Theorem (Theobald, dW.)

Let f =
∑n

i=0 bi · z
x (i)

+ c · zy . Then we have:
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Main Theorem

Theorem (Theobald, dW.)

Let f =
∑n

i=0 bi · z
x (i)

+ c · zy . Define

Θ̂ :=




n∏

i=1



 det(N) · |bi |

det
(
N(x (i):=2y)

)




det

„

M(x(i):=y)

«



1/ det(M)

.

Then we have:
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Main Theorem

Theorem (Theobald, dW.)

Let f =
∑n

i=0 bi · z
x (i)

+ c · zy . Then we have:

(a) A(f ) has genus 1 for all arg(c) if

|c | > Θ̂ ·



1 +
n∑

j=1

det
(
N(x (j):=2y)

)

det(N)




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Main Theorem

Theorem (Theobald, dW.)

Let f =
∑n

i=0 bi · z
x (i)

+ c · zy . Then we have:

(a) A(f ) has genus 1 for all arg(c) if

|c | > Θ̂ ·



1 +
n∑

j=1

det
(
N(x (j):=2y)

)

det(N)





(b) For at last one arg(c) this boundary is sharp.
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Main Theorem

Theorem (Theobald, dW.)

Let f =
∑n

i=0 bi · z
x (i)

+ c · zy . Then we have:

(a) A(f ) has genus 1 for all arg(c) if

|c | > Θ̂ ·



1 +
n∑

j=1

det
(
N(x (j):=2y)

)

det(N)





(b) For at last one arg(c) this boundary is sharp. For this arg(c)
the hole will appear at the point ν + δ ∈ A(f ) which can be
computed explicitly.
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Main Theorem

Theorem (Theobald, dW.)

Let f =
∑n

i=0 bi · z
x (i)

+ c · zy . Then we have:

(a) A(f ) has genus 1 for all arg(c) if

|c | > Θ̂ ·



1 +
n∑

j=1

det
(
N(x (j):=2y)

)

det(N)





(b) For at last one arg(c) this boundary is sharp. For this arg(c)
the hole will appear at the point ν + δ ∈ A(f ) which can be
computed explicitly.

(c) For all arg(c) the exact boundary can be rewritten as the
solution of some particular optimization problem.
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Lopsidedness
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Lopsidedness

Let g ∈ C
[
z±1

]
s.t.

g(z) =

d∑

i=1

mi(z).
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Lopsidedness

Let g ∈ C
[
z±1

]
s.t.

g(z) =

d∑

i=1

mi(z).

For w ∈ Log ((C∗)n) define

g{w} :=
(∣∣m1

(
Log−1(w)

)∣∣ , . . . ,
∣∣md

(
Log−1(w)

)∣∣) .
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Lopsidedness

Let g ∈ C
[
z±1

]
s.t.

g(z) =

d∑

i=1

mi(z).

For w ∈ Log ((C∗)n) define

g{w} :=
(∣∣m1

(
Log−1(w)

)∣∣ , . . . ,
∣∣md

(
Log−1(w)

)∣∣) .

We call such a list lopsided if one of the numbers is greater
than the sum of all the others.
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Lopsidedness

Let g ∈ C
[
z±1

]
s.t.

g(z) =

d∑

i=1

mi(z).

For w ∈ Log ((C∗)n) define

g{w} :=
(∣∣m1

(
Log−1(w)

)∣∣ , . . . ,
∣∣md

(
Log−1(w)

)∣∣) .

We call such a list lopsided if one of the numbers is greater
than the sum of all the others. We define

LA(g) := {w ∈ Log ((C∗)n) | g{w} is not lopsided} .
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Lopsidedness

Let g ∈ C
[
z±1

]
s.t.

g(z) =

d∑

i=1

mi(z).

For w ∈ Log ((C∗)n) define

g{w} :=
(∣∣m1

(
Log−1(w)

)∣∣ , . . . ,
∣∣md

(
Log−1(w)

)∣∣) .

We call such a list lopsided if one of the numbers is greater
than the sum of all the others. We define

LA(g) := {w ∈ Log ((C∗)n) | g{w} is not lopsided} .

It is easy to see that A(g) ⊆ LA(g).
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Lopsidedness

Define

g̃r (z) :=

r−1∏

k1=0

· · ·

r−1∏

kd=0

g
(
e2πik1/r z1, . . . , e

2πikd /r zn

)

Then the following theorem holds:
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Lopsidedness

Define

g̃r (z) :=

r−1∏

k1=0

· · ·

r−1∏

kd=0

g
(
e2πik1/r z1, . . . , e

2πikd /r zn

)

Then the following theorem holds:

Theorem (Purbhoo 08)

For r → ∞ the family LA(g̃r ) converges uniformly to A(g). A(g)
can be approximated by LA(g̃r ) explicitly up to an ε > 0 if r is
greater than some N(ε,g) ∈ N.
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Lopsidedness

Theorem (Purbhoo 08)

For r → ∞ the family LA(g̃r ) converges uniformly to A(g). A(g)
can be approximated by LA(g̃r ) explicitly up to an ε > 0 if r is
greater than some N(ε,g) ∈ N.
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Lopsidedness

Theorem (Purbhoo 08)

For r → ∞ the family LA(g̃r ) converges uniformly to A(g). A(g)
can be approximated by LA(g̃r ) explicitly up to an ε > 0 if r is
greater than some N(ε,g) ∈ N.

Corollary (Theobald, dW.)

Let f be (∆, ·). Then A(f ) has genus 1 for all arg(c) if and only if
f {ν + δ} is lopsided with

∣∣my

(
Log−1(ν + δ)

)∣∣ as the maximal
term.
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The A–discriminant

Let g ∈ C[z] with A := New(g).

T. de Wolff Amoebas of genus at most 1



Introduction
The spine and the amoebas equilibrium

Boundaries for the inner complement component
Lopsidedness and A–discriminants

The A–discriminant

Let g ∈ C[z] with A := New(g). Define C
A as the space of all

g(z) =
∑

x (i)∈A

bx (i) · zx (i)
.
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The A–discriminant

Let g ∈ C[z] with A := New(g). Define C
A as the space of all

g(z) =
∑

x (i)∈A

bx (i) · zx (i)
.

Let ∇0 ⊂ C
A denote the set of all g s.t. ∃ z0 ∈ C

n with

g(z0) = ∂g
∂z1

(z0) = · · · = ∂g
∂zn

(z0) = 0.
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The A–discriminant

Let g ∈ C[z] with A := New(g). Define C
A as the space of all

g(z) =
∑

x (i)∈A

bx (i) · zx (i)
.

Let ∇0 ⊂ C
A denote the set of all g s.t. ∃ z0 ∈ C

n with

g(z0) = ∂g
∂z1

(z0) = · · · = ∂g
∂zn

(z0) = 0.

Let ∇A denote the closure of ∇0.
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The A–discriminant

Let g ∈ C[z] with A := New(g). Define C
A as the space of all

g(z) =
∑

x (i)∈A

bx (i) · zx (i)
.

Let ∇0 ⊂ C
A denote the set of all g s.t. ∃ z0 ∈ C

n with

g(z0) = ∂g
∂z1

(z0) = · · · = ∂g
∂zn

(z0) = 0.

Let ∇A denote the closure of ∇0.

Proposition and definition

We define the A–discriminant ∆A(g) as an irreducible, integral
polynomial in the configuration space C[b] (with b :=

∏
x (i)∈A bx (i))

vanishing exactly on ∇A.
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The A–discriminant

Let g ∈ C[z] with A := New(g). Define C
A as the space of all

g(z) =
∑

x (i)∈A

bx (i) · zx (i)
.

Let ∇0 ⊂ C
A denote the set of all g s.t. ∃ z0 ∈ C

n with

g(z0) = ∂g
∂z1

(z0) = · · · = ∂g
∂zn

(z0) = 0.

Let ∇A denote the closure of ∇0.

Proposition and definition

We define the A–discriminant ∆A(g) as an irreducible, integral
polynomial in the configuration space C[b] (with b :=

∏
x (i)∈A bx (i))

vanishing exactly on ∇A. This polynomial is unique up to sign.
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The A–discriminant

Proposition and definition

We define the A–discriminant ∆A(g) as an irreducible, integral
polynomial in the configuration space C[b] (with b :=

∏
x (i)∈A bx (i))

vanishing exactly on ∇A. This polynomial is unique up to sign.
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The A–discriminant

Proposition and definition

We define the A–discriminant ∆A(g) as an irreducible, integral
polynomial in the configuration space C[b] (with b :=

∏
x (i)∈A bx (i))

vanishing exactly on ∇A. This polynomial is unique up to sign.

Theorem (Passare, Sadykov, Tsikh 05)

If g ∈ ∇A then A(g) is solid.
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The A–discriminant

Theorem (Passare, Sadykov, Tsikh 05)

If g ∈ ∇A then A(g) is solid.
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The A–discriminant

Theorem (Passare, Sadykov, Tsikh 05)

If g ∈ ∇A then A(g) is solid.

Corollary (Theobald, dW.)

Let f be (∆, ·) with A := New(f ). Then
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The A–discriminant

Theorem (Passare, Sadykov, Tsikh 05)

If g ∈ ∇A then A(g) is solid.

Corollary (Theobald, dW.)

Let f be (∆, ·) with A := New(f ). Then

(a) the configuration space {(b1, . . . , bn, c) | b1, . . . , bn, c ∈ C
∗}

of f ∈ C
A is decomposed in 2 fulldimensional sets representing

the amoebas of genus 0 resp. 1,
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The A–discriminant

Theorem (Passare, Sadykov, Tsikh 05)

If g ∈ ∇A then A(g) is solid.

Corollary (Theobald, dW.)

Let f be (∆, ·) with A := New(f ). Then

(a) the configuration space {(b1, . . . , bn, c) | b1, . . . , bn, c ∈ C
∗}

of f ∈ C
A is decomposed in 2 fulldimensional sets representing

the amoebas of genus 0 resp. 1,

(b) the set of decomposing points between these sets is an
algebraic plane given by the variety of ∆A(f ) and

T. de Wolff Amoebas of genus at most 1



Introduction
The spine and the amoebas equilibrium

Boundaries for the inner complement component
Lopsidedness and A–discriminants

The A–discriminant

Theorem (Passare, Sadykov, Tsikh 05)

If g ∈ ∇A then A(g) is solid.

Corollary (Theobald, dW.)

Let f be (∆, ·) with A := New(f ). Then

(a) the configuration space {(b1, . . . , bn, c) | b1, . . . , bn, c ∈ C
∗}

of f ∈ C
A is decomposed in 2 fulldimensional sets representing

the amoebas of genus 0 resp. 1,

(b) the set of decomposing points between these sets is an
algebraic plane given by the variety of ∆A(f ) and

(c) ∆A(f ) is given explicitly in b0, . . . , bn, c and the elements of A.
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The A–discriminant

Example

Let f := 1 + b1x
2y + b2xy

2 + cxy .
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The A–discriminant

Example

Let f := 1 + b1x
2y + b2xy

2 + cxy . Then we get

∆A(f ) = 27b1b2 − c3.

and V (∆A(f )) determines the algebraic plane separating the
configuration space C[b1, b2, c].
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The A–discriminant

Example

Let f := 1 + b1x
2y + b2xy

2 + cxy . Then we get

∆A(f ) = 27b1b2 − c3.

and V (∆A(f )) determines the algebraic plane separating the
configuration space C[b1, b2, c].
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Thank you for your attention!
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