Lineare Algebra II Übungsblatt 4

Abgabetermin Donnerstag, den 15.05.2008 vor der Vorlesung.

- 1. Sei $p \in K[t]$ ein normiertes Polynom. Zeigen Sie: Für $f \in K[t]$ gibt es eindeutig bestimmte Polynome $q, r \in K[t]$ mit
 - (a) $f = q \cdot p + r$
 - (b) $\deg(r) < \deg(p)$.

Dabei habe das 0-Polynom den Grad $-\infty$.

- 2. Sei $A \in \mathbb{C}^{3\times 3}$. Zeigen Sie, daß die Jordansche Normalform von A durch das charakteristische Polynom χ_A und das Minimalpolynom p_A von A eindeutig bestimmt ist. Gilt diese Aussage auch für $A \in \mathbb{C}^{4\times 4}$?
- 3. Sei

$$A_{t} = \begin{pmatrix} J(0, r) & t \cdot B \\ 0 & J(0, n - r) \end{pmatrix} \in \mathbb{C}^{n \times n}$$

 $r\geq n-r$ und $B=(b_{i,j})\in\mathbb{C}^{r\times n-r}$ mit $b_{r,n-r}=1$ und $b_{i,j}=0$ sonst. Zeigen Sie, daß alle Matrizen A_t für $t\neq 0$ die Jordansche Normalform

$$J = \begin{pmatrix} J(0,r+1) & 0 \\ 0 & J(0,n-r-1) \end{pmatrix}$$

haben.

4. Seien $P=(n_1,...,n_k)$ und $Q=(m_1,...,m_l)$ Partitionen von n. Wir definieren $P\geq Q$, wenn es eine von einem Parameter $t\in\mathbb{R}$ stetig abhängende Familie von nilpotenten Matrizen $A_t\in\mathbb{C}^{n\times n}$ gibt, sodaß die Jordansche Normalform von A_0 die nilpotente Jordanmatrix

$$\left(\begin{array}{ccc}
J(0,m_1) & & \\
& \ddots & \\
& & J(0,m_k)
\end{array}\right)$$

zur Partition Q ist, während alle Matrizen A_t mit $t \neq 0$ Jordansche Normalform zur Partition P haben. Durch $P \geq Q$ ist eine partielle Ordnung auf der Menge der Partitionen gegeben.

(a) Zeigen Sie: Im Fall n=4 ist diese Ordnung gegeben durch

$$(4) > (3,1) > (2,2) > (2,1,1) > (1,1,1,1)$$

(b) Beschreiben Sie \geq für die Fälle n = 5, 6.

Hinweis: Verwenden Sie Aufgabe 3 und (ohne Beweis) die Tatsache, daß \geq eine partielle Ordnung ist, d.h. insbesondere $P \geq Q$ und $Q \geq R$ impliziert $P \geq R$.

Ordnen Sie jeder Aufgabe vor und nach Bearbeitung das Prädikat zu leicht, leicht, mittel, schwer oder zu schwer zu.