Lineare Algebra II Übungsblatt 8

Abgabetermin Donnerstag, den 12.06.2008 vor der Vorlesung.

- 1. Sei $f \in \text{Hom}(V_1, V_2)$ und $g \in \text{Hom}(W_1, W_2)$ Homomorphismen zwischen endlichdimensionalen K-Vektorräumen vom Rang Rang (f) = r und Rang (g) = s. Bestimmen Sie den Rang von $f \otimes g \in \text{Hom}(V_1 \otimes W_1, V_2 \otimes W_2)$.
- 2. Seien $m, n \in \mathbb{N}$. Bestimmen Sie $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$.
- 3. Für $A \in K^{m \times n}$, $B \in K^{s \times t}$ ist das Kroneckerprodukt

$$A \otimes B = \begin{pmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{pmatrix} \in K^{ms \times nt}$$

Zeigen Sie:

(a) Sind $C \in K^{n \times v}$ und $D \in K^{t \times l}$, dann ist

$$(A \otimes B) (C \otimes D) = (AC) \otimes (BD)$$

(b)
$${}^{t}(A \otimes B) = ({}^{t}A \otimes {}^{t}B)$$

- (c) Sind A und B symmetrisch, dann ist $A \otimes B$ symmetrisch.
- (d) Sind A und B invertierbar (also insbes. m = n und s = t), dann ist

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$

4. Seien $A \in K^{n \times n}$ und $B \in K^{m \times m}$. Zeigen Sie

$$\det (A \otimes B) = \det (A)^m \det (B)^n$$

Ordnen Sie jeder Aufgabe vor und nach Bearbeitung das Prädikat zu leicht, leicht, mittel, schwer oder zu schwer zu.