Lineare Algebra II Übungsblatt 9

Abgabetermin Donnerstag, den 19.06.2008 vor der Vorlesung.

1. Seien V und W endlichdimensionale \mathbb{C} -Vektorräume und $f \in \text{End}(V)$ und $g \in \text{End}(W)$ Endomorphismen mit charakteristischen Polynomen

$$\chi_f(t) = \prod_{k=1}^n (\lambda_k - t)$$

und

$$\chi_g\left(t\right) = \prod_{l=1}^{m} \left(\mu_l - t\right)$$

Geben Sie das charakteristische Polynom von $f \otimes g$ an.

- 2. Sei $f \in \text{End}(V)$ und $g \in \text{End}(W)$ nilpotente Endomorphismen.
 - (a) Bestimmen Sie im Fall, daß die Jordanschen Normalformen von f und g nur einen Block haben etwa

$$J_f = J(0, n) \qquad J_g = J(0, m)$$

die Jordansche Normalform von $f \otimes g$.

- (b) Behandeln Sie den allgemeinen Fall von nilpotenten Endomorphismen.
- 3. Sind $A \in \mathbb{C}^{n \times n}$ und $B \in \mathbb{C}^{m \times m}$ dann ist die Kroneckersumme $A \oplus B$ von A und B definiert als

$$A \oplus B = (E_m \otimes A) + (B \otimes E_n)$$

Zeigen Sie: Ist

$$\chi_A(t) = \prod_{i=1}^n (\lambda_i - t)$$
 $\chi_B(t) = \prod_{j=1}^m (\mu_j - t)$

dann ist

$$\chi_{A \oplus B}(t) = \prod_{\substack{i=1,\dots,n\\j=1,\dots,m}} (\lambda_i + \mu_j - t)$$

4. Seien $A \in \mathbb{C}^{n \times n}$, $B \in \mathbb{C}^{m \times m}$ und $C \in \mathbb{C}^{n \times m}$. Zeigen Sie: Die Sylvestergleichung

$$AX + XB = C$$

hat genau dann eine eindeutige Lösung $X \in \mathbb{C}^{n \times m}$, wenn A und -B keine gemeinsamen Eigenwerte haben.

Hinweis: Schreiben Sie obige Gleichung in der Form

$$((E_m \otimes A) + ({}^t B \otimes E_n)) x = c$$

mit $x, c \in \mathbb{C}^{n \cdot m}$.

Ordnen Sie jeder Aufgabe vor und nach Bearbeitung das Prädikat zu leicht, leicht, mittel, schwer oder zu schwer zu.