#Aufgabe 1 ChineseRem([54,80,225],[1,13,28]); 7453 mod 54; 7453 mod 80; 7453 mod 225; Lcm(54,80,225); #Aufgabe 2 G:=Group((1,2,3,4,5),(2,5)(3,4)); Order(G); Elements(G); l:=LatticeSubgroups(G); c:=ConjugacyClassesSubgroups(l); for sg in c do Print(Order(sg[1])," ",Elements(sg),"\n"); od; # Die Normalteiler sind Elements(c[1]); Elements(c[3]); Elements(c[4]); NormalSubGroups(G); # Die 2-Sylowuntergruppen sind Elements(c[2]); # die 5-Sylowuntergruppe Elements(c[3]); # Die Konjugationsklassen von G cc:=ConjugacyClasses(G); for cl in cc do Print(Size(cl)," ",Elements(cl),"\n"); od; # Die Klassengleichung ist also 1+5+2+2; # Aufgabe 3 G:=Group((1,2,3,4),(1,3)); Order(G); Elements(G); autG:=AutomorphismGroup(G); Elements(autG); innG:=InnerAutomorphismsAutomorphismGroup(autG); Elements(innG); Center(G); IsomorphismGroups(G,autG); gens:=[(1,2,3,4,5),(5,6)]; G:=Group(gens); Size(G); phi:=GroupHomomorphismByImages(G,G,gens,[(1,2,3,4,5),(1,2)(3,5)(4,6)]); Kernel(phi); # Aufgabe 4 G:=Group((2,3,4,5,6)(7,8,9,10,11),(1,2,8,9,4)(5,6,7,12,10),(3,6)(4,5)(7,8)(9,11)); Size(G); cc:=ConjugacyClasses(G); for cl in cc do Print(Size(cl)," ","\n"); od; 1+1+15+15+12+12+12+12+20+20; # Aufgabe 5 F := FreeGroup( "a", "b" ); G := F / [ F.1^4, F.2^6, (F.1*F.2)^2, (F.1^3*F.2^2)^2 ]; W:=Group((2,3,5,4),(1,5,3,6,2,4)); IsomorphismGroups(G,W); # Aufgabe 6 G:=Group([(1,2,3,4)]); H:=Group([(1,2)]); AutG:=AutomorphismGroup(G); elAutG:=Elements(AutG); img:=elAutG[2]; phi:=GroupHomomorphismByImages(H,AutG,[(1,2)],[img]); P:=SemidirectProduct( H,phi,G ); Elements(P); D4:=Group((1,2,3,4),(1,2)(3,4)); IsomorphismGroups(P,D4); gens:=[(1,2,3),(2,3,4)]; G:=Group(gens); Size(G); H:=Group([(1,2)]); AutG:=AutomorphismGroup(G); img1:=(1,2)*(1,2,3)*(1,2); img2:=(1,2)*(2,3,4)*(1,2); img:=GroupHomomorphismByImages(G,G,gens,[img1,img2]); phi:=GroupHomomorphismByImages(H,AutG,[(1,2)],[img]); P:=SemidirectProduct( H,phi,G ); Elements(P); S4:=SymmetricGroup(4); IsomorphismGroups(P,S4);