Lineare Algebra II Übungsblatt 13

Abgabetermin Freitag, den 16.07.2010 vor der Vorlesung.

- 1. Sei \mathbb{F}_q ein Körper mit q Elementen. Bestimmen Sie die Anzahl der Elemente der Grassmannschen $\mathbb{G}_{\mathbb{F}_q}$ (2, 5) über \mathbb{F}_q mit Hilfe des Gauß-Algorithmus.
- 2. Sei V ein n-dimensionaler K-Vektorraum und $\alpha, \beta \in \bigwedge^2 V$. Zeigen Sie: Sind α, β und $\alpha + \beta$ zerlegbar, dann ist auch $\alpha + t \cdot \beta$ für alle $t \in K$ zerlegbar.

Hinweis: Betrachten Sie für $\alpha = a_1 \wedge a_2$ und $\beta = b_1 \wedge b_2$ den Untervektorraum $\langle a_1, a_2, b_1, b_2 \rangle \subset V$.

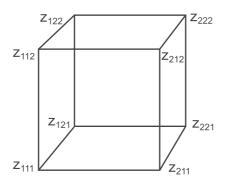
3. Seien $V = K^n$ und $W = K^m$ und

$$t = \sum_{\substack{i=1,\dots,n\\j=1,\dots,m}} z_{ij} e_i \otimes e_j \in V \otimes W$$

- (a) Zeigen Sie, dass t ein Tensor vom Rang < 3 ist genau dann, wenn alle 3×3 -Minoren von $Z = (z_{ij})$ verschwinden.
- (b) Jeder Tensor $t \in V \otimes W$ hat Rang $\leq \min \{n, m\}$.
- 4. Seien V, W, U Vektorräume der Dimension 2 mit Basen e_1, e_2 von V, f_1, f_2 von W und g_1, g_2 von U. Zeigen Sie: Ein Tensor

$$T = \sum_{i,j,k=1,2} z_{ijk} \cdot e_i \otimes f_j \otimes g_k$$

ist zerlegbar genau dann, wenn alle 2×2 Determinanten zu Flächen in dem Würfel



verschwinden.