Lineare Algebra II Übungsblatt 3

Abgabetermin Freitag, den 07.05.2010 vor der Vorlesung.

0. **Dritter Versuch:** Für diejenigen, die sowohl auf Blatt 1 als auch Blatt 2 beim linearen Gleichungssystem nicht volle Punktzahl bekommen haben:

Bestimmen Sie für alle $t \in \mathbb{Q}$ die Lösungsmenge L_t des folgenden linearen Gleichungssystems

$$\begin{pmatrix} t & 1 & 1 & 1 \\ 1 & t & 1 & 1 \\ 1 & 1 & t & 1 \\ 1 & 1 & 1 & t \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} t+1 \\ t+1 \\ -t-1 \\ -t-1 \end{pmatrix}$$

1. Bestimmen Sie das Minimalpolynom von

$$A = \left(\begin{array}{cccc} 2 & 0 & 0 & -1 \\ 0 & 0 & -1 & 1 \\ 1 & 1 & 2 & -2 \\ 1 & 0 & 0 & 0 \end{array}\right)$$

- 2. (a) Sei $p \in K[t]$ ein Polynom, $A \in K^{n \times n}$ eine quadratische Matrix und λ ein Eigenwert von A. Zeigen Sie: $p(\lambda)$ ist ein Eigenwert der Matrix $p(A) \in K^{n \times n}$.
 - (b) Sei $A \in GL(n, K)$. Zeigen Sie, dass es ein Polynom $p \in K[t]_{\leq n-1}$ gibt mit $p(A) = A^{-1}$.
 - (c) Bestimmen Sie dieses Polynom für

$$A = \left(\begin{array}{rrr} -1 & 1 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{array}\right)$$

und berechnen Sie damit die Inverse von A.

- 3. Sei $A \in \mathbb{C}^{3\times 3}$. Zeigen Sie, dass die Jordansche Normalform von A durch das charakteristische Polynom χ_A und das Minimalpolynom p_A von A eindeutig bestimmt ist. Gilt diese Aussage auch für $A \in \mathbb{C}^{4\times 4}$?
- 4. Betrachten Sie die folgende Familie von nilpotenten Matrizen

$$A_t = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & t \\ \hline & & & 0 & 1 & 0 \\ 0 & & & 0 & 0 & 1 \\ & & & & 0 & 0 & 0 \end{pmatrix} \in \mathbb{C}^{6 \times 6}$$

mit $t \in \mathbb{C}$. Zeigen Sie, dass alle Matrizen A_t für $t \neq 0$ die Jordansche Normalform

$$J = \left(\begin{array}{cc} J(0,4) & 0\\ 0 & J(0,2) \end{array}\right)$$

haben, während

$$A_0 = \left(\begin{array}{cc} J(0,3) & 0\\ 0 & J(0,3) \end{array}\right)$$

in einer davon verschiedenen Jordanschen Normalform ist.