
Chapter 4

Local Properties

In the preceeding chapters, we developed the geometry-algebra dictionary
from a global point of view, focusing on geometric questions which concern
a given algebraic set A as a whole. Accordingly, we studied functions defined
on all of A, the polynomial functions on A, and used the ring k[A] formed by
these functions to express geometric properties of A in ring theoretic terms.
Algorithmically, we computed Gröbner bases with respect to what we called
global monomial orders.

In this chapter, we will be interested in geometric properties which are
local in the sense that they reflect the behavior of A near a given point p ∈ A.
In defining the basic local property, which is smoothness, we will rely on the
concept of the tangent space. Intuitively, p is a smooth point of A if the
tangent space TpA approximates A near p (otherwise, we will say that p is
a singular point of A). Here, we will define TpA over any field in a purely
algebraic way (no limiting process as in calculus is needed). We will show
that the singular points form an algebraic subset of A, and we will prove the
Jacobian criterion which, in many cases of interest, allows one to compute the
equations of this subset, and to check whether the given polynomials defining
A actually generate a radical ideal.

We will, then, describe the construction of the local ring OA,p whose ele-
ments are germs of functions defined on Zariski open neighborhoods of p in A.
It will turn out that A is smooth at p iff OA,p is a regular local ring. Focusing
on the general and purely algebraic nature of the construction of OA,p, we
will be lead to the concept of localization which plays an important role in
commutative algebra. In fact, localization often allows one to reduce problems
concerning arbitrary rings to problems concerning local rings which are much
easier. One reason why local rings are easier to handle than arbitrary rings is
Nakayama’s lemma. As a typical application of this lemma, we prove a special
case of Krull’s intersection theorem.

Returning to more geometric questions, we will use the local ring OA2,p

to define the intersection multiplicity of two plane curves at a point p ∈ A2.
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Making, thus, preperations for the treatment of Bezout’s theorem in Chapter
5, we will verify a number of properties of intersection multiplicities.

Algorithmically, the computation of the multiplicities is based on a version
of Buchberger’s algorithm for computing Gröbner bases with respect to what
we will call local monomial orders.

Motivated by rationality problems which may arise in such computations,
we will give an alternative definition of the multiplicities using the notion of
modules of finite length. Discussing this notion, we will show that a ring R has
finite length iff it is Artinian, that is, R satisfies the descending chain condition.
Applying this fact in a localized situation (which will allow us to benefit from
Nakayama’a lemma), we will prove Krull’s principal ideal theorem.

In the final section, we will treat the completion ÔA,p of OA,p. This will
help us to overcome a drawback of OA,p which is due to the fact that Zariski
open sets are rather large. Since OA,p consists of (germs of) functions defined
on such sets, it carries information on too much of A. In contrast, the larger
ring ÔA,p carries far more local information. Another topic, which we will
treat briefly, is the tangent cone TCpA which approximates A near p even if
p is a singular point of A.

4.1 Smoothness

We will define smoothness such that in case K = C, an algebraic set A ⊂ An is
smooth at a point p ∈ A iff A is a complex submanifold of An in an Euclidean
neighborhood of p. Equivalently, we will require that the hypothesis of the
implicit function theorem is fulfilled. In making this precise, we will first study
the hypersurface case, which is intuitively easy to understand, and where
important consequences of the definition are easy to prove.

We fix our ideas by illustrating the special case of a plane curve. Let
f ∈ C[x, y] be a nonconstant square-free polynomial, let C = V(f) ⊂ A2(C)
be the corresponding curve, and let p = (a, b) ∈ C be a point. In this situa-
tion, the complex variable version of the implicit function theorem asserts that
if the gradient

(∂f
∂x (p), ∂f

∂y (p)
)

is nonzero, then there is an Euclidean neigh-
borhood of p in which C can be exhibited as the graph of a holomorphic
function. Supposing, say, that ∂f

∂y (p) #= 0, the precise statement is that there
are open neighbourhoods U1 of a and U2 of b in the Euclidean topology and
a holomorphic function g : U1 → U2 such that g(a) = b and

C ∩ (U1 × U2) = {(x, g(x)) | x ∈ U1}.
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Reflecting this fact, we get a well defined tangent line to C at p (the linear
approximation of C near p) by interpreting the existence of the differential
quotient of g at x = a geometrically – the tangent line is the limiting position
of secant lines to C passing through p:

y

a x

tangent

graph of g

g(x) − g(a)

secants

Since
g′(a) = −∂f

∂x
(p)/

∂f

∂y
(p)

by the chain rule, we may rewrite the equation y = b + g′(a)(x − a) of the
tangent line in terms of f :

∂f

∂x
(p)(x − a) +

∂f

∂y
(p)(y − b) = 0. (4.1)

There is no algebraic geometry analogue of the implicit function theorem:
Even though we are concerned with a polynomial f in our considerations,
it is usually not possible to choose the Ui as neighborhoods in the Zariski
topology and g as a polynomial function. From a topological point of view, as
illustrated by the example in the following picture, the Zariski open sets are
simply too big:
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On the other hand, using formal partial derivatives, equation (4.1) makes
sense even in case K #= C. We, therefore, define:

Remark-Definition 4.1.1. 1. If f ∈ K[x1, . . . , xn] is a polynomial, and
p = (a1, . . . , an) ∈ An is a point, the differential of f at p, written dpf , is
defined to be

dpf =
n∑

i=1

∂f

∂xi
(p)(xi − ai) ∈ K[x1, . . . , xn].

That is, dpf is the linear part of the Taylor expansion of f at p:

f = f(p) + dpf + terms of degree ≥ 2 in the xi − ai.

2. Let A ⊂ An be a hypersurface, let p ∈ A be a point, and let f ∈
K[x1, . . . , xn] be a generator for I(A). Then the tangent space to A at
p, denoted TpA, is the linear subvariety

TpA = V(dpf) ⊂ An.

We say that p is a smooth (or a nonsingular) point of A if TpA is a
hyperplane, that is, if dpf is nonzero.

Otherwise, TpA = An, and we call p a singular point of A. )*

Example 4.1.2. The origin o = (0, 0) ∈ A2(C) is a singular point of each
cubic curve shown below:
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y2 = x3 + x2 y2 = x3 y2 = xy + x2y − x3 )*

The tangent space TpA is the union of all lines meeting A with multiplicity
at least 2 at p:

Proposition 4.1.3. Let A ⊂ An be a hypersurface, and let I(A) = 〈f〉.

1. Let p = (a1, . . . , an) ∈ A be a point, and let L ⊂ An be a line through
p, given by the parametric equations xi = ai + tvi, i = 1, . . . , n, where
v = (v1, . . . , vn) ∈ An is a direction vector of L. Then L ⊂ TpA iff the
polynomial F (t) := f(p + tv) ∈ K[t] vanishes with multiplicity ≥ 2 at 0.

2. The set Asing of singular points of A is a proper algebraic subset of A:

Asing = V(f,
∂f

∂x1
, . . . ,

∂f

∂xn
) " A.

Proof. 1. The result follows from the chain rule: ∂F
∂t (0) =

∑n
i=1 vi

∂f
∂xi

(p).
2. That Asing = V(f, ∂f

∂x1
, . . . , ∂f

∂xn
) is clear from our definitions. In partic-

ular, Asing is an algebraic subset of A. To show that Asing is properly contained
in A, suppose the contrary. Then, for all i, the partial derivative ∂f

∂xi
is con-

tained in 〈f〉, so that ∂f
∂xi

= 0 by degree reasoning. If char K = 0, this implies
that f is constant, contradicting our assumption that A is a hypersurface. If
char K = p > 0, we must have f ∈ K[xp

1, . . . , x
p
n] (see Exercise 1.1.3). As in the

proof of Proposition 3.5.1, we conclude that f has a pth root in K[x1, . . . , xn].
This contradicts the fact that I(A) = 〈f〉 is a radical ideal. )*

Example 4.1.4. The set of singular points of the Whitney umbrella

V(x2 − y2z) ⊂ A3(C)

is the z-axis
V(x2 − y2z, 2x,−2yz,−y2) = V(x, y).

We show a real picture:
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)*

Exercise 4.1.5. 1. Find all singular points of the curve

V(x2 − 2x3 + x4 + y2 − 2y3 + y4 − 3
2
x2y2) ⊂ A2(C).

Draw a picture of the real points of this curve.
2. Find all singular points of the curve V(f) ⊂ A2(C), where f is the degree-7

polynomial considered in Example 1.2.4, part 3.

0

0

1

!1

1!1 2

2

x

y

)*

We, now, turn from hypersurfaces to arbitary algebraic sets:

Definition 4.1.6. Let A ⊂ An be an algebraic set, and let p ∈ A be a point.
The tangent space to A at p, denoted TpA, is the linear subvariety

TpA = V(dpf | f ∈ I(A)) ⊂ An. )*
As in Proposition 4.1.3, a line L = {p + tv | t ∈ K} is contained in TpA iff all
polynomials f(p + tv) ∈ K[t], f ∈ I(A), vanish with multiplicity ≥ 2 at 0.

Remark 4.1.7. 1. In defining the tangent space, it suffices to consider a set
of generators for the vanishing ideal of A: if I(A) = 〈f1, . . . , fr〉, then

TpA = V(dpfi | i = 1, . . . , r) ⊂ An.

In particular,

dimK TpA = n− rank
(
∂fi

∂xj
(p)
)

.
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2. The function
A → N, p -→ dimTpA,

is upper semicontinous in the Zariski topology on A. That is, for any integer
k, the subset

{p ∈ A | dimK TpA ≥ k} ⊂ A

is Zariski closed. Indeed, this subset is the intersection of A with the locus of
zeros of the (n− k + 1)× (n− k + 1) minors of the Jacobian matrix

(
∂fi

∂xj

)
.
)*

Example 4.1.8. Let A = V(xz, yz) = V(x, y) ∪ V(z) =: L ∪ P ⊂ A3 be the
union of the z-axis and the xy-plane:

If o = (0, 0, 0) ∈ A3 is the origin, and p ∈ A is any point, then dimTpA = 1 if
p ∈ L \ {o}, dimTpA = 2 if p ∈ P \ {o}, and dim TpA = 3 if p = o. )*
According to our definition, a hypersurface A ⊂ An is smooth at a point
p ∈ A if the dimension of A equals the dimension of the tangent space TpA.
In extending this definition to an arbitrary algebraic set A, we have to take
into account that, in contrast to the hypersurface case, A may have irreducible
components of different dimension. On the other hand, the behavior of A near
p ∈ A is only effected by those components passing through p.
Definition 4.1.9. Let A ⊂ An be an algebraic set, and let p ∈ A be a point.
The local dimension of A at p, written dimp A, is the maximum dimension
of an irreducible component of A containing p. )*
We always have

dimK TpA ≥ dimp A. (4.2)
In contrast to the hypersurface case, however, the result for arbitrary alge-
braic sets is not immediately clear from the definitions. We will prove it in a
more general algebraic setting in Corollary 4.6.20 as a consequence of Krull’s
principal ideal theorem.
Definition 4.1.10. Let A ⊂ An be algebraic.

1. We say that A ⊂ An is smooth (or nonsingular) at p ∈ A if

dimK TpA = dimp A.

We, then, refer to p as a smooth (or a nonsingular) point of A. Otherwise,
we say that A is singular at p, that p is a singular point of A, or that p is
a singularity of A.
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2. The set Asing of singular points of A is called the singular locus of A.
If Asing is empty, that is, if A is smooth at each of its points, then A is called
smooth. )*

Remark 4.1.11. Let A ⊂ An be an algebraic set.

1. If A is smooth at p, then p is contained in a single component of A. In fact,
if A = V1 ∪ · · ·∪Vs is the decomposition of A into its irreducible components,
then

Asing =
⋃

i"=j

(Vi ∩ Vj) ∪
⋃

i

(Vi)sing

(we will establish this in Corollary 4.6.26). In particular, Asing is an algebraic
subset of A since this is true in the case where A is irreducible. Indeed, in
this case, dimp A = dim A for all p ∈ A, and we may apply part 2 of Remark
4.1.7, with k = dimA + 1.
2. The singular locus Asing and A have no irreducible component in common.

That is, for any irreducible component Vi of A, we have Asing∩Vi " Vi. Using
Theorem 3.5.2 and the formula in part 1 above, we will deduce this fact in
Corollary 4.2.16 from the hypersurface case. )*

If generators f1, . . . , fr for the vanishing ideal I(A) are given, and the local
dimension dimp A is known to us, we can decide whether A is smooth at p

by computing dimK TpA = n − rank
(
∂fi

∂xj
(p)
)
, and comparing this number

with dimp A. The Jacobian criterion, which we treat next, often allows one to
test smoothness without having to check a priori that the given polynomials
f1, . . . , fr defining A actually generate I(A). In fact, under the assumptions of
the corollary to the Jacobian criterion stated below, this will follow a poste-
riori. In this way, the corollary gives a powerful method for establishing that
f1, . . . , fr generate a radical ideal.

Theorem 4.1.12 (Jacobian Criterion). Let A ⊂ An be an algebraic sub-
set, let p ∈ A a point, and let f1, . . . , fr ∈ I(A). Then

n− rank
(
∂fi

∂xj
(p)
)
≥ dimp A.

If equality holds, then A is smooth at p.

Proof. This follows from the chain of inequalities

n − rank
(
∂fi

∂xj
(p)
)
≥ dimK TpA ≥ dimp A.

)*

Corollary 4.1.13. Let I = 〈f1, . . . , fr〉 ⊂ k[x1, . . . , xn] be an ideal such that
A = V(I) ⊂ An is equidimensional of dimension d, and let In−d

(
∂fi

∂xj

)
denote

the ideal generated by the (n− d)× (n− d) minors of the Jacobian matrix of
the fi. If In−d

(
∂fi

∂xj

)
+ I = 〈1〉, then A is smooth and I K[x1, . . . xn] = I(A).

In particular, I is a radical ideal.
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Proof. The subset V(In−d

(
∂fi

∂xj

)
+ I) = {p ∈ A | n− rank

(
∂fi

∂xj
(p)
)

> d} ⊂ A

is empty by the assumption on In−d

(
∂fi

∂xj

)
+ I and Hilbert’s Nullstellensatz.

Since each irreducible component of A has dimension d, the Jacobian crite-
rion implies that A is smooth. That I K[x1, . . . xn] = I(A) will be established
towards the end of Section 4.6. )*

Under a stronger assumption, the Jacobian criterion can also be applied if
1 #∈ In−d

(
∂fi

∂xj

)
+ I:

Corollary 4.1.14. Let I = 〈f1, . . . , fr〉 ⊂ k[x1, . . . , xn] be an ideal of di-
mension d, and let A = V(I) ⊂ An. Suppose that k[x1, . . . , xn]/I is Cohen-
Macaulay (by the Unmixedness Theorem 3.3.12, this implies that A is equidi-
mensional of dimension d). With notation as in Corollary 4.1.13, if

dim V(In−d

(
∂fi

∂xj

)
+ I) < dim V(I) = d,

then I K[x1, . . . xn] = I(A) and V(In−d

(
∂fi

∂xj

)
+ I) = Asing. In particular, I is

a radical ideal.

Proof. This will also be established towards the end of Section 4.6. )*

The following example shows that the assumption of equidimensionality in
Corollary 4.1.13 is really needed:

Example 4.1.15. Let I = 〈f1, f2〉 ⊂ k[x1, x2, x3] be the ideal generated by
f1 = x2

1 − x1 and f2 = x1x2x3. Buchberger’s criterion shows that f1, f2 form
a lexicographic Gröbner basis for I. By Proposition 3.3.3, the composition
k[x2, x3] ⊂ k[x1, x2, x3] → k[x1, x2, x3]/I is a Noether normalization, so that

d = dim k[x1, x2, x3]/I = 2.

Though 1 = (2x1 − 1) ∂f1
∂x1

− 4f1 ∈ I1( ∂fi

∂xj
)+ I, however, A = V(I) ⊂ A3 is not

smooth. In fact, A = V(x1) ∪ V(x1 − 1, x2x3) is the union of a plane and a
pair of lines intersecting in a point which is necessarily a singular point of A.

)*

Exercise 4.1.16. Consider the matrix
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D =




x1 x2 x2

3 − 1
x2 x3 x1x2 + x3 + 1

x2
3 − 1 x1x2 + x3 + 1 0





and the ideal I = 〈f1, f2〉 ⊂ k[x1, x2, x3] generated by f1 = det D and the
“first” 2× 2 minor f2 = x1x3 − x2

2 of D. Verify by computation:

1. The algebraic set A = V(I) ⊂ A3 is equidimensional of dimension d = 1.
2. The zero locus of the ideal J = I2( ∂fi

∂xj
)+ I coincides with that of I. That

is, V(J) = V(I) = A.
3. The vanishing ideal I(A) = (I : J) K[x1, x2, x3].
4. A is smooth.

The geometric interpretation of this is that the two hypersurfaces V(f1) and
V(f2) touch each other along A.

Fig. 4.1. The cone V (f2) (dark surface) together with V (f1) (bright sur-
face) and their intersection (white curve).

)*

Definition 4.1.6 treats the tangent space TpA externally, that is, as a subspace
of the ambient space An. Hence, it is not obvious that under an isomorphism
ϕ : A → B the tangent spaces at p and ϕ(p) are isomorphic. To prove this,
we give an intrinsic description of TpA which only depends on the coordinate
ring K[A].

We consider TpAn = An as an abstract vector space with origin p and
coordinates Xi = xi−ai, i = 1, . . . , n. Then TpA = V(dpf | f ∈ I(A)) ⊂ TpAn

is a linear subspace. Indeed, for each f ∈ K[x1, . . . , xn], the differential dpf is
linear in the xi − ai. Moreover, the restriction of dpf to TpA depends only on
the residue class f = f + I(A) of f in K[A]. We, thus, obtain a well-defined
linear map

dp : K[A] → T ∗
p A, f -→ dpf |TpA,

where T ∗
p A = Hom(TpA, K) is the dual vector space of TpA. The map dp is

surjective since the dpXi form a basis for the dual vector space of TpAn and
every linear form on TpA is induced by a linear form on TpAn. To describe
T ∗

p A and, thus, TpA = (T ∗
p A)∗ in terms of K[A], we need to identify the kernel
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of dp. Since dpc = 0 for each constant c ∈ K, the map dp is determined by its
values on the maximal ideal

IA(p) := IA({p}) = {f ∈ K[A] | f(p) = 0} ⊂ K[A]

corresponding to p. We may, thus, as well study the restricted map

dp : IA(p) → T ∗
p A, f -→ dpf |TpA.

This map vanishes on the second power of IA(p) (the terms of degree ≥ 2 in
the Taylor expansion of f at p do not contribute to dpf). In fact, we have
the following result (the final version of this result, proved in Section 4.2, will
lead us to the definition of the Zariski tangent space):

Theorem 4.1.17 (Zariski Tangent Space, Preliminary Version). Let
A ⊂ An be an algebraic set, and let p ∈ A be a point. The K[A]-module
IA(p)/I2A(p) is naturally a K-vector space. Moreover, the map dp defines an
isomorphism

IA(p)/I2A(p) ∼= T ∗
p A

of K-vector spaces.

Proof. Since the K[A]-module IA(p)/I2A(p) is annihilated by IA(p), it is natu-
rally a K[A]/IA(p)-module. The first assertion follows since K[A]/IA(p) ∼= K,
where the isomorphism is defined by evaluating polynomial functions at p. To
prove the theorem, it remains to show that ker dp ⊂ I2A(p). Let f ∈ ker dp.
That is, f ∈ IA(p) and dpf |TpA = 0. Then, if f1, . . . , fr are generators for
I(A), the differential dpf is a K-linear combination of the dpfi:

dpf =
r∑

i=1

λidpfi.

Set g = f −
∑r

i=1 λifi. Then g(p) = 0 and dpg = 0. We conclude that
g ∈ I2(p) ⊂ K[x1, . . . , xn], so that f = g ∈ I2A(p) ⊂ K[A]. )*

Let, now, ϕ : A → B be a morphism of affine algebraic sets, let ϕ∗ : K[B] →
K[A] be the induced map, let p ∈ A be a point, and let q = ϕ(p). Then

ϕ∗(IB(q)) ⊂ IA(p) and ϕ∗(I2B(q)) ⊂ I2A(p).

Thus, ϕ defines a map ϕ∗ : IB(q)/I2B(q) → IA(p)/I2A(p). The dual map

dpϕ : TpA ∼= (IA(p)/I2A(p))∗ → (IB(q)/I2B(q))∗ ∼= TqB

is called the differential of ϕ at p. Note that if ψ : B → C is another
morphism of affine algebraic sets, then

dp(ψ ◦ ϕ) = dϕ(p) ψ ◦ dpϕ.
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Furthermore,
dp(idA) = id TpA.

These observations show that the tangent space is invariant under isomor-
phims:

Corollary 4.1.18. If ϕ : A → B is an isomorphism of affine algebraic sets
and p ∈ A is a point, then

dpϕ : TpA → Tϕ(p)B

is an isomorphism of K-vector spaces. )*

4.2 Local Rings

In this section, given an algebraic set A and a point p ∈ A, we will describe
the construction of the local ring OA,p. This ring is the basic invariant of A
at p. We will use it to express smoothness in algebraic terms.

The elements of OA,p are functions defined on A “near” p. More precisely,
the functions are defined on Zariski open neighborhoods of p in A, and two
such functions will be identified if they coincide on a sufficiently small neigh-
borhood of p on which both functions are defined. In this sense, the elements
of OA,p are actually germs of functions.

What functions are allowed in the construction of OA,p? Since every Zariski
neighborhood of p in A contains an open neighborhood of type DA(f) =
A \ VA(f), where f ∈ K[A] is not vanishing at p, we can restrict ourselves
to describe the admissible functions on a neighborhood of this type. Now,
note that on DA(f), the function f and, thus, its powers fm are invertible.
It is therefore natural to associate to DA(f) the K-algebra K[A]f of functions
on DA(f) obtained by adjoining 1/f to K[A]. The elements of DA(f) are,
then, fractions of type g/fm, where g ∈ K[A] and m ≥ 0. Two such fractions
g/fm and g′/fm′

define the same function on DA(f) iff gfm′ − g′fm = 0 as
functions on DA(f). Equivalently, f(gfm′ − g′fm) = 0 on all of A. That is,
f(gfm′ − g′fm) = 0 ∈ K[A].

The desired local ring OA,p is obtained by inverting all the functions in
K[A] not vanishing at p. Its elements are fractions of type g/h, where g, h ∈
K[A], with h(p) #= 0. Here, two such fractions g/h and g′/h′ will be identified
if gh′ − g′h = 0 on some neighborhood of p contained in DA(h) ∩ DA(h′). As
pointed out above, we may choose this neighborhood to be of type DA(f),
where f ∈ K[A] is not vanishing at p. Thus, g/h and g′/h′ will be identified
if f(gh′ − g′h) = 0 ∈ K[A] for some f ∈ K[A] with f(p) #= 0.

The construction of both rings K[A]f and OA,p follows the same alge-
braic principle: we invert elements of a multiplicative closed subset U of a
ring R (it is natural to invert elements from multiplicatively closed subsets
since the product of two inverted elements is an inverse for the product).
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The principle is familiar to us from Section 2.6 where we studied the quo-
tient field of an integral domain R. In that case, U = R \ {0}. In the more
general setting considered here, however, U may contain zerodivisors (such as
x or y in K[x, z]/〈xy〉). Thus, we cannot conclude from an equation of type
f(gh′ − g′h) = 0 that gh′ − g′h = 0.

Taking our cue from these considerations, we arrive at the following purely
algebraic definition:

Remark-Definition 4.2.1. Let R be a ring, and let U ⊂ R be a multiplica-
tively closed subset. The relation ∼ on R × U defined by

(r, u) ∼ (r′, u′) ⇐⇒ v(ru′ − ur′) = 0 for some v ∈ U

is an equivalence relation (check this; observe that if we just had ru′−ur′ = 0
in the definition of∼, the transitivity law would fail if U contains zerodivisors).
We write r/u for the equivalence class of (r, u) and

R[U−1] = U−1R = { r

u
| r ∈ R, u ∈ U}

for the set of all equivalence classes. We make R[U−1] into a ring by defining

r

u
+

r′

u′ =
ur′ + u′r

uu′ and
r

u
· r′

u′ =
rr′

uu′

(check that these definitions are independent of the choice of representatives).
This ring is called the localization of R at U .

We have the natural ring homomorphism

ι : R → R[U−1], r -→ r

1
,

which sends every element of U to a unit in R[U−1], and maps an element
r ∈ R to zero iff r is annihilated by an element of U . In particular, ι is injective
iff U does not contain a zerodivisor, and R[U−1] is zero iff 0 ∈ U . )*

Exercise∗ 4.2.2 (Universal Property of Localization). Let R be a ring,
and let U ⊂ R be a multiplicatively closed subset. Show that if φ : R → S is a
homomorphism of rings which maps the elements of U to units, there exists a
uniquely determined homomorphism Φ : R[U−1] → S such that the diagram

R

ι
!!!!

!!
!!

!!
!

φ "" S##

Φ"
"

"
"

"

R[U−1]

commutes. )*
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Exercise∗ 4.2.3 (Localization Commutes with Passing to Quotients
by Ideals). Let R and U be as above, let I ⊂ R be an ideal, and let U be
the image of U in R/I. Then show that the natural map

R → R[U−1] → R[U−1]/I R[U−1]

induces an isomorphism

(R/I)[U−1] ∼= R[U−1]/I R[U−1]. )*

Basic examples of localized rings are obtained by considering the multiplica-
tive closed sets introduced earlier in this book:

Remark-Definition 4.2.4. Let R be a ring.

1. If R is an integral domain, and U = R \ {0}, then R[U−1] is the quotient
field Q(R) of R, and any localization of R can be regarded as a subring of
Q(R), with quotient field Q(R) (apply the universal property). If R is arbi-
trary, we may consider the multiplicatively closed set U of all nonzerodivisors
of R. We, again, write Q(R) = R[U−1], and call Q(R) the total quotient
ring of R. Since U does not contain a zerodivisor, the natural ring homomor-
phism ι : R → Q(R) is injective, and we may consider R as a subring of Q(R)
by means of ι.
2. If f is an element of R, then U = {fm | m ≥ 0} is multiplicatively closed.

We write Rf = R[1/f ] = R[U−1] in this case.
3. If p is a prime ideal of R, then U = R \ p is multiplicatively closed. We

write Rp = R[U−1] in this case, and call Rp the localization of R at p. )*

Example 4.2.5. By inverting all elements in U = Z\ {0}, we obtain the field
Q of rational numbers. Inverting fewer elements, we get subrings of Q. For
instance, if n ∈ Z is any number, we get the subring

Z[1/n] = {a/b ∈ Q | b = nk for some k ∈ N}.

Or, if p ∈ Z is any prime number, we get the subring

Z〈p〉 = {a/b ∈ Q | p does not divide b}.

If p does not divide n, we have ring inclusions

Z ⊂ Z[1/n] ⊂ Z〈p〉 ⊂ Q. )*

Remark 4.2.6. If p is a prime ideal of a ring R, the nonunits of the ring Rp

form the ideal
pRp = {r/u | r ∈ p, u ∈ R \ p}.

Taking Remark 1.3.8 into account, we find that (Rp, pRp) is a local ring in
the sense of Definition 1.3.7. By Exercise 4.2.3, the residue field is

Rp/pRp
∼= Q(R/p). )*
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Generalizing what we observed in the remark, our next result shows that the
ideal theory of a localized ring is always a simplified version of the ideal theory
of the original ring. This result is the main reason for the importance of rings
of fractions in commutative algebra.

Theorem 4.2.7. Let R be a ring, let U ⊂ R be a multiplicative closed subset,
and let ι : R → R[U−1], r -→ r/1, be the natural homomorphism.

1. If I ⊂ R is an ideal, then

ι−1(IR[U−1]) = {a ∈ R | ua ∈ I for some u ∈ U}.

2. If J ⊂ R[U−1] is an ideal, then

ι−1(J)R[U−1] = J.

We, thus, get an injectice map of the set of ideals of R[U−1] into the set
of ideals of R by sending J to ι−1(J).

3. If R is Noetherian, then so is R[U−1].
4. The injection J -→ ι−1(J) restricts to a bijection between the set of prime

ideals of R[U−1] and the set of prime ideals of R not meeting U .

Proof. For part 1, observe that if a ∈ R, then a ∈ ι−1(IR[U−1]) ⇐⇒ a/1 ∈
IR[U−1] ⇐⇒ ua ∈ I for some u ∈ U . For part 2, let b/u ∈ R[U−1], where
b ∈ R and u ∈ U . Then b/u ∈ J ⇐⇒ b/1 ∈ J ⇐⇒ b ∈ ι−1(J) ⇐⇒ b/u ∈
ι−1(J)R[U−1]. Part 3 follows from part 2 (for instance, use the ascending
chain condition). For part 4, notice that if q is a prime ideal of R[U−1], then
p = ι−1(q) is a prime ideal of R. Moreover, p∩U = ∅ since q does not contain
units. Conversely, let p be a prime ideal of R such that p∩U = ∅. If a/u ·b/v ∈
pR[U−1], with u, v ∈ U , then wab ∈ p for some w ∈ U . Since w /∈ p, we must
have a ∈ p or b ∈ p and, thus, a/u ∈ pR[U−1] or b/v ∈ pR[U−1]. Moreover,
1 /∈ pR[U−1], so pR[U−1] is a prime ideal of R[U−1]. The result follows from
part 1 since ι−1(pR[U−1]) = {a ∈ R | ua ∈ p for some u ∈ U} = p. )*

Exercise∗ 4.2.8 (Localization Commutes with Forming Radicals). If
I ⊂ R is an ideal, then show that rad (IR[U−1]) = (rad I)R[U−1]. Conclude
that the injection J -→ ι−1(J) restricts to a bijection between the set of
primary ideals of R[U−1] and the set of primary ideals of R not meeting U . )*

In the geometric setting, given an algebraic set A, we apply the constructions
discussed in Example 4.2.4 to the coordinate ring K[A].

To begin with, the total quotient ring K(A) := Q(K[A]) is the ring of
rational functions on A. Here, the terminology introduced in Section 2.6
for rational functions on varieties carries over to rational functions on arbitrary
algebraic sets. In particular, we define the domain of definition dom(f) of
a rational function f ∈ K(A) as in Section 2.6, and view f as a function
on dom(f). Note that dom(f) is open and, by Exercise 1.11.9, dense in the
Zariski topology on A.
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If f ∈ K[A], the localization K[A]f is the K-algebra of functions on DA(f)
considered in the introduction to this section.

Similarly, if p ∈ A is a point, the local ring OA,p is formally defined as the
localization of K[A] at the maximal ideal of K[A] corresponding to p:

Remark-Definition 4.2.9. Let A ⊂ An be an algebraic set, and let p ∈ A
be a point. The local ring of A at p, written OA,p, is defined to be the
localization

OA,p = K[A]m,

where m = IA(p) ⊂ K[A] is the maximal ideal corresponding to p. Taking
Remark 4.2.6 and part 3 of Proposition 4.2.7 into account, we find that OA,p

is a local Noetherian ring with maximal ideal

mA,p := {f/g ∈ OA,p | f(p) = 0}.

Furthermore, by Exercise 4.2.3,

OA,p = OAn,p/ I(A)OAn,p. )*

Exercise 4.2.10. Let B1, B2 ⊂ An be algebraic sets, let A = B1 ∪ B2, and
let p ∈ A be a point not lying on B2. Then show that OA,p

∼= OB1,p. )*

Remark 4.2.11. If V is an affine variety, the local rings OV,p, p ∈ V , are
subrings of K(V ) containing K[V ]. In fact, by Proposition 2.6.15,

K[V ] =
⋂

p∈V

OV,p ⊂ K(V ).
)*

Remark 4.2.12. Instead of just considering local rings at points, it makes
also sense to consider the local ring of A along a subvariety W of A. This
ring, written OA,W , is the localization of K[A] at the prime ideal p = IA(W ).
If A = V is a variety, then OV,W is a subring of K(V ), namely the subring
consisting of all rational functions on V that are defined at some point of W
(and, hence, defined on a dense open subset of W ). )*

We postpone the further development of the general theory of localization to
Section 4.5. Our next goal in this section is to characterize the smoothness of
an algebraic set A at a point p ∈ A in terms of the local ring OA,p. To begin
with, we characterize the local dimension dimp A in terms of OA,p:

Proposition 4.2.13. If R is a ring, and p is a prime ideal of R, then

dimRp = codim p.

In particular, if A ⊂ An is an algebraic set, and p ∈ A is a point, then

dimOA,p = dimp A.
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Proof. By Proposition 4.2.7, there is a one-to-one correspondence between
maximal chains of prime ideals of Rp and maximal chains of prime ideals of
R with largest ideal p:

p0 " p1 " . . . " pd = p.

This shows the first assertion. For the second assertion, note that if R = K[A],
and p = IA(p) ⊂ R is the maximal ideal corresponding to p, then a chain as
above corresponds to a chain of subvarieties Wi := VA(pi) ⊂ A containing p.
The variety W0 is actually an irreducible component of A since otherwise we
could insert a prime ideal strictly contained in p0. Moreover,

〈0〉 " p1/p0 " . . . " pd/p0

is a maximal chain of prime ideals of K[W0] ∼= K[A]/p0. Every such chain has
length dim W0 by Corollary 3.4.9. Conversely, if p0 ⊂ K[A] is a prime ideal
such that VA(p0) is an irreducible component of A passing through p, then p0

fits as smallest ideal into a maximal chain of prime ideals of K[A] with largest
ideal p = IA(p). )*

Next, in the final version of Theorem 4.1.17, we describe the tangent space
TpA in terms of OA,p. For this, note that if (R, m) is a local ring with residue
field R/m, then m/m2 is naturally an R/m-module. That is, m/m2 is an R/m-
vector space.

Theorem-Definition 4.2.14 (Zariski Tangent Space, Final Version).
If A ⊂ An is an algebraic set, and p ∈ A is a point, there is a natural
isomorphism of K-vector spaces

(mA,p/m2
A,p)

∗ ∼= TpA.

We call (mA,p/m2
A,p)∗ the Zariski tangent space to A at p.

Proof. Let f = g/h ∈ K(x1, . . . , xn) be a rational function such that h(p) #= 0.
In extending what we did for polynomials, we define the differential dpf of
f at p by formally writing down the quotient rule:

dpf :=
h(p)dpg − g(p)dph

h2(p)

(this is independent of the choice of representation for f as a fraction). Argu-
ing, now, as in the proof of Theorem 4.1.17, we get a map

dp : mA,p → T ∗
p A, f = g/h -→ dpf |TpA

whose kernel is m2
A,p. )*

Combining Proposition 4.2.13 and Theorem 4.2.14, we get:
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Corollary 4.2.15. Let A ⊂ An be an algebraic set, and let p ∈ A be a point.
Then A is smooth at p iff

dimK mA,p/m2
A,p = dimOA,p. )*

Corollary 4.2.16. If A ⊂ An is an algebraic set, then Asing and A have no
irreducible component in common.

Proof. As already pointed out in Remark 4.1.11, we will show in Corollary
4.6.26 that a point of A is singular iff it lies on the intersection of two ir-
reducible components of A or is a singular point of one of the components.
For our purposes here, it is, hence, enough to show that if V is such a com-
ponent, then V contains Vsing properly. By Proposition 4.1.3, this is true in
the hypersurface case. To reduce to this case, we apply Theorem 3.5.2: let
φ : V → W be a finite morphism onto a hypersurface W ⊂ Ad+1 admit-
ting a rational inverse ψ : W !!" V . Then, since Wsing is a proper algebraic
subset of W , the set U := dom(ψ) ∩ (W \ Wsing) is Zariski dense in W . In
particular, U is nonempty. But if q = φ(p) is a point of U , the isomorphism
φ∗ : K(W ) → K(V ) restricts to an isomorphism OW,q

∼= OV,p. Hence, we are
done by Corollary 4.2.15. )*

The inequality
dimR/m m/m2 ≥ dim R (4.3)

holds for any local Noetherian ring (R, m) (this is the. general algebraic form
of inequality (4.1) on Page 143 which we will be prove in Corollary 4.6.20).
The importance of Corollary 4.2.15 is emphasized by the following definition:

Definition 4.2.17 (Krull). A local Noetherian ring (R, m) is called regular
if dimR/m m/m2 = dimR. )*

Using this notion, we can restate Corollary 4.2.15 as follows:

Corollary 4.2.18. Let A ⊂ An be an algebraic set, and let p ∈ A be a point.
Then A is smooth at p iff OA,p is a regular local ring . )*

In most textbooks on commutative algebra, the definition of a regular local
ring involves a characterization of dimR/m m/m2 in terms of generators for m.
This is obtained as an application of the following fundamental result:

Theorem 4.2.19 (Lemma of Nakayama). Let (R, m) be a local ring, let
M be a finitely generated R-module, and let N ⊂ M be a submodule. Then

N + mM = M iff N = M.

Proof. Replacing M by M/N , we reduce to the case N = 0. That is, it suffices
to show that mM = M implies M = 0 (the converse implication is clear). Let
m1, . . . , mr be a finite set of generators for M . If mM = M , we may write
each mi as an m-linear combination of the mj :
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mi =
∑

rijmj , with all rij ∈ m.

In matrix notation,

(Er −B)




m1
...

mr



 = 0,

where B = (rij) and Er is the r × r identity matrix. Arguing once more as
in the proof of the Projection Theorem 3.1.2, we multiply with the matrix of
cofactors of (Er −B), and obtain that h = det(Er −B) annihilates each mi.
This implies that the mi and, thus, M are zero. Indeed, h is a unit in R since
h ≡ 1 mod m. )*

Starting from well-known facts on vector spaces, Nakayama’s lemma allows
us to deduce information on modules over local rings. In making this explicit,
we use the following notation: If R is any ring, and M is any R-module, a set
of generators for M is minimal if no proper subset generates M .

Corollary 4.2.20. Let (R, m) and M be as in Nakayama’s Lemma 4.2.19.
Then m1, . . . , mr ∈ M generate M as an R-module iff the residue classes
mi = mi + mM generate M/mM as an R/m-vector space. In particular, any
minimal set of generators for M corresponds to an R/m-basis for M/mM ,
and any two such sets have the same number of elements.

Proof. Let N = 〈m1, . . . , mr〉 ⊂ M . Then m1, . . . , mr generate M iff N +
mM = M iff span(m1, . . . , mr) = M/mM . )*

Corollary 4.2.21. A local Noetherian ring (R, m) is regular iff m can be
generated by dim R elements. )*

The first part of the exercise below shows that the conclusion of Corollary
4.2.20 may be wrong over arbitrary rings:

Exercise 4.2.22. 1. Find an ideal of k[x1, . . . , xn] which admits minimal
sets of generators differing in their number of elements.

2. Let OA2,o be the local ring of A2 at the origin o = (0, 0). For each n ∈ N,
find an ideal of OA2,o which is minimally generated by n elements. )*

Another application of Nakayama’s lemma, which we present for later use, is
a special case of Krull’s intersection theorem (see Eisenbud (1995), Corollary
5.4 for the general case):

Theorem 4.2.23 (Krull’s Intersection Theorem). Let (R, m) be a local
Noetherian ring. Then

∞⋂

k=0

mk = 〈0〉.
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Proof. In the polynomial ring R[t], consider the subalgebra

S = R[mt] = R ⊕mt⊕m2t2 ⊕ . . . ⊂ R[t].

Since R is Noetherian, m is a finitely generated ideal of R. It follows that
S is a finitely generated R-algebra and, thus, that S is Noetherian, too. In
particular, if J =

⋂∞
k=0 mk, the ideal

J ⊕ Jt⊕ Jt2 ⊕ . . . ⊂ S

is generated by finitely many homogeneous polynomials in R[t] (take the ho-
mogeneous components of any finite set of generators). If r is the maximum
degree in of the generators, then mtJtr = Jtr+1. That is,

m
∞⋂

k=0

mk =
∞⋂

k=0

mk ⊂ R.

The result follows from Nakayama’s lemma. )*

Example 4.2.24. The conclusion of the intersection theorem may not hold if
R is not Noetherian. For instance, let R be the ring of germs of C∞ functions
defined on arbitrarily small ε-neighborhoods of the origin 0 ∈ R (that is, the
elements of R are obtained by identifying two functions if they coincide on
a sufficiently small neighborhood of 0). Then R is local with maximal ideal
m = 〈x〉, where x is (the germ of) the coordinate function. On the other hand,
the function

g(x) =

{
e−1/x2

if x #= 0,

0 if x = 0

defines a (nontrivial) element of
⋂∞

k=0 mk: indeed, g(x)/xk is C∞ for every k.
In particular, R cannot be Noetherian by Krull’s intersection theorem. )*

We end this section as we have started it, namely by considering admissible
functions. So far, given an algebraic set A ⊂ An, we have described the func-
tions allowed on distinguished open subsets of A. Now, taking our cue from
Proposition 2.6.15, we deal with arbitrary open subsets:

Remark-Definition 4.2.25. Let A ⊂ An be an algebraic set, and let U ⊂ A
be an open subset. A function f : U → K is called regular at a point p ∈ U
if there are g, h ∈ K[A] such that h(q) #= 0 and f(q) = g(q)/h(q) for all q ∈ U .
We say that f is regular on U if it is regular at every point of U . The set
O(U) of all regular functions on U becomes a ring, with pointwise defined
algebraic operations. That is, we add and multiply values in K.

On distinguished open subsets, we get the functions already familiar to us:
Proposition 4.2.26. Let A ⊂ An be an algebraic set. If 0 #= h ∈ K[A],
then for each regular function f on DA(h), there exist g ∈ K[A] and m ≥ 1
such that f(p) = g(p)/h(p)m for all p ∈ DA(h). That is, we may identify
O(DA(h)) = K[A]h. In particular, taking h = 1, we get O(A) = K[A]. That
is, the regular functions on A are precisely the polynomial functions.
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Proof. Let f be a regular function on DA(h). Since the Zariski topology is
quasicompact, we can find a finite family of pairs of functions gi, hi ∈ K[A],
say i = 1, . . . , N , such that DA(h) =

⋃N
i=1 DA(hi), and such that f = gi/hi

as functions on DA(hi), for all i. Then, for all i, j, we have gihj − gjhi = 0
on DA(hi)∩DA(hj) = DA(hihj) and, thus, hihj(gihj − gghi) = 0 on all of A.
Replacing gi by gihi and hi by h2

i for all i, we may suppose that gihj = gjhi

on A for all i, j.
Since DA(h) =

⋃N
i=1 DA(hi), we have VA(h) = VA(h1, . . . , hN ). The

Nullstellensatz implies that hm ∈ 〈h1, . . . , hN 〉 for some m ≥ 1, say hm =∑N
i=1 aihi, with a1, . . . , aN ∈ K[A]. Let g =

∑N
i=1 aigi. Then for all j,

hmgj =
N∑

i=1

aihigj =
N∑

i=1

aigihj = ghj

and, thus, f = gj/hj = g/hm as functions on DA(hj). The result follows since
DA(h) =

⋃N
i=1 DA(hi). )*

Exercise 4.2.27. Show that regular functions are continous when K is iden-
tified with A1 in its Zariski topology.
Hint: The property that a subset Y of a topological space X is closed is a
local property in the sense that Y is closed if it can be covered by open
subsets U of X such that Y ∩ U is closed in Y for all U . )*

Exercise 4.2.28 (Characterization of Rational Functions). Let A be
an algebraic set. Let Σ be the set of pairs (U, f), where U is a Zariski dense
open subset of A, and where f ∈ O(U). Show that the relation ∼ on Σ defined
by

(U, f) ∼ (U ′, f ′) ⇐⇒ f |U ∩ U ′ = f ′|U ∩ U ′

is an equivalence relation. Show that the set of all equivalence classes is a
ring which is naturally isomorphic to K(A) (the sum and product of two
classes represented by pairs (U, f) and (U ′, f ′) are obtained by adding and
multiplying f and f ′ on U∩U ′, respectively). Conclude that if A = V1∪· · ·∪Vs

is the decomposition of A into its irreducible components, then

K(A) ∼= K(V1) × · · ·× K(Vs). )*

4.3 Intersection Multiplicities of Plane Curves

In Section 5, we will prove Bezout’s Theorem which says that if C, D are two
plane curves of degrees d, e without a common component, then C and D
intersect in precisely d · e points – provided we work in the right setting, and
provided we count the intersection points with appropriate multiplicities. The
right setting will be created in Section 5.1 by adding points at infinity. How
to define the multiplicities will be explained now. We begin by fixing some
terminology for dealing with singularities of plane curves.
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Example 4.3.1. The following picture shows plane curves with different
types of singularities:

node triple point tacnode cusps
)*

Plane curves correspond to nonconstant square-free polynomials f ∈ k[x, y],
where f is determined up to multiplication by a nonzero scalar. For reasons
which will become clear later in this section, however, it is convenient to allow
f to have multiple factors in the following definitions.

Definition 4.3.2. Let f ∈ k[x, y] be a nonconstant polynomial, and let p =
(a, b) ∈ A2 be a point. Let

f = f0 + f1 + f2 + . . . + fd ∈ K[x, y]

be the Taylor expansion of f at p, where, for each i, the polynomial fi collects
the degree-i terms of f in x−a and x−b. The multiplicity of f at p, written
mult(f, p), is defined to be the least m such that fm #= 0. By convention,
mult(0, p) = ∞.

If f is square-free, and C = V(f) ⊂ A2 is the corresponding curve, we
write mult(C, p) = mult(f, p), and call this number the multiplicity of C
at p. )*

Note that p ∈ V(f) iff mult(f, p) ≥ 1. If f is square-free, and C = V(f), then
mult(C, p) = 1 iff p is a smooth point of C. We speak of a double point if
the multiplicity m is 2, of a triple point, if m = 3, and a quadruple point,
if m = 4.

Example 4.3.3. The origin is a double point of each curve shown below:

y2 = x3 + x2 y2 = x3 y2 = xy + x2y − x3

)*

Different types of singularities of plane curves can often be distinguished by
considering the tangent lines at these points. To introduce tangent lines at
singular points, we remark that over the algebraically closed field K, every
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homogeneous polynomial in two variables can be written as a product of
linear factors. Indeed, if g = ysh ∈ K[x, y], where y does not divide h, the
dehomogenized polynomial g(x, 1) = h(x, 1) is univariate and decomposes,
hence, into linear factors: g(x, 1) = h(x, 1) =

∏r−1
i=1 (λix − µi)ei ∈ K[x, y].

Homogenizing the factors, we get g = ys
∏r−1

i=1 (λix − µiy)ei .

Definition 4.3.4. Let f ∈ k[x, y] be a nonconstant polynomial, and let p =
(a, b) ∈ A2 be a point. Let

f = fm + . . . + fd ∈ K[x, y]

be the Taylor expansion of f at p as in Definition 4.3.2, where m = mult(f, p).
Decompose fm over K into pairwise different linear factors in x− a and y− b:

fm =
r∏

i=1

(λi(x − a) − µi(y − b))ei ∈ K[x, y].

The tangent lines to f at p are defined to be the lines

Li = V(λi(x − a) − µi(y − b)) ⊂ A2,

and ei is the multiplicity of Li.
If f is square-free, and C = V(f) ⊂ A2 is the corresponding curve, the

tangent lines to f at p are also called the tangent lines to C at p. )*

At a smooth point of C, the multiplicity m = 1, and the definition above
yields precisely the tangent line introduced in Section 4.1. If C has m ≥ 2
distinct tangent lines (of multiplicity 1) at p, we say that p is an ordinary
multiple point of C. An ordinary double point is called a node.

Example 4.3.5. In Example 4.3.3, the origin o is a node of V(y2 − x2 − x3),
with tangent lines V(x+y) and V(x−y). Similarly, o is a node of the reducible
curve C = V(y2 − xy − x2y + x3): the two different tangent lines are the line
V(x − y), which is one of the components of C, and the x-axis, which is the
tangent line at o to the other component V(y − x2) of C. In contrast, the
curve V(y2 − x3) has a tangent line of multiplicity 2 at o. )*

Exercise 4.3.6. The curves in Example 4.3.1 are defined by the polynomials
below:

y2 = (1 − x2)3, y2 = x2 − x4, y3 − 3x2y = (x2 + y2)2, y2 = x4 − x6.

Which curve corresponds to which polynomial? )*

Before turning to intersection multiplicities, we present a result which shows
that the ideals of local rings of plane curves at smooth points are easy to
handle. We need the following notation:



160 4 Local Properties

Definition 4.3.7. A discrete valuation on a field K is a surjective map
v : K \ {0} → Z such that, for all a, b ∈ K \ {0},

1. v(ab) = v(a) + v(b), and
2. v(a + b) ≥ min(v(a), v(b)). )*

Note that the first condition of the definition means that v : K \ {0}→ Z is a
group homomorphism. In particular, v(1) = 0. By convention, v(0) = ∞. The
set

R := {a ∈ K | v(a) ≥ 0}

is, then, a subring of K to which we refer as the valuation ring of v.

Definition 4.3.8. An integral domain R is called a discrete valuation ring
(DVR for short) if R is the valuation ring of a discrete valuation on its
quotient field. )*

Example 4.3.9. The ring k[[x]] of formal power series f =
∑∞

i=0 aixi with
coefficients ai ∈ k is a DVR. Indeed, it is an integral domain with quotient
field k((x)), where

k((x)) = {
∞∑

i=n

aix
i | ai ∈ k for all i}

is the field of formal Laurent series with coefficients in k. The desired valuation
on k((x)) is obtained by setting v(f) = n if f =

∑∞
i=n aixi with an #= 0. Using

the same terminology as for convergent power and Laurent series in complex
analysis, we say that v(f) is the vanishing order of a formal power series
f ∈ k[[x]] and that a formal Laurent series f ∈ k((x)) \ k[[x]] has a pole of
order −v(f). )*

If R is a DVR with quotient field K and corresponding discrete valuation v
on K, its set of nonunits, which is the set

m := {a ∈ K | v(a) ≥ 1},

is an ideal of R. Hence, (R, m) is a local ring. Furthermore, R is a PID: Since
v is surjective, there is an element t ∈ m such that v(p) = 1, and we claim
that every nonzero ideal I of R is of type I = 〈tk〉 = mk = {a ∈ R | v(a) ≥ k},
where k is minimal among all v(g), g ∈ I. Indeed, to see this, just note that if
a, b are two elements of R, then v(a) = v(b) iff v(ab−1) = 0 iff ab−1 is a unit
of R iff 〈a〉 = 〈b〉.

Exercise∗ 4.3.10. Let R be a local Noetherian integral domain with maximal
ideal m. Suppose that R contains a field L such that the composite map
L → R → R/m is an isomorphism. Then all quotients mk/mk+1 are L-vector
spaces. In this situation, show that R is a DVR iff the following two conditions
hold:
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1. dimL mk/mk+1 = 1 for all k ≥ 0;
2. dimL R/mk = k for all k ≥ 1. )*

Proposition 4.3.11. Let R be a local ring. Then the following are equivalent:

1. R is a DVR.
2. R is regular of dimension 1.

Proof. 1 =⇒ 2: If R is a DVR with maximal ideal m, the only chain of prime
ideals of R is 〈0〉 " m. So R has Krull dimension one. Moreover, as already
pointed out in the discussion preceeding Exercise 4.3.10 , m is generated by
just one element. So R is regular.

2 =⇒ 1: Conversely, suppose that R is regular of dimension one, and let
t be a generator for the maximal ideal m. To show that R is a DVR, we first
observe that tr #= 0 for all r. Indeed, otherwise, m = 〈t〉 would be the only
prime ideal of R, so that R would be zerodimensional. Let, now, 0 #= g ∈ R.
By Krull’s intersection theorem, g cannot be contained in all powers of m.
Let k = max{r | g ∈ mr}. Then g = utk for some element u ∈ R \ m, which
necessarily is a unit of R. Similarly, if 0 #= h is another element of R, write h
as a product vt&, for some unit v and some *. Then gh = uvtk+& is nonzero,
and we conclude that R is an integral domain. Furthermore, any element f
of the quotient field Q(R) has a unique representation of type f = wtm, for
some unit w and some m ∈ Z. Setting v(f) = m, we get the desired discrete
valuation on Q(R). )*

Taking Corollary 4.2.18 into account, we get:

Corollary 4.3.12. An irreducible curve C ⊂ A2 is smooth at a point p ∈ C
iff OC,p is a discrete valuation ring. )*

If C is smooth at p, we occasionally write vC,p for the corresponding discrete
valuation on K(C). Motivated by Example 4.3.9, we say that vC,p(f) is the
vanishing order of an element f ∈ OC,p, and that a rational function f ∈
K(C) \ OC,p has a pole of order −vC,p(f) at p.

We will, now, define intersection multiplicities. There are several ways of
doing this, some of which go back to Newton and his contemporaries (see
Fulton (1998), Chapter 7, Notes and References for some historical remarks).

Example 4.3.13. Consider the curves C = V(y) and D = V(y−xr) in A2(C).
Intuitively, we should count the origin o = (0, 0) as an intersection point of
multiplicity r. Indeed, if we perturb the equations defining C and D slightly,
we get r distinct intersection points near o:
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D

D

C

Dc

Dc

The case r = 3.

For a more precise statement, consider, for instance, a perturbation of the
defining equation f0 = y−xr for D, say fc = y−xr + c1xr−1 + . . .+ cr, where
c = (c1, . . . , cr) is a tuple of complex numbers, and let Dc = V(fc) ⊂ A2(C).
Given a sufficiently small ε > 0, there is, then, a number δ > 0 such that for
any sufficiently general c with |ci| < δ, the curve Dc intersects C in r distinct
points in the ε-neighborhood of the origin (we will prove this in the context
of Bertini’s theorem in Chapter 6). )*

Example 4.3.14. Now, consider the pairs of curves y2 − x3 and x2 − y3,
respectively y2 − x3 and 2y2 − x3:

transversal cusps tangential cusps

In both cases, can you find the intersection multiplicity at the origin? )*

It is not immediately clear that the dynamic point of view taken in the ex-
amples above gives well-defined intersection multiplicities. Furthermore, com-
puting intersection multiplicities in this way can be quite elaborate.

Following Macaulay (1916), we will work with a purely algebraic definition
of intersection multiplicities which is static in that we do not vary the given
equations. The definition is less intuitive, but turns out to be just right.

Definition 4.3.15. Let f, g ∈ k[x, y] be nonconstant polynomials, and let
p ∈ A2 be a point. The intersection multiplicity of f and g at p, written
i(f, g; p), is defined to be

i(f, g; p) = dimK OA2,p/〈f, g〉OA2,p.
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If f, g are square-free, and C = V(f), D = V(f) ⊂ A2 are the corresponding
curves, we write i(C, D; p) = i(f, g; p), and call this number the intersection
multiplicity of C and D at p. )*
The calculations in Example 4.3.17 below rely on the following observation:
Remark 4.3.16. Let I ⊂ k[x1, . . . , xn] be an ideal such that V(I) ⊂ An

consists of a single k-rational point p = (a1, . . . , an). Then there is a natural
isomorphism of K-algebras

R := K[x1, . . . , xn]/I K[x1, . . . , xn] ∼= OAn,p/IOAn,p =: R′.

Indeed, R is a local ring with maximal ideal m = 〈x1 − a1, . . . , xn − an〉/I.
Hence, by the universal property of localization, R = Rm. But Rm

∼= R′ by
Exercise 4.2.3. )*
Example 4.3.17. 1. In accordance with Example 4.3.13, we have

i(y, y − xr; o) = r.

Indeed, by Remark 4.3.16,

OA2,o/〈y, y − xr〉OA2,o
∼= C[x, y]/〈y, y − xr〉 ∼= C[x]/〈xr〉.

2. For the transversal cusps in Example 4.3.14, we get

i(y2 − x3, x2 − y3; o) = 4.

Indeed, since 1 − xy is a unit in OA2,o, we have

〈y2 − x3, x2 − y3〉 = 〈y2 − x3, x2 − x3y〉 = 〈y2 − x3, x2〉 = 〈y2, x2〉 ⊂ OA2,o,

and the result follows as above from Remark 4.3.16. Similarly, for the tangen-
tial cusps,

i(y2 − x3, 2y2 − x3; o) = 6
since

〈y2 − x3, 2y2 − x3〉 = 〈y2, x3〉 ⊂ OA2,o.

To see this from the dynamical point of view, consider perturbed equations
of type

y2 − (x − c)2(x + c) = x2 − (y − d)2(y + d) = 0
respectively

y2 − (x − c)2(x + c) = 2y2 − x2(x + d) = 0 :

4 intersection points 6 intersection points
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)*

Since we allow polynomials with multiple factors, it makes sense to extend
some of the terminology used when working with curves to the more general
case considered here. If f ∈ k[x, y] is a nonconstant polynomial, and p ∈ A2 is
a point, we say that f passes through p if p ∈ V(f). If g ∈ k[x, y] is another
nonconstant polynomial, we say that f and g intersect at p if p ∈ V(f)∩V(g)
(equivalently, both multiplicities mult(f, p) and mult(g, p) are ≥ 1). We say
that f and g intersect transversally at p if mult(f, p) = mult(g, p) = 1 and
the tangent line to f at p is different from the tangent line to g at p. Finally,
if

f =
r∏

i=1

fei
i ∈ K[x, y]

is the decomposition of f into pairwise different irreducible factors fi over
K, then each fi is a component of f , and ei is the multiplicity of the
component fi.

Theorem 4.3.18 (Properties of Intersection Multiplicities). Let f, g ∈
k[x, y] be nonconstant polynomials, and let p = (a, b) ∈ A2 be a point. Then:

1. i(f, g; p) = 0 iff f and g do not intersect at p.
2. i(f, g; p) = ∞ iff f and g have a common component passing through p.
3. i(f, g; p) ≥ mult(f, p) · mult(g, p), with equality occuring iff f and g have

no tangent line in common at p.
4. i(f, g; p) = 1 iff f and g intersect transversally at p.
5. i(f, g; p) = i(g, f ; p).
6. i(f, g + hf ; p) = i(f, g; p) for all h ∈ k[x, y].
7. If f is irreducible, and p is a smooth point of C = V(f) ⊂ A2, then

i(f, g; p) = vC,p(g), where g ∈ K[C] ⊂ OC,p is the residue class of g.
8. i(f, gh; p) = i(f, g; p) + i(f, h; p) for all f, g, h ∈ k[x, y].

Proof. Parts 5 and 6 immediately follow from the definition. To show the
remaining parts, we may suppose that all the components of f and g pass
through p. Indeed, the other components are units in OA2,p and do, hence, not
contribute to i(f, g; p). For simplicity, we write Op = OA2,p and mp = mA2,p.

1. According to our definition, i(f, g; p) = 0 iff 〈f, g〉Op = Op. This, in
turn, means that either f or g is a unit in Op and, thus, that p #∈ V(f)∩V(g).

2. If f and g have a common component h, then 〈f, g〉Op ⊂ 〈h〉Op " Op.
Hence, i(f, g; p) ≥ dimK Op/〈h〉Op, and it suffices to show that the quotient
of Op modulo a proper principal ideal has infinite K-dimension. We postpone
the proof of this until we have formulated a version of Macaulay’s Theorem
2.3.5 which holds in the ring Op. See Remark 4.4.24 in the next section.

For the converse, suppose that f and g have no common component. Then
dimK K[x, y]/〈f, g〉 is finite by Exercises 1.7.13 and 1.6.5. In particular, there is
a unique 〈x−a, y−b〉-primary component of 〈f, g〉 ⊂ K[x, y], which we denote
by I. Then Op/〈f, g〉Op = Op/IOp (we will see this in Exercise 4.5.5, where
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we will study the behavior of primary decompositions under localization).
Since, in turn, Op/I Op

∼= K[x, y]/I by Remark 4.3.16, we conclude that
i(f, g; p) = dimK K[x, y]/I ≤ dimK K[x, y]/〈f, g〉 < ∞, as desired.

3. We will prove this part towards the end of the next section using
Gröbner bases in the local case.

4. This special case of part 3 is easy to do directly. Indeed, applying
Nakayama’s lemma as in the proof of Corollary 4.2.20, we get: i(f, g; p) =
1 ⇐⇒ 〈f, g〉 = mp ⇐⇒ 〈f, g〉+ m2

p = mp ⇐⇒ span(dpf + m2
p, dpg + m2

p〉 =
mp/m2

p. Since mp/m2
p is a two dimensional K-vector space, i(f, g; p) = 1 iff

dpf and dpg are K-linearly independent, that is, iff C and D are smooth in p
with different tangent lines.

7. According to our assumptions in this part, OC,p is a DVR, with corre-
sponding discrete valuation vC,p on K(C). Hence,

Op/〈f, g〉Op
∼= OC,p/〈ḡ〉 ∼= OC,p/〈tk〉,

where k = vC,p(g). This shows the result since dimK OC,p/〈tk〉 = k by Exercise
4.3.10.

8. Since the assertion follows from part 2 otherwise, we may suppose that
f and gh have no common component. Consider, then, the sequence

0 → Op/〈f, h〉Op
φ→ Op/〈f, gh〉Op

ψ→ Op/〈f, g〉Op → 0, (4.4)

where φ is multiplication by g and ψ is induced by the identity on Op. By
Exercise 2.8.4 on the additive behavior of K-dimension, we are done if we
show that (4.4) is exact.

For this, note that the syzygies on f, g over Op are generated by the trivial
syzygy (g,−f)t ∈ O2

p. Indeed, given an Op-linear relation Af +Bg = 0, choose
a polynomial u ∈ K[x, y] with u(p) = 0, and such that a := uA ∈ K[x, y] and
b := uB ∈ K[x, y]. Then af + bg = 0 ∈ K[x, y]. Since K[x, y] is a UFD and
f and g have no common component, b must be a multiple of f , so that
−b = cf for some c ∈ K[x, y]. Then (a, b)t = c · (g,−f)t ∈ K[x, y]2 and, thus,
(A, B)t = C · (g,−f)t ∈ O2

p, where C = c/u.
It follows that φ is injective: if bg ∈ 〈f, gh〉Op, say bg = af + cgh with

a, c ∈ Op, then (a,−b + ch)t is a syzygy on f, g, so that b − ch ∈ fOp and,
thus, b ∈ 〈f, h〉Op. Since, furthermore, ψ is surjective by its very definition,
it remains to show that imφ = kerψ. This is completely straightforward and
we leave it to the reader. )*

Note that it are properties 6 and 8 which force us to allow polynomials with
multiple factors in our definitions and statements. These properties are useful
in that they often enable us to simplify the computation of intersection num-
bers. Let us, for instance, rewrite the last computation in Example 4.3.17.
Property 6 (with the help of property 5) gives i(y2 − x3, 2y2 − x3; o) =
i(y2, x3; o). But i(y2, x3; o) = 6 by property 8. )*
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Exercise∗ 4.3.19. Let f ∈ k[x, y] be a square-free polynomial, let C =
V(f) ⊂ A2 be the corresponding plane curve, and let p ∈ C be a point.

1. Suppose that p is a double point at which C has precisely one tangent
line L. Show that, then, i(C, L; p) ≥ 3. We say that p is a cusp of C if
i(C, L; p) = 3.

2. If p is the origin, and L is the x-axis, show that p is a cusp of C with
tangent line L iff f is of type f = ay2 + bx3 + other terms of degree ≥ 3,
where ab #= 0. )*

4.4 Gröbner Bases in the Local Case

In this section, we will adjust the concept of Gröbner bases and Buchberger’s
algorithm to computations in the local ring of An at a given point of An. This
will, in particular, allow us to compute intersection multiplicities via Gröbner
bases.

For our purposes, it is enough to consider the case where the given point is
the origin o ∈ An. Indeed, if p = (a1, . . . , an) ∈ An is any point, we may trans-
late p to o (on the level of rings, we have the isomorphism OAn,p

∼= OAn,o which
extends the substitution homomorphism K[x1, . . . , xn] → K[x1, . . . , xn], xi -→
xi − ai). As usual, k ⊂ K will be the ground field over which the generators
of the ideals under consideration (and the originally given point p) are de-
fined. Taking into account that Remark 2.7.1 on field extensions applies to
the adjusted version of Buchberger’s algorithm, too, we will be concerned with
computations in the local ring

Oo = k[x1, . . . , xn]〈x1,...,xn〉.

Note that every ideal I of Oo can be generated by polynomials (choose any
finite set of generators and clear denominators). Starting from a set of poly-
nomial generators for I, the adjusted version of Buchberger’s algorithm will
compute a Gröbner basis for I consisting of polynomials, too. In fact, all
computations in Buchberger’s test will take place in the polynomial ring.

Reflecting the significance of the lowest degree terms of a polynomial f for
local studies (as indicated by our treatment of singular points in the preceeding
section), we will pick the leading term of f from among those terms. One way
of making this precise would be to choose a degree-compatible monomial order
such as the degree reverse lexicographic order, and pick the least term of f
as the leading term. Pursuing an alternative approach, we will make use of
monomial orders which are degree-anticompatible:

deg xα < deg xβ =⇒ xα > xβ .

Example 4.4.1. The local degree reverse lexicographic order >ldrlex

on k[x1, . . . , xn] is defined by setting
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xα >ldrlex xβ ⇐⇒ deg xα < deg xβ , or (deg xα = deg xβ and the
last nonzero entry of α− β ∈ Zn is negative). )*

A degree-anticompatible monomial order such as >ldrlex is never global. It is,
in fact, local in the following sense:

Definition 4.4.2. A monomial order on k[x1, . . . , xn] is local if

xi < 1 for i = 1, . . . , n. )*

Example 4.4.3. A weight order >w on k[x1, . . . , xn] is local iff the coefficients
of w are strictly negative. )*

Remark 4.4.4. Given a local monomial order > on k[x1, . . . , xn], a polyno-
mial u ∈ k[x1, . . . , xn] is a unit in Oo iff its leading monomial is 1. )*

A drawback of local monomial orders is that they are not Artinian. As a
consequence, the usual division process may not terminate. This is illustrated
by Example 2.2.9 which we revisit now:

Example 4.4.5. In the case of one variable x, there is precisely one local
monomial order:

1 > x > x2 > · · ·

Dividing g = x by f1 = x− x2 with respect to this order, we successively get
the expressions g = 1 · f1 + x2, x2 = x · f1 + x3, . . . . This may be interpreted
by saying that the result of the division process, computed in infinitely many
steps, is a standard expression whose quotient g1 is the formal power series∑∞

k=0 xk:

g = g1 · f1 + 0 ∈ k[[x]], where g1 =
∞∑

k=0

xk. (4.5)

On the other hand, expressing the fact that 1 − x is a multiplicative inverse
to
∑∞

k=0 xk in k[[x]], we have the formal geometric series expansion

1
1 − x

=
∞∑

k=0

xk.

We may, hence, rewrite (4.5) in a form which makes sense as an equation in
the ring we are actually interested in:

g =
1

1 − x
· f1 + 0 ∈ k[x]〈x〉.

Multiplying both sides above by the unit u = 1 − x ∈ k[x]〈x〉, we get the
expression

u · g = 1 · f1 + 0 ∈ k[x] (4.6)

which involves polynomials only. )*
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In what follows, we will discuss a division algorithm, designed by Mora (1982),
which computes standard expressions such as (4.6). Based on this, we will
formulate a version of Buchberger’s criterion for Oo. To prove the criterion,
we will reduce to Buchberger’s criterion for the formal power series ring
k[[x1, . . . , xn]] (which, in turn, will be proved as in the polynomial case).
Setting the stage for the reduction, we treat, now, power series expansion in
general: given f ∈ Oo, write f as a fraction of type g/(1−h), with polynomials
g ∈ k[x1, . . . , xn] and h ∈ 〈x1, . . . , xn〉, and set

f =
g

1 − h
= g

∞∑

k=0

hk. (4.7)

The crucial point is that the right hand side of (4.7) makes sense as an element
of k[[x1, . . . , xn]]. To verify this, we use a bit of topology.

Remark-Definition 4.4.6. Given any ring R and any ideal m of R, it makes
sense to define the m-adic topology on R by taking the cosets f + mk

as a basis, where f ∈ R and k ≥ 0. The m-adic topology is Hausdorff iff⋂∞
k=0 mk = 〈0〉. Due to Krull’s intersection theorem, this condition is, in par-

ticular, fulfilled if R is a local Noetherian ring with maximal ideal m. )*

If we endow a ring R with the m-adic topology for some ideal m ⊂ R, we say
that a sequence (fν) ⊂ R is a Cauchy sequence if for every k ≥ 0, there
exists a number ν0 such that fν − fµ ∈ mk for all ν, µ ≥ ν0. In the same
spirit, a sequence (fν) ⊂ R is called convergent, with limes f , if for every
k ≥ 0, there exists a number ν0 such that fν −f ∈ mk for all ν ≥ ν0. A series∑∞
ν=0 fν in R is convergent if the sequence formed by its partial sums is

convergent. If the m-adic topology is Hausdorff, every convergent sequence
(fν) has a unique limes, denoted limν→∞ fν . In particular, every convergent
series constitutes, then, an element of R.

Definition 4.4.7. Given a ring R and an ideal m of R, we say that R is
complete with respect to m if the m-adic topology is Hausdorff, and if
every Cauchy sequence converges. )*

Proposition 4.4.8. Let m = 〈x1, . . . , xn〉 ⊂ k[[x1, . . . , xn]]. Then:

1. The m-adic topology on k[[x1, . . . , xn]] is Hausdorff:

∞⋂

k=0

mk = 〈0〉.

2. k[[x1, . . . , xn]] is complete with respect to m.
3. A series

∑∞
ν=0 fν in k[[x1, . . . , xn]] converges with respect to the m-adic

topology iff limν→∞ fν = 0.
4. k[[x1, . . . , xn]] is a local ring with maximal ideal m.
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5. There is a natural embedding of local rings Oo ⊂ k[[x1, . . . , xn]] defined by
power series expansion. The image of the maximal ideal of Oo under this
embedding is contained in the maimal ideal m.

Proof. 1. This is clear: if the power series f =
∑

aαxα is contained in mk,
then aα = 0 for all α with |α| < k.

2. Given a Cauchy sequence (fν) =
(∑

a(ν)
α xα

)
⊂ k[[x1, . . . , xn]], define

f =
∑

aαxα ∈ k[[x1, . . . , xn]] as follows: for each k ≥ 1, pick a number ν0
such that fν − fµ ∈ mk for all ν, µ ≥ ν0, and set aα = a(ν0)

α for all α with
|α| = k − 1. Then f = limν→∞ fν .

3. This follows from part 2: the sequence formed by the partial sums of∑∞
ν=0 fν is a Cauchy sequence iff limν→∞ fν = 0.
4. We have to show that each element f ∈ k[[x1, . . . , xn]] \ m is a unit in

k[[x1, . . . , xn]]. For this, write f = a0 − h, with 0 #= a0 ∈ k and h ∈ m, and
expand:

1
a0 − h

=
1
a0

∞∑

k=0

(
h

a0
)k.

Then, by part 3, the series on the right hand side converges and defines, thus,
a multiplicative inverse to f .

5. This follows similarly: it is, now, clear that the series on the right hand
side of (4.7) constitutes an element of k[[x1, . . . , xn]]. )*

Exercise∗ 4.4.9. Let S be a ring which is complete with respect to some
ideal m. Given s1, . . . , sn ∈ m, show that there exists a unique homomorphism
Φ : k[[x1, . . . , xn]] → S such that Φ(xi) = si for all i. In fact, Φ is the map
which sends a a power series f to the series f(s1, . . . , sn) ∈ S. As in the
polynomial case, we refer to Φ as a substitution homomorphism. )*

We, now, come to division with remainder and Gröbner bases in k[[x1, . . . , xn]].
This topic is of theoretical interest and was first considered by Hironaka
(1964) and, independently, Grauert (1972) who used the name standard
basis instead of Gröbner basis. Our terminology will be the same as in Chap-
ter 2. For instance, if 0 #= f =

∑
α∈Nn aαxα ∈ k[[x1, . . . , xn]], we call any

aαxα with aα #= 0 a term of f . And, given a local monomial order > on
k[x1, . . . , xn] ⊂ k[[x1, . . . , xn]], we define the leading term of f , written
L(f) = L>(f), to be the largest term of f . This makes sense since every
nonempty set X of monomials in k[x1, . . . , xn] has a largest element with
respect to the local order >. Indeed, arguing as in the proof of Proposition
2.2.10, we may take the largest element of a finite set of monomial generators
for the ideal 〈X〉 ⊂ k[x1, . . . , xn]. As usual, L>(0) = L(0) = 0.

Since a global monomial order > is Artinian, there is no sequence (mν)ν∈N
of monomials mν such that m1 > m2 > · · · . In the local case, we have instead:

Lemma 4.4.10. Let m = 〈x1, . . . , xn〉 be the maximal ideal of k[[x1, . . . , xn]],
and let > be a local monomial order on k[x1, . . . , xn] ⊂ k[[x1, . . . , xn]].
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1. If (mν)ν∈N is a sequence of monomials in k[x1, . . . , xn] such that m1 >
m2 > · · · , then limν→∞ mν = 0 with respect to the m-adic topology.

2. If > is a local weight order >w, and (fν)ν∈N is a sequence of formal power
series in k[[x1, . . . , xn]], then, with respect to the m-adic topology, we have:

lim
ν→∞

L>w(fν) = 0 =⇒ lim
ν→∞

fν = 0
)*

Proof. Given k, only finitely many of the monomials in k[x1, . . . , xn] are not
contained in mk. In particular, there is an integer ν0 such that mν ∈ mk for
all ν ≥ ν0. This shows part 1. For part 2, set

r = min{w(m) | m a monomial such that m #∈ mk}.

Then, if limν→∞ L>w (fν) = 0, there is a number ν1 such that w(L>w (fν)) < r
for all ν ≥ ν1 (indeed, the coefficients of w are strictly negative by assump-
tion). We conclude that fν ∈ mk for all ν ≥ ν1, as desired. )*

Theorem 4.4.11 (Grauert’s Division Theorem). Let > be a local mono-
mial order on k[x1, . . . , xn], write R = k[[x1, . . . , xn]], and let f1, . . . , fr ∈
R \ {0}. For every g ∈ R, there exists a uniquely determined expression

g = g1f1 + . . . + grfr + h, with g1, . . . , gr, h ∈ R,

and such that:

(DD1) For i > j, no term of gi L(fi) is divisible by L(fj).
(DD2) For all i, no term of h is divisible by L(fi).

This expression is called a Grauert standard expression for g with re-
mainder h (in terms of the fi, with respect to >).

Proof. The uniqueness follows as in the polynomial case (see Theorem 2.2.12).
For the existence, we first note that as in the polynomial case, the result
clearly holds if f1, . . . , fr are terms. In the general case, we get, thus, a unique
expression

g(0) := g =
r∑

j=1

g(0)
j L(fj) + h(0)

satisfying conditions (DD1) and (DD2). Then either g(1) := g−
∑r

j=1 g(0)
j fj −

h(0) is zero, and we are done, or L(g(0)) > L(g(1)). Recursively, we are either
done in finitely many steps, or we get sequences (g(ν)), (g(ν)

j ), j = 0, . . . , r,
and (h(ν)) of formal power series such that, for all ν,

g(ν+1) = g −
r∑

j=1

ν∑

µ=1

g(µ)
j fj −

ν∑

µ=1

h(µ).
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In the latter case, the result will follow once we show that all our se-
quences converge to zero with respect to the 〈x1, . . . , xn〉-adic topology on
k[[x1, . . . , xn]]. For this, consider the monomial ideals Ij ⊂ k[x1, . . . , xn] gen-
erated by all terms of fj except the L(fj), j = 1, . . . , r. For each j, let Xj

consist of the minimal (monomial) generators for Ij together with L(fj). Then
X :=

⋃
Xj is a finite set of monomials. By Exercise 2.2.11, there exists a local

weight order >w on k[x1, . . . , xn] which coincides on X with the given local
order >. Due to our construction of X , we have L>w (fj) = L>(fj) for all j.
Hence, repeating the division process above with > replaced by >w, we get
the same sequences (g(ν)), (g(ν)

j ), and (h(ν)).
Since L(g(0)) > L(g(1)) > . . . , we have limν→∞ L(g(ν)) = 0 by part 1 of

Lemma 4.4.10. Then also limν→∞ L(g(ν)
j ) = 0 and limν→∞ L(h(ν)) = 0 since

L(g(ν)) ≥w L(g(ν)
j fj) = L(g(ν)

j )L(fj) and L(g(ν)) ≥w L(h(ν)) for all ν. We
are, thus, done by part 2 of Lemma 4.4.10. )*

Leading ideals, standard monomials, and Gröbner bases for ideals in
k[[x1, . . . , xn]] are defined as for ideals in k[x1, . . . , xn]. Making use of Gordan’s
lemma as in the polynomial case is one way of showing that k[[x1, . . . , xn]]
is Noetherian. Furthermore, we have the following variant of Macaulay’s
Theorem 2.3.5:

Proposition 4.4.12. Let I ⊂ k[[x1, . . . , xn]] =: R be an ideal, and let > be a
local monomial order on k[x1, . . . , xn]. Then:

1. The standard monomials represent k-linearly independent elements of
R/I, and their residue classes generate a subspace of R/I which is dense
with respect to the mR/I-adic topology, where mR/I is the maximal ideal
of R/I.

2. If dimk R/I < ∞, the standard monomials represent a k-vector space basis
for R/I.

Proof. 1. Let

B := {m + I | m ∈ R a standard monomial} ⊂ R/I,

and let W be the subspace of R/I generated by the elements of B. Arguing
as in the proof of Macaulay’s Theorem 2.3.5, we find:

(a) The elements of B are k-linearly independent.
(b) Given a power series g ∈ R, there is a power series h =

∑
α bαxα ∈ R whose

terms involve only standard monomials, and such that g + I = h + I. In
fact, h is uniquely determined by g, I, and > as the remainder in a Grauert
standard expression g =

∑r
i=1 gifi + h, where f1, . . . , fr is any Gröbner

basis for I.

Statement (a) is precisely the first assertion of part 1 of the proposition. To
show that W is dense in R/I, we note that in the situation of (b), given an
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integer k ≥ 0, we have h −
∑

|α|<k bαxα ∈ mk, where m is the maximal ideal
of R. Hence, g ≡

∑
|α|<k bαxα mod I + mk

R/I , as desired.
If dimk R/I < ∞, there are only finitely many standard monomials by (a).

Hence, given g ∈ R, any power series h as in (b) is, in fact, a polynomial.
Together with (a), this shows part 2. )*

Definition 4.4.13. As in the polynomial case, we call the remainder h in the
proof above the normal form of g mod I. )*

Finally, we have a version of Buchberger’s criterion for k[[x1, . . . , xn]] whose
statement and proof read word for word identically to what we did in the
polynomial case (in particular, in the statement of the criterion, it is enough
to consider standard expressions in the weak sense of Remark 2.2.16). We
leave the details to the reader:

Exercise∗ 4.4.14. Let R = k[[x1, . . . , xn]].

1. Formulate and prove versions of Grauert’s division theorem and Buch-
berger’s criterion for free R-modules.

2. Show that Hilbert’s syzygy theorem holds for R: Every finitely generated
R-module M has a finite free resolution of length at most n, by finitely
generated free R-modules. )*

As is already clear from Example 4.4.5, this does not give us an algorithm for
computing Gröbner bases in power series rings: even if we start with polyno-
mials, the remainder on Grauert division may be a power series, and it may
take infinitely many steps to compute this series.

Next, we turn from k[[x1, . . . , xn]] to Oo. To begin with, we show by ex-
ample that the strong condition (DD2) of Grauert’s division theorem cannot
always be achieved in Oo:

Example 4.4.15. Consider the polynomials f = x and f1 = x − x2 − y
in k[x, y] ⊂ k[[x, y]], and fix a local monomial order > on k[x, y] such that
L(f1) = x (for instance, take >ldrlex). Suppose there is a standard expression
x = g1f1 + h as in Grauert’s division theorem, with g1, h ∈ k[x, y]〈x,y〉. Then
no term of the remainder h is divisible by L(f1) = x. That is, h ∈ k[y]〈y〉.
This implies that x = L(x) = L(g1f1) = L(g1) · x and, thus, that g1 is a
unit in k[x, y]〈x,y〉 (that is, g(0, 0) #= 0). Furthermore, substituting h for x in
x = g1f1 + h, we get the equality

g1(h, y) · (h − h2 − y) = 0 ∈ k[y]〈y〉.

On the other hand, since f and f1 vanish at the origin, h cannot have a
constant term. It follows that g1(h, y) #= 0 since g(0, 0) #= 0. We conclude that

h − h2 − y = 0. (4.8)

This is impossible since regarding (4.8) as a quadratic equation in h and
solving it, we do not get a rational function: h = 1±

√
1−4y
2 . Arguing more
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formally (supposing that h does exist as a rational function), write h as a
fraction h = h1

1+h2
, with polynomials h1 ∈ k[y] and h2 ∈ 〈y〉 ⊂ k[y]. Then,

from (4.8), we obtain

(1 + h2) · h1 − h2
1 − y · (1 + h2)2 = 0 ∈ k[y]. (4.9)

A check on degrees gives a contradiction as follows: If deg h1 ≥ 1 + deg h2,
then deg h2

1 > 1 + deg(h2
2) = deg(y · (1 + h2

2)) and deg h2
1 > deg((1 + h2) · h1).

If deg h2 ≥ deg h1, then deg((1 + h2
2) · y) > deg((1 + h2) ·h1) ≥ deg h2

1. Hence,
in both cases, the degree of one of the three summands on the left hand side
of (4.9) is strictly larger than the degree of any other summand, absurd. )*

Our discussion of division with remainder and Gröbner bases in Oo is mo-
tivated by what we did in Example 4.4.5. Taking additionally into account
that every ideal in Oo is generated by polynomials, our statements will be
formulated such that they involve polynomial data only.

Theorem 4.4.16 (Mora’s Division Theorem). Let > be a monomial
order on k[x1, . . . , xn], and let f1, . . . , fr ∈ k[x1, . . . , xn] \ {0}. For every
g ∈ k[x1, . . . , xn], there exists an expression

u · g = g1f1 + . . . + grfr + h,

where u, g1, . . . , gr, h ∈ k[x1, . . . , xn], with L(u) = 1, and such that:

(ID1) L(g) ≥ L(gifi) whenever both sides are nonzero.
(ID2) If h is nonzero, then L(h) is not divisible by any L(fi).

Every such expression is called a Mora standard expression for g with
remainder h (in terms of the fi, with respect to >). )*

The proof of the theorem consists of an algorithm for computing Mora stan-
dard expressions. In comparison with the division algorithms discussed in
Chapter 2, the crucial new idea of Mora is to not only divide by f1, . . . , fr,
but also by some of the intermediate dividends. To decide whether an inter-
mediate dividend should be stored as a possible divisor for division steps still
to come, its ecart will be computed.

Definition 4.4.17. Let > be a monomial order on k[x1, . . . , xn]. Given a
nonzero polynomial f ∈ k[x1, . . . , xn], the ecart of f (with respect to >),
written ecart(f), is defined to be

ecart(f) = deg f − deg L(f). )*

In stating Mora’s division algorithm, we focus on the computation of the
remainder h. How to compute the unit u and the quotients gi (this requires
some extra bookkeeping) will be described in the correctness argument given
in the proof below.
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Algorithm 4.4.18 (Mora’s Division Algorithm). Let > be a monomial
order on k[x1, . . . , xn]. Given nonzero polynomials g, f1, . . . , fr ∈ k[x1, . . . , xn],
compute a remainder h of g on Mora division by f1, . . . , fr.

1. Set h := g and D := {f1, . . . , fr}.
2. while

(
h #= 0 and D(h) := {f ∈ D | L(h) is divisible by L(f)} #= ∅

)

• choose f ∈ D(h) with ecart(f) minimal;
• if (ecart(f) > ecart(h)) then D := D ∪ {h};
• set h := h− L(h)

L(f)f .
3. return(h). )*

Remark 4.4.19. 1. If we apply Mora’s algorithm to homogeneous polyno-
mials g, f1, . . . , fr, all polynomials computed in the resulting division process
are homogeneous, too. Hence, all ecart’s are zero, and Mora’s algorithm fol-
lows the steps of an indeterminate version of the usual division algorithm. In
fact, as shown by the correctness argument in the proof below, the algorithm
computes a standard expression of type g = g1f1 + . . . + grfr + h.
2. If > is a global monomial order, and L(h) is a multiple of L(f), then

L(h) ≥ L(f). Hence, even if added to D in the division process, h will not be
used in further division steps. Thus, we obtain again an indeterminate version
of the usual division algorithm, but in the nonhomogeneous case, the freedom
of choice is reduced. )*

Proof (of termination and correctness). We write Dk and hk respectively for
the set of intermediate divisors and the intermediate dividend after the kth
iteration of the while loop, starting with D0 = D and h0 = g.

Termination. We proceed in two steps. In the first step, we show that
the set D of divisors will be enlarged in at most finitely many iterations of
the while loop. Then, taking our cue from the remark above, we homogenize
with respect to an extra variable x0 to reduce to the termination result for
the usual division algorithm.

After k iterations, the algorithm continues with the while loop iff 0 #=
L(hk) ∈ 〈L(f) | f ∈ Dk〉 ⊂ k[x1, . . . , xn]. In this case, hk is added to Dk iff
xecart(hk)

o L(hk) is not contained in the monomial ideal

Ik = 〈xecart(f)
o L(f) | f ∈ Dk〉 ⊂ k[x0, . . . , xn].

By Gordan’s lemma, the ascending chain I1 ⊂ I2 . . . is eventually stationary,
say IN = IN+1 = · · · for some N . Then also DN = DN+1 = · · · . Say,
DN = {f1, . . . , fr′}.

Termination will follow once we show that after finitely many further iter-
ations, either h = 0 or D(h) = ∅. For this, homogenize hN+1 and the fi with
respect to x0: set

HN+1 = xdeg(hN+1)
0 hN+1(x1/x0, . . . xn/x0) and
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Fi = xdeg(fi)
0 fi(x1/x0, . . . xn/x0), i = 1, . . . , r′.

On k[x0, . . . , xn], consider the monomial order >g defined by setting

xc
ox
α >g xd

ox
β ⇐⇒ deg xc

ox
α > deg xd

oxβ , or
(deg xc

ox
α = deg xd

ox
β and xα > xβ).

This order is global, and we have L>g (Fi) = xecart(fi)
o L>(fi). Thus, if we

divide hN+1 by the fi, Mora’s algorithm follows the steps of an indeterminate
version of the division algorithm, as desired.

Correctness. Recursively, starting with u0 = 1 and g(0)
i = 0, i = 1, . . . , r,

suppose that, due to the first k − 1 iterations of the while loop, we already
have expressions of type

u& · g = g(&)
1 f1 + . . . + g(&)

r fr + h&, with L(u&) = 1,

* = 0, . . . , k − 1. Then, if the test condition for the k-th iteration of the while
loop is fulfilled, choose a polynomial f = f (k) as in the statement of the
algorithm, and set hk = hk−1 − mkf (k), where mk = L(hk−1)

L(f(k))
. There are two

possibilities: either,

(a) f (k) is one of f1, . . . , fr, or
(b) f (k) is one of h0, . . . , hk−1.

Accordingly, substituting hk + mkf (k) for hk−1 in the expression for uk−1 · g,
we get an expression of type

uk · g = g(k)
1 f1 + . . . + g(k)

r fr + hk,

where either,

(a) uk = uk−1, or
(b) uk = uk−1 −mku&, for some *.

In any case, L(uk) = L(uk−1) = 1 (in case (b), note that L(hl) > L(hk−1) =
L(mk ·h&) = mk ·L(h&), so that L(uk−1) = 1 > mk = L(mk ·u&)). We conclude
that, upon termination, the algorithm outputs a Mora standard expression as
desired (that the conditions (ID1) and (ID2) are fulfilled is clear). )*

Example 4.4.20. Dividing g = x by f1 = x − x2 with respect to the unique
local monomial order on k[x], we successively get:

h0 = x, D0 = {x − x2}, 1 · g = 0 · f1 + x,

f (1) = x − x2, D1 = {x − x2, x}, h1 = x2, 1 · g = 1 · f1 + x2,

and
f (2) = x, h1 = 0, (1 − x) · g = 1 · f1 + 0. )*
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Exercise 4.4.21. Consider >ldrlex on k[x, y, z] and compute a Mora standard
expression for g = x3y + x5 + x2y2z2 + z6 in terms of f1 = x2 + x2y, f2 =
y3 + xyz, f3 = x3y2 + z4. )*

We, now, come to Gröbner bases in Oo. Let > be a local monomial order
on k[x1, . . . , xn]. Considering the embedding Oo ⊂ k[[x1, . . . , xn]], we define
the leading term of an element f ∈ Oo, written L(f) = L>(f), to be the
leading term of its power series expansion. Given an ideal I ⊂ Oo, the leading
ideal of I is the monomial ideal L(I) = L>(I) ⊂ k[x1, . . . , xn] generated by
the leading terms of the elements of I. Standard monomials and Gröbner
bases for ideals in Oo are defined as in the polynomial case. In fact, we ask that
the Gröbner basis elements are polynomials (otherwise, clear denominators).
Based on Mora Division with remainder, we get the Oo analog of Buchberger’s
Criterion 2.3.9:

Theorem 4.4.22 (Buchberger’s Criterion for Oo). Let > be a local
monomial order on k[x1, . . . , xn], and let f1, . . . , fr ∈ k[x1, . . . , xn] \ {0}. For
every i = 2, . . . , r and every minimal monomial generator xα for

Mi = 〈L(f1), . . . ,L(fi−1)〉 : L(fi) ⊂ k[x1, . . . , xn],

choose an S-polynomial S(fi, fj) as in Buchberger’s Criterion 2.3.9. Then
f1, . . . , fr form a Gröbner basis iff any such S(fi, fj) has a Mora standard
expression with remainder zero.

Proof. The condition on the remainders is clearly necessary. It is also suffi-
cient. Indeed, considering the syzygies arising from the Mora standard expres-
sions with remainder zero and arguing as in the proof of Buchberger’s criterion
2.3.9, we find for every nonzero g ∈ I = 〈f1, . . . , fr〉 ⊂ Oo ⊂ k[[x1, . . . , xn]] a
Grauert standard expression in terms of the fk with remainder zero. Hence,
L(g) is divisible by one of the L(fk). )*

The Oo analog of Macaulay’s Theorem 2.3.5 is part 2 below:

Proposition 4.4.23. Let > be a local monomial order on k[x1, . . . , xn]. Then:

1. Let I be an ideal of Oo, and let f1, . . . , fr ∈ I be polynomials. Then the fk

form a Gröbner basis for I iff they form a Gröbner basis for the extended
ideal I k[[x1, . . . , xn]].

2. Proposition 4.4.12 on standard monomials remains true if k[[x1, . . . , xn]]
is replaced by Oo.

Proof. Let Ie = I k[[x1, . . . , xn]].
1. The implication from right to left is clear: Since I ⊂ Ie, we also have

L(I) ⊂ L(Ie).
Conversely, suppose that the fk form a Gröbner basis for I. Then f1, . . . , fr

generate I and, hence, also Ie. It is, thus, enough to show that the fk form a
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Gröbner basis in k[[x1, . . . , xn]]. By assumption, the fk satisfy Buchberger’s
criterion for Oo. That is, we have Mora standard expressions of type

u · S(fi, fj) =
∑

gkfk,

where u is a unit in Oo. Multiplying both sides by the power series expansion
of the inverse of u, we get a standard expression (in the weak sense of Remark
2.2.16) for S(fi, fj) in k[[x1, . . . , xn]] with remainder zero. Hence, Buchberger’s
criterion is satisfied in the power series ring as well.

2. Let I be an ideal of Oo. Given an element g ∈ Oo ⊂ k[[x1, . . . , xn]],
we consider the remainder h =

∑
α bαxα in a Grauert standard expression

g =
∑r

i=1 gifi +h, where f1, . . . , fr is any Gröbner basis for I (and, thus, also
for Ie by part 1). Then, if mo denotes the maximal ideal of Oo, and k is an
integer ≥ 0, we can replace h modulo I + mk

o by the polynomial
∑

|α|<k bαxα.
Arguing as in the proof of Proposition 4.4.12, we are done. )*

The result on standard monomials gives us in particular:

Remark 4.4.24. If n > 1, and 〈f〉 " Oo is a proper principal ideal, then
dimk Oo/〈f〉 = ∞ since there are infinitely many standard monomials for 〈f〉.
This concludes the proof of part 2 of Theorem 4.3.18. )*

As in Chapter 2, Buchberger’s criterion gives us Buchberger’s test and
Buchberger’s algorithm for computing Gröbner bases (being able to com-
pute remainders, the termination of the algorithm only relies on the ascending
chain condition for monomial ideals, but not on the fact that the given order
is Artinian; see Corollary 2.3.11).

Exercise 4.4.25. Consider k[x, y] with >ldrlex. Compute Gröbner bases for
the following ideals:

I = 〈x3 − y3, x2y2〉, J = 〈x3 − y3, x2y2 + xy3〉, and K = 〈x3 − y4, x2y2〉.

Hint: You should get

{x3−y3, x2y2, y5}, {x3−y3, x2y2+xy3, xy4−y5, y6}, and {x3−y4, x2y2, y6}.

In the proof below, we will make use of the ideals I, J , and K to illustrate
the main arguments by examples. )*

Proof of Theorem 4.3.18, Part 3. Let f, g ∈ R = k[x, y] be nonconstant
polynomials, let m = mult(f, o) and n = mult(f, o) be their multiplicities at
the origin o, and let fm and gn be the homogeneous components of f and g
of degrees m and n, respectively. We have to show that i(f, g; o) ≥ m ·n, with
equality occuring iff f and g have no tangent line in common at o. This is
clear if i(f, g; o) = ∞. Writing Io = 〈f, g〉Oo, we may, therefore, assume that

i(f, g; o) = dimk Oo/Io < ∞. (4.10)
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By part 2 of Theorem 4.3.18, the geometric meaning of this is that f and g
do not have a common component passing through o.

Given any local monomial order on k[x, y], it follows from (4.10) and part 2
of Proposition 4.4.23 that i(f, g; p) is precisely the number of standard mono-
mials for Io. To compute this number, we fix the local degree reverse lexico-
graphic order >ldrlex. Then, since >ldrlex is degree-anticompatible, the leading
terms L(f) and L(g) are among the terms of fm and gn, respectively. We may,
hence, choose the coordinates such that L(f) = xm and, then, suppose that
L(g) is of type L(g) = xβ1yβ2 , where m > β1 and β1 + β2 = n (subtract
a multiple of f from g and adjust constants, if necessary). To proceed, we
distinguish two cases.

Case 1: Suppose f and g are homogeneous. That is, f = fm and g = gn.
Then f and g have no common tangent line at o (every such line would be
a common component of f and g at o). Hence, in this case, we have to show
that the number of standard monomials for Io is m · n.

If β1 = 0, we are done right away: Since

S(g, f) ∈ 〈x, y〉d ⊂ 〈L(f),L(g)〉, (4.11)

where d is the degree of the “corner” LCM(L(g),L(f)) = xmyn, the remainder
of S(g, f) on Mora division by f, g is zero. Hence, f, g form a Gröbner basis
for Io, and the monomials xα1yα2 with 0 ≤ α1 ≤ m − 1 and 0 ≤ α2 ≤ n − 1
are precisely the standard monomials:
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−

•
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•
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2 Gröbner basis elements

If β1 > 0, however, then f, g do not form a Gröbner basis since this would im-
ply that there are infinitely many standard monomials. Hence, the remainder
of S(g, f) = x(m−β1)g − yβ2f on Mora division by f, g is nonzero and gives a
new (homogeneous) Gröbner basis element h3 for I whose leading term is a
scalar times a monomial of type xγ1yγ2 , with β1 > γ1 and γ1 + γ2 = m + β2.

Applying Buchberger’s criterion to f, g, h3, the only new S-polynomial to
be tested is S(h3, g) since xm−γ1 is divisible by xβ1−γ1 . If nonzero, we add
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the remainder arising from this test to the set of generators and continue in
this way. The resulting process yields (homogeneous) Gröbner basis elements
h1 = f, h2 = g, h3, . . . , where, at each stage of the process, only S(hk, hk−1)
needs to be tested, and where the degree of the new generator hk+1 coincides
with that of the “corner” LCM(L(hk),L(hk−1)).

Eventually, we will get an element hr such that L(hr) is a scalar times a
power of y. Then the remainder of S(hr, hr−1) on Mora division by the hk

is zero by reasons of degree (as in (4.11)). Hence, h1, . . . , hr form a Gröbner
basis for I0.

In visualizing the process just described, we may say that the leading
monomials of the hk determine a staircase which connects the x-axis with
the y-axis. An elementary inductive argument shows that the area under the
stairs has size m · n, as in the case where β1 = 0:
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3 Gröbner basis elements
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4 Gröbner basis elements

Case 2: Let, now, f and g be nonhomogeneous. As above, by computing a
Gröbner basis h1 = f, h2 = g, . . . , hr for Io, we get a staircase of leading terms
which connects the x-axis with the y-axis. Now, however, the Gröbner basis
elements are not necessarily homogeneous. Let h̃k+1 be the part of hk+1 of
degree deg LCM(L(hk),L(hk−1)), and let s be the least number k such that
h̃k+1 is zero. Then h̃1, . . . , h̃s form a Gröbner basis for 〈fm, gn〉Oo such that
L(hk) = L(h̃k) for all k ≤ s (recall that >ldrlex is degree-anticompatible). We,
hence, have two possibilities:

Case 2a: If f and g do not have a common tangent line at o, the L(h̃k)
must reach the y-axis as well, which means that the staircase arising from
fm, gn coincides with that arising from f, g. Then, again, there are precisely
m · n standard monomials for Io.

Case 2b: If, however, f and g do have a common tangent line at o, we
must have s < r. Then deg L(hs+1) > deg LCM(L(hs),L(hs−1)), so that for
the staircase arising from f, g, the area under the stairs has size > m · n:
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This concludes the proof of Theorem 4.3.18. )*

Exercise∗ 4.4.26 (Multiplicities in Terms of the Local Ring). Let f ∈
k[x1, . . . , xn] be a nonconstant polynomial, let p ∈ An be a point, and let
R be the local ring R = OAn,p/〈f〉 OAn,p with its maximal ideal mR. The
multiplicity of f at p, written mult(f, p), is defined to be

mult(f, p) = min{k | dimK R/mk+1
R <

(
n + k

k

)
}.

Show that mult(f, p) ≥ 1 iff p ∈ V(f). If f is square-free, show that
mult(f, p) = 1 iff p is a smooth point of V(f). In case n = 1, show that
mult(f, p) is the usual multiplicity of p as a root of f . In the case of plane
curves, show that the definition of multiplicity given here coincides with the
one given in Definition 4.3.2. )*

We conclude this section with some remarks on convergent power series. Recall
that in case k = C (or k = R), a power series f =

∑
α fαxα ∈ C[[x1, . . . , xn]]

is convergent if there exist a polyradius ρ = (ρ1, . . . , ρn) ∈ Rn
>0 such that the

series
||f ||ρ =

∑

α

|fα|ρα1
1 · · · ραn

n < ∞

In this case, f converges absolutely on the polydisc Dρ = {|x1| ≤ ρ1, . . . , |xn| ≤
ρn} and Rρ = {f | ||f ||ρ < ∞} is a Banach space.

The set of convergent power series is a ring which we denote by C{x1, . . . , xn}.
We, then, have a chain of ring inclusions

C[x1, . . . , xn] ⊂ OAn(C),o ⊂ C{x1, . . . , xn} ⊂ C[[x1, . . . , xn]].

Proposition 4.4.27. Let > be a local monomial order on C[x1, . . . , xn]. If
g, f1, . . . , fr are convergent power series, and g =

∑
gifi + h is the unique

exprssion satisfying the conditions (DD1) and (DD2) of Grauert’s division
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theorem, then the gi and h are convergent, too. In particular, the reduced
Gröbner basis of an ideal in C{x1, . . . , xn} generated by convergent power
series consists of convergent power series, too. )*

Proof. Let >w be local weight order on C[x1, . . . , xn] given by Q-linear inde-
pendent negative weights such that Lw(fi) = L(fi). Without of generality we
assume that the fi are monique, say L(fj) = xα

j
. Consider tupels

K = {(g1, . . . , gr, h) ∈ C[[x1, . . . , xn]]r+1 | satisfying condition DD2}

and the subspace Kρ of tuples, which have finite norm

||(g1, . . . , gr, h)||ρ :=
∑

||gi||ρρα
j

+ ||h||ρ < ∞

Then the map

ψ : Kρ → Rρ, (g1, . . . , gr, h) -→
∑

gix
αi

+ h

is an isometrie of Banach spaces. We claim that for suitable ρ the pertubation

φ : Kρ → Rρ, (g1, . . . , gr, h) -→
∑

gifi + h

is still an isomorphism. For this we consider the weight order given by w and
a polyradius ρ(τ) = (τ−w1 , . . . , τ−wn) for 0 < τ << 1 such that g, f1, . . . , fr

converge in Dρ(τ) and q =
∑

i ||fi − iniw(fi)||ρ(τ)ρ(τ)−alphai
< 1. Then φ ◦

ψ−1 = idRρ(τ) + ε with operator norm ||ε||ρ(τ) ≤ q < 1. Hence
∑

k(−1)kεk is
a convergent series of operators, which gives (idRrho(τ) + ε)−1.

Thus given g ∈ C{x1, . . . , xn} we can choose 0 < τ << 1 such that
additionally g ∈ Rρ(τ). Then g1, dots, gr and h converge in this polydisc as
well.

The rings k[[x1, . . . , xn]] and C{x1, . . . , xn}. As for the polynomial ring, the
proof uses induction and Gauss‘ Lemma., utilizing the Weierstrass Preparation
Theorem which frequently is also used to prove the Noetherian property of
these rings. We need the following notation: A power series f ∈ k[[x1, . . . , xn]]
is called xn-general if f(0, xn) #= 0 ∈ k[xn].

Exercise 4.4.28 (Weierstrass Preparation Theorem). If f ∈ k[[x1, . . . , xn]]
is a power series, show:

1. By a triangular change of coordinates, we can achieve that f is xn-general.
2. If f is xn-general, there exisits a local monomial order on k[x1, . . . , xn]

such that L(f) = L(f(0, xn).
3. If f is xn-general, then 〈f〉 is generated by a Weierstrass polynomial

p = xd
n+a1(x1, . . . , xn−1)xn−1

n +. . .+ad(x1, . . . , xn−1) ∈ k[[x1, . . . , xn−1]][xn] with p(0, xn) = xd
n,

that is there exists a unit u ∈ k[[x1, . . . , xn]] with f = up. Hint: Grauert
division gives an expression xd

n = uf + h satisfying conditions /DD1) and
(DD2). Set pn = xd

n − h and show that u is a unit. )*
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Exercise 4.4.29. Complete the proof of the fact that k[[x1, . . . , xn]] is facto-
rial. )*

Exercise 4.4.30. 1. Formal implicit mappimg theorem
2. Formal inverse function theorem

)*

4.5 The Local-Global Principle

The technique of localization often allows one to reduce the proof of a result in
commutative algebra to the local case, where the result is easier to establish
(for instance, since we can apply Nakayama’s lemma). We will see several
examples of how this works in the next section. Now, in preparing the ground
for some of the arguments, we extend localization from rings to modules, and
study properties of a module M over a ring R which are local in the sense
that M has the property iff Mp has the property for all prime ideals p of R.
Here, Mp = M [U−1] is the localization of M at U = R \ p in the following
sense:

Remark-Definition 4.5.1. Let R be a ring, let U ⊂ R be a multiplicatively
closed subset, and let M be an R-module. As in case M = R, the relation

(m, u) ∼ (m′, u′) ⇐⇒ v(mu′ − um′) = 0 for some v ∈ U

is an equivalence relation, and we write

M [U−1] = U−1M = {m

u
| m ∈ M, u ∈ U}

for the set of all equivalence classes. We consider M [U−1] as an R[U−1]-
module, with addition defined as for R[U−1], and with the action

r

u
· m

u′ =
rm

uu′ .

This module is called the localization of M at U .
If ϕ : M → N is an R-module homomorphism, there is an induced ho-

momorphism ϕ[U−1] : M [U−1] → N [U−1] of R[U−1]-modules taking m/u to
ϕ(m)/u. We have:

1. idM [U−1]) = idM [U−1].
2. If

M ′ ϕ−→ M
ψ−→ M ′′

are maps of R-modules, then

(ψ ◦ ϕ)[U−1] = ψ[U−1] ◦ ϕ[U−1].
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These properties are usually referred to by saying that U−1 is a functor from
the category of R-modules to the category of R[U−1]-modules.

Finally, note that if I ⊂ R is an ideal, then

IR[U−1] = I[U−1].

Indeed, this is clear since every element
∑

fi/ui with fi ∈ I and ui ∈ U for
all i can be brought to a common denominator. )*
In what follows, let R and U be as above.
Exercise 4.5.2. If M is an R-module, show that

M [U−1] ∼= M ⊗R R[U−1]. )*

Proposition 4.5.3. The functor U−1 is exact. That is, if a sequence of
R-modules

M ′ ϕ−→ M
ψ−→ M ′′

is exact at M , then the induced sequence of R[U−1]-modules

M ′[U−1]
ϕ[U−1]

"" M [U−1]
ψ[U−1]

"" M ′′[U−1]

is exact at M [U−1].

Proof. By assumption and since U−1 is a functor, 0 = (ψ◦ϕ)[U−1] = ψ[U−1]◦
ϕ[U−1]. Hence, imϕ[U−1] ⊂ kerψ[U−1]. To show the opposite inclusion, let
m/u ∈ kerψ[U−1]. That is, 0 = ψ[U−1](m/u) = ψ(m)/u. Then there is an
element v ∈ U such that 0 = vψ(m) = ψ(vm). Hence, vm ∈ kerψ = imϕ
and, thus, vm = ϕ(m′) for some m′ ∈ M ′. We conclude that

m/u = vm/vu = ϕ(m′)/vu = ϕ[U−1](m′/vu) ∈ imϕ[U−1]. )*

The proposition implies, in particular, that if N is a submodule of M , then the
induced map N [U−1] → M [U−1] is injective. We may, thus, regard N [U−1]
as a submodule of M [U−1].
Exercise∗ 4.5.4. Show that localization commutes with forming sums and
intersections of submodules.That is, if N and N ′ are submodules of an R-
module M , then:

1. (N + N ′)[U−1] = N [U−1] + N ′[U−1].
2. (N ∩N ′)[U−1] = N [U−1] ∩N ′[U−1]. )*

Proposition 4.5.5 (Primary Decomposition and Localization). Let R
be a Noetherian ring, let I ⊂ R be an ideal, let U ⊂ R be a multiplicatively
closed subset, and let ι : R → R[U−1] be the natural homomorphism. If I =⋂t

i=1 qi is a minimal primary decomposition, then

I[U−1] =
⋂

qi∩U=∅

qi[U−1] and ι−1(I[U−1]) =
⋂

qi∩U=∅

qi

are minimal primary decompositions as well.
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Proof. We write pi = rad qi.
If qi ∩ U #= ∅, then qi[U−1] = R[U−1] since the elements of U are sent to

units in R[U−1]. In contrast, if qi ∩ U = ∅, then qi[U−1] is pi[U−1]-primary
and ι−1(qi[U−1]) = qi (see Exercise 4.2.8). Taking Exercise 4.5.4 into account,
we find that

I[U−1] =
⋂

qi∩U=∅

qi[U−1]

and
ι−1(I[U−1]) =

⋂

qi∩U=∅

ι−1(qi[U−1]) =
⋂

qi∩U=∅

qi

are primary decompositions. These decompositions are minimal since the orig-
inal decomposition of I is minimal (apply Theorem 4.2.7 to see that the in-
volved prime ideals are distinct). )*

Exercise∗ 4.5.6. Prove the 2nd Uniqueness Theorem 1.8.9 for primary de-
composition. )*

Now, we give some examples of local properties:

Proposition 4.5.7. If M is an R-module, the following are equivalent:

1. M = 0.
2. Mp = 0 for all prime ideals p of R.
3. Mm = 0 for all maximal ideals m of R.

Proof. The only nontrivial part of the proof is to show that condition 3 implies
condition 1. For this, suppose that M #= 0, and let m ∈ M be a nonzero ele-
ment. Then the annihilator Ann(m) is a proper ideal of R which is necessarily
contained in a maximal ideal m ⊂ R. It follows that m/1 ∈ Mm cannot be zero
since otherwise vm = 0 for some v ∈ R \ m, a contradiction to Ann(m) ⊂ m.
In particular, Mm #= 0, as desired. )*

In the proposition below, if p is a prime ideal of R and U = R \ p, we write
φp = φ[U−1].

Proposition 4.5.8. If φ : M → N is a homomorphism of R-modules, the
following are equivalent:

1. φ is injective.
2. φp : Mp → Np is injective for all prime ideals p of R.
3. φm : Mm → Nm is injective for all maximal ideals m of R.

The same holds if we replace “injective” by “surjective” in all statements.

Proof. 1 =⇒ 2: This follows by applying Proposition 4.5.3 to the exact
sequence

0 → M → N.

2 =⇒ 3: This is clear.
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3 =⇒ 1: Applying Proposition 4.5.3 to the exact sequence

0 → kerφ→ M → N,

we find that the localized sequences

0 → (kerφ)m → Mm → Nm

are exact for all maximal ideals m of R. Since all the (kerφ)m are zero by
assumption, also kerφ is zero by Proposition 4.5.7.

The surjectivity part follows in the same way. )*

Exercise 4.5.9. Show that being normal is a local property of integral do-
mains. )*

4.6 Artinian Rings and Krull’s Principal Ideal Theorem

In practical applications, we might wish to compute intersection numbers in
cases where the intersection points are not rational over the given field of
definition of our curves.

Example 4.6.1. In A2(C), consider the parabola C = V(y2 − x) and the
graph D = V(x3 − 6x2 + 2xy + 9x − 6y + 1) of the rational function which
sends x to x3−6x2+9x+1

6−2x .

Fig. 4.2. Three intersection points of multiplicity 2.
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Both curves are defined over Q. Plugging in y2 for x in the equation defining
D, we find that the y-coordinates of the intersection points satisfy the equation
(y3 − 3y + 1)2 = 0. Hence, we have three intersection points, say pi = (ai, bi),
i = 1, 2, 3. Since the polynomial y3 − 3y + 1 is irreducible over Q, the pi are
not defined over Q. They are, in fact, defined over the number field

Q(bi) ∼= Q[y]/〈y3 − 3y + 1〉

which is an extension field of Q of degree 3. Intuitively, considering Figure
4.2, each intersection point should be counted with multiplicity 2. Checking
this for pi using Definition 4.3.15, we would have to extend our ground field
from Q to Q(bi) and work in Q(bi)[x, y]〈x−ai,y−bi〉.

In what follows, we will describe an alternative way of defining intersection
multiplicities which, in the example here, compares the ring

R = Q[x, y]/〈y2 − x, x3 − 6x2 + 2xy + 9x− 6y + 1〉 ∼= Q[y]/〈y3 − 3y + 1〉2

with its quotient

R/〈y3 − 3y + 1〉 ∼= Q[y]/〈y3 − 3y + 1〉. )*
In making the alternative definition of intersection multiplicities, we will rely
on the concept of length. This provides a measure for the size of a module and
constitutes, thus, one way of extending the concept of dimension from vector
spaces to modules. Here is the relevant terminology.

Let R be any ring, and let M be any R-module. A normal series of M
is a sequence

M = M0 # M1 # M2 # . . . # Mk = 〈0〉
of submodules of M with strict inclusions. The number k of inclusions is called
the length of the normal series. A composition series of M is a maximal
normal series, that is, a normal series which cannot be extended to a normal
series of greater length by inserting an extra submodule. Equivalently, each
factor Mi/Mi+1 is simple. Here, an R-module 0 #= M is called simple if it
has no submodules other than 〈0〉 and M itself. Note that simple modules
(over commutative rings) are fields:

Lemma 4.6.2. A module 0 #= M over a ring R is simple iff M can be written
as a quotient R/m, where m ⊂ R is a maximal ideal.

Proof. If M ∼= R/m is a field, then it is clearly simple. For the converse,
choose any element 0 #= m ∈ M . Then M = mR and, hence, M ∼= R/m,
where m = Ann(m). Necessarily, m is a maximal ideal since otherwise M
would contain a proper nonzero submodule. )*

Definition 4.6.3. A module M over a ring R is said to be a module of
finite length if it has a composition series. In this case, the length of the
series is called the length of M , written *(M). If no composition series
exists, set *(M) = ∞. A ring R is of finite length if it is of finite length as
an R-module. )*
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We show that *(M) is well defined:

Theorem 4.6.4 (Jordan-Hölder). Let M be a module over a ring R. Sup-
pose that M has a composition series. Then any two such series have the same
length. Furthermore, any normal series of M can be extended to a composition
series.

Proof. Let M = M0 # M1 # M2 # . . . # M& = 〈0〉 be any composition
series of M . Both statements of the theorem follow from the claim that every
normal series of M has length ≤ *. Indeed, the first statement is obtained by
applying the claim to a composition series of minimum length. For the second
statement, given a normal series of M which is not maximal, note that the
process of inserting extra submodules must stop as soon as we reach length l.

To establish the claim, observe that the cases * = 0 (that is, M = 〈0〉)
and * = 1 (that is, M is simple) are trivial. We consider, therefore, the case
* ≥ 2, and suppose inductively that the claim holds for all R-modules with a
composition series of length ≤ *− 1.

Let M = N0 # N1 # N2 # . . . # Nk = 〈0〉 be any normal series of M . If
N1 ⊂ M1, the induction hypothesis applied to M1 yields k−1 ≤ *−1 since M1

has a composition series of length *−1. If N1 #⊂ M1, we must have N1 +M1 =
M since M/M1 is simple. Then N1/(M1 ∩ N1) ∼= (N1 + M1)/M1

∼= M/M1

is simple as well. On the other hand, applying, once more, the induction
hypothesis to M1, we find that all normal series of the proper submodule
M1∩N1 of M1 must have length ≤ *−2. It follows that N1 has a composition
series of length ≤ *− 2 + 1 = *− 1 since N1/(M1 ∩ N1) is simple. As above,
we conclude that k − 1 ≤ *− 1. )*

Exercise∗ 4.6.5. Let R be a ring, let M be an R-module of finite length, and
let M = M0 # M1 # M2 # . . . # M& = 〈0〉 be a composition series of M . If
m is a maximal ideal of R, show that the length of the Rm-module Mm is the
number of quotients Mi/Mi+1 isomorphic to R/m. )*

Our next goal is to characterize modules of finite length in terms of chain
conditions. For this, we not only consider the ascending chain condition, but
also the descending chain condition:

Definition 4.6.6. A module M over a ring R is called Artinian if it satifies
the descending chain condition. That is, every chain

M = M0 ⊃ M1 ⊃ M2 ⊃ . . . Mk ⊃ . . .

of submodules of M is eventually stationary. A ring R is called Artinian
if it is Artinian as an R-module. That is, R satisfies the descending chain
condition on ideals. )*

As in Exercise 1.4.5 one shows that M is Artinian iff the minimal condition
on submodules holds: Every nonempty set of ideals of R has a minimal element
with respect to inclusion.
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Proposition 4.6.7. Let M be a module over a ring R. Then the following
are equivalent:

1. M is of finite length.
2. M is Artinian and Noetherian.

Proof. 1 =⇒ 2: If *(M) < ∞, the length of any normal series of M is
bounded by *(M). Hence, both chain conditions hold.

2 =⇒ 1: Since M is Noetherian, it satisfies the maximal condition. In
particular, there is a maximal submodule M1 " M = M0 which, necessarily,
is Noetherian as well. Applying the same argument to M1 and so forth, we
get a descending chain M = M0 # M1 # . . . which, since M is Artinian, is
eventually stationary. It is, hence, a composition series of M . )*

Exercise∗ 4.6.8. Let R be a ring, and let

0 → M ′ → M → M ′′ → 0

be a short exact sequence of R-modules. Show:

1. M is Artinian (respectively Noetherian) iff both M ′ and M ′′ are Artinian
(respectively Noetherian).

2. M is of finite length iff both M ′ and M ′′ are of finite length. In this case,

*(M) = *(M ′) + *(M ′′). )*

The examples in the following exercise illustrate our definitions:

Exercise∗ 4.6.9. Show:

1. If M is a module over a field K, that is, M is a K-vector space, then M
is Noetherian iff M is Artinian iff M is of finite length iff dimK M < ∞.

2. If I is an ideal of a ring R, then R/I is of finite length as a ring iff it is of
finite length as an R-module.

3. An affine k-algebra k[x1, . . . , xn]/I is of finite length iff it has finite di-
mension as a k-vector space. Geometrically, this is the case where the
vanishing locus V(I) ⊂ An consists of finitely many points.

4. The k[x]-module M = k[x, x−1]/k[x] is Artinian, but not Noetherian. )*

Definition 4.6.10. Let f, g ∈ k[x, y] be nonconstant polynomials, and let m
be a maximal ideal of k[x, y]. The intersection multiplicity of f and g at
m, written i(f, g; m), is defined to be

i(f, g; m) = *(k[x, y]m/〈f, g〉k[x, y]m). )*

As a consequence of the definition, the following facts are easy to prove:

Exercise 4.6.11 (Properties of Intersection Multiplicities). Let f, g ∈
k[x, y] be nonconstant polynomials, and let m ⊂ k[x, y] be a maximal ideal.
Then show:
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1. i(f, g; m) = 0 iff V(m) #⊂ V(f) ∩ V(g) ⊂ A2.
2. i(f, g; m) = ∞ iff f and g have a common factor contained in m.
3. If V(f) ∩V(g) ⊂ A2 is finite, then i(f, g; m) is the number of quotients in

a composition series of k[x, y]/〈f, g〉 which are isomorphic to k[x, y]/m.
4. If the field extension k[x, y]/m ⊃ k is separable, then V(m) ⊂ A2 consists

of [k[x, y]/m : k] points (which form an orbit under the natural action of
the Galois group of k over k). For each such point p,

i(f, g; p) = i(f, g; m).

5. If k[x, y]/m ⊃ k is inseparable, then V(m) consists of [k[x, y]/m : k]sep

points. For each such point p,

i(f, g; p) = i(f, g; m) · [k[x, y]/m : k]insep.

Here, the subscripts sep and insep refer to the separable and inseparable
degrees, respectively. )*

Example 4.6.12. The affine Q-algebra

R = Q[x, y]/〈y2 − x, x3 − 6x2 + 2xy + 9x− 6y + 1〉 ∼= Q[y]/〈y3 − 3y + 1〉2

from Example 4.6.1 has finite length since it has finite dimension as a Q-vector
space. In fact, R # 〈y3− 3y +1) # 〈0〉 is a composition series. Note that both
factors are isomorphic to Q[y]/〈y3 − 3y + 1〉. Taking parts 4, 3 of Exercise
4.6.11 into account, we find, as expected, that the curves C, D from Example
4.6.1 have three intersection points, each of which has multiplicity 2. )*

Exercise 4.6.13. Let I ⊂ k[x1, . . . , xn] be an ideal such that V(I) ⊂ An is
finite, and let m ⊂ k[x1, . . . , xn] be a maximal ideal. Express

*(k[x1, . . . , xn]m/I k[x1, . . . , xn]m)

in terms of the sequence dimk k[x1, . . . , xn]/Ik, k ≥ 0, where Ik is defined
inductively by I0 = I and Ik = Ik−1 : m. )*

Exercise 4.6.14. Some examples for intersection number computations. )*

Despite the formal symmetry between the ascending and the decending chain
condition, the notions of Noetherian and Artinian rings are quite different. In
fact, our next result shows that every Artinian ring is Noetherian, but of a
very special kind (so that most Notherian rings are not Artinian):

Theorem 4.6.15. For a ring R, the following are equivalent:

1. R is Noetherian and dim R = 0.
2. R has finite length.
3. R is Artinian.
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If these conditions are satisfied, then R has only finitely many maximal ideals.

Proof. 1 =⇒ 2: Suppose that R is Noetherian. If R is not of finite length,
the set

Γ := {I ⊂ R ideal | R/I is not of finite length}

is nonempty since 〈0〉 ∈ Γ . Hence, since R is Noetherian, Γ contains a maximal
element p. We show that p is a prime ideal. For this, let f, g ∈ R be elements
such that fg ∈ p, but f #∈ p. Consider the exact sequence

0 → R/(p : f) ·f→ R/p → R/(p + 〈f〉) → 0.

Since p + 〈f〉 # p, the module R/(p + 〈f〉) must have finite length by the
maximality of p as an element of Γ . If g would not be an element of p, then
p : f would contain p properly, and R/(p : f) would have finite length as well.
But, then, R/p would have finite length by Exercise 4.6.8, a contradiction to
our choice of p.

Now, suppose not only that R is Notherian, but also that dimR = 0. Then
all prime ideals of R are maximal. In particular, if R were not of finite length,
the prime ideal p just constructed would be a maximal ideal, so that R/p
would be a field. This contradicts, again, the fact that R/p is not of finite
length.

2 =⇒ 3: This is clear.
3 =⇒ 1: Now, suppose that R is Artinian. To show that R satifies

condition 1, we proceed in four steps.
Step 1. We show that dimR = 0. For this, consider a nested pair of

prime ideals p1 ⊂ p2 ⊂ R, and let f be any element of p2/p1 ⊂ R/p1. Since
R/p1 is Artinian as well, the descending chain condition yields a number m
such that 〈fm〉 = 〈fm+1〉. Then fm = gfm+1 for some g ∈ R/p1. That is,
(1 − gf)fm = 0. Since R/p1 is an integral domain and f ∈ p2/p1 " R/p1 is
not a unit, we conclude that f = 0. It follows that p1 = p2 and, thus, that
dimR = 0, as claimed.

Step 2. The ring R has only finitely many maximal ideals since any in-
finite sequence m1, m2, m3, . . . of maximal ideals of R would yield an infinite
descending chain of ideals

m1 ⊃ m1 ∩ m2 ⊃ . . . ⊃ m1 ∩ m2 ∩ . . . ∩mk ⊃ . . .

with strict inclusions (by part 2 of Exercise 1.3.4). Writing m1, . . . , ms for the
distinct maximal ideals of R and taking into account that every prime ideal
of R is maximal by step 1, we conclude from Exercise 3.2.11 that

rad 〈0〉 = m1 ∩ . . . ∩ ms. (4.12)

Step 3. For any i, the descending chain of ideals mi ⊃ m2
i ⊃ m3

i ⊃ . . . is
eventually stationary. We may, hence, choose a number N such thst mN

i =
mN+1

i for all i. Consider the ideal



4.6 Artinian Rings and Krull’s Principal Ideal Theorem 191

I =
s∏

i=1

mN
i .

Then I2 = I. We use this to show that I = 〈0〉. Suppose the contrary. Then
the set

Γ := {J " R | JI #= 〈0〉}
contains I since I2 = I #= 〈0〉. Hence, since R is Artinian, Γ contains a
minimal element J0. Let f be an element of J0 such that fI #= 〈0〉. Then
〈f〉 = J0 by the minimality of J0. The same argument gives fI = J0 = 〈f〉
since (fI)I = fI2 = fI #= 0. Choose an element g ∈ I such that fg = f .
Then f = fg = fg2 = . . . = fgm = 0 for some m ≥ 1 since every element of
I is nilpotent by (4.12). This contradiction proves that I = 〈0〉, as claimed.

Step 4. Each of the successive quotients in the descending chain of ideals

R ⊃ m1 ⊃ . . . ⊃ mN
1 ⊃ mN

1 m2 ⊃ . . . ⊃
s∏

i=1

mN
i = 〈0〉 (4.13)

is a vector space over some field R/mi. Hence, taking part 1 of Exercise 4.6.8
and part 1 of Exercise 4.6.9 into account, we get the following chain of eqi-
valences: R is Artinian ⇐⇒ each quotient in (4.13) is Artinian ⇐⇒ each
quotient in (4.13) is Noetherian ⇐⇒ R is Noetherian. This concludes the
proof. )*

Next, we establish a structure result for Artinian rings. Then, following Krull,
we will apply Theorem 4.6.15 above to prove the principal ideal theorem which
is fundamental to the dimension theory of Noetherian rings.

Theorem 4.6.16 (Structure Theorem for Artinian Rings). Let R be an
Artinian ring, and let m1, . . . , ms be the distinct maximal ideals of R. Then

R ∼=
s∏

i=1

Rmi

is a finite direct product of local Artinian rings.

Proof. To begin with, we conclude from Theorem 4.2.7 that any localization
of an Artinian ring is again Artinian. Now, as in the preceeding proof, choose
a number N such that

∏s
i=1 mN

i = 〈0〉. Since the mi are pairwise coprime, the
mN

i are pairwise coprime as well (see part 4 of Exercise 1.5.12). Hence, the
natural map

R →
s∏

i=1

R/mN
i (4.14)

is an isomorphism by the Chinese remainder theorem (see Exercise 1.3.9).
To conclude the proof, we localize both sides of (4.14) and find that Rmi

∼=
(R/mN

i )mi
∼= R/mN

i (indeed, (R/mN
j )mi = 0 for j #= i and R/mN

i is a local
ring). )*
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In the geometric context, the structure theorem extends Remark 4.3.16:

Corollary 4.6.17. Let I ⊂ k[x1, . . . , xn] be an ideal such that V(I) ⊂ An

is finite, say V(I) = {p1, . . . , ps}. Then there is a natural isomorphism of
K-algebras

K[x1, . . . , xn]/I K[x1, . . . , xn] ∼=
s∏

i=1

OAn,pi/IOAn,pi .

)*

Theorem 4.6.18 (Krull’s Principal Ideal Theorem, First Version).
Let R be a Noetherian ring, and let f ∈ R. Then every minimal prime p of
〈f〉 satisfies

codim p ≤ 1.

If f is not a zerodivisor of R, then equality holds.

Proof. To show the first statement of the theorem, we will localize and apply
Nakayama’s lemma. To begin with, recall from Proposition 4.2.13 that if p is
any prime ideal of any ring R, then codim p = dimRp. With our assumptions
here, we have, in addition, that pRp is a minimal prime of 〈f〉Rp. Replacing
R by Rp, we may, hence, assume that R is local ring with maximal ideal p.
The first statement of the theorem will follow once we show that codim q =
dimRq = 0 for every prime ideal q " p.

For this, given q, consider the ideals

q(n) = {a ∈ R | ua ∈ qn for some u /∈ q}, n ≥ 1.

Then, by part 1 of Proposition 4.2.7, q(n) is the preimage of qnRq under the
localization map R → Rq. Since the maximal ideal p+〈f〉 of the quotient ring
R/〈f〉 is also minimal, this ring is zerodimensionial. Being also Noetherian, it
is Artinian by Theorem 4.6.15. Hence, the descending chain

q(1) + 〈f〉 ⊃ q(2) + 〈f〉 ⊃ . . .

is eventually stationary, say q(n) + 〈f〉 = q(n+1) + 〈f〉. As a consequence, any
element g ∈ q(n) can be written as a sum g = h + af with h ∈ q(n+1) and
a ∈ R. Then af ∈ q(n). Since p is a minimal prime of 〈f〉, we have f /∈ q and,
thus, a ∈ q(n) by the very definition of q(n). This shows that

q(n) = fq(n) + q(n+1).

Since f is contained in the maximal ideal p of R, Nakayama’s lemma yields
q(n) = q(n+1). Then qnRq = qn+1Rq by part 2 of Proposition 4.2.7. Apply-
ing Nakayama’s lemma in Rq, we, hence, get qnRq = 〈0〉. We conclude that
dimRq = 0, as desired.

The second statement of the theorem follows from the first one. Indeed,
the Noetherian ring R contains only finitely many minimal prime ideals, say
p1, . . . , pr. Thus, if f is a not a zerodivisor of R, it is not contained in any of
the pi by Exercise 3.2.12. This implies that codim p ≥ 1. )*



4.6 Artinian Rings and Krull’s Principal Ideal Theorem 193

Theorem 4.6.19 (Krull’s Principal Ideal Theorem, General Version).
Let R be a Noetherian ring. If I = 〈f1, . . . , fc〉 ⊂ R is an ideal which is
generated by c elements, then every minimal prime p of I satisfies

codim p ≤ c.

Conversely, if p ⊂ R is a prime ideal such that codim p = c, there exist
elements y1, . . . , yc ∈ R such that p is a minimal prime of 〈y1, . . . , yc〉.

Proof. To show the first statement of the theorem, let p be a minimal prime
of I. As in the preceeding proof, we may assume that R is a local ring with
maximal ideal p. We do induction on c.

If c = 0, there is nothing to show. If c > 0, since R is Noetherian, we
may find a prime ideal q " p such that no other prime ideal is between q
and p. Since p is a minimal prime of I = 〈f1, . . . , fc〉, at least one of the fi

is not contained in q, say fc /∈ q. Then the maximal ideal p + (q + 〈fc〉) of
the quotient ring R/(q+ 〈fc〉) is also minimal, so that this ring is an Artinian
local ring. In particular, all the fi are nilpotent mod q + 〈fc〉. Say,

fN
i = gi + aifc with gi ∈ q snd ai ∈ R, i = 1, . . . , c− 1.

Then p ⊃ 〈g1, . . . , gc−1, fc〉, and the image p of p in R/〈g1, . . . , gc−1〉 is a
minimal prime of the principal ideal 〈f c〉. Hence, p has codimension at most
1 by the first version of the principal ideal theorem. In R, this shows that q is
a minimal prime of 〈g1, . . . , gc−1〉. The induction hypothesis gives codim q ≤
c− 1 and, thus, codim p ≤ c.

For the converse statement, given p as in the statement, we choose the yi

one at a time. Inductively, with 0 ≤ k < c, suppose that y1, . . . , yk ∈ p have
already been chosen to generate an ideal of codimension k. Then, by prime
avoidance, it is possible to pick an element yk+1 ∈ p not contained in any of
the finitely many minimal primes of 〈y1, . . . , yk〉 (indeed, any such prime does
not contain p since its codimension is ≤ k < c by the first statement of the
theorem). Clearly, codim〈y1, . . . , yk, yk+1〉 = k + 1, and the result follows. )*

We are, now, ready to prove inequality (4.1) in its general form (4.3):

Corollary 4.6.20. Let (R, m) be a local Noetherian ring. Then

dimR = min{d | there exists an m-primary ideal 〈y1, . . . , yd〉}. (4.15)

In particular,
dimR/m m/m2 ≥ dimR.

Proof. The last statement follows from the first one since m is generated by
dimR/m m/m2 elements (see Corollary 4.2.20 to Nakayama’s lemma).

For the first statement, let d = dimR = codim m, and let d′ be the mini-
mum on the right hand side of (4.15). Then d ≤ d′ respectively d′ ≤ d follow
from the first respectively second statement of the generalized principal ideal
theorem. )*
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Its applications to geometry make Corollary 4.6.20 an important result of
commutative algebra, where, in the situation of the corollary, a sequence of
d = dimR elements y1, . . . , yd ∈ m is called a system of parameters for R if
it generates an m-primary ideal. If (R, m) is regular, that is, if dimR/m m/m2 =
d, then, by Corollary 4.2.20, every minimal set of generators for m is a system
of parameters consisting of d elements. Such a system is called a regular
system of parameters for R. A typical example is given below:

Corollary 4.6.21. The formal power series ring k[[x1, . . . , xn]] is regular of
dimension n. In fact, x1, . . . , xn form a regular system of parameters.

Proof. Since k[[x1, . . . , xn]] is an integral domain, dim k[[x1, . . . , xn]]/〈xn〉 =
dim k[[x1, . . . , xn]]− 1 by Krull’s principal ideal theorem. On the other hand,
k[[x1, . . . , xn]]/〈xn〉 ∼= k[[x1, . . . , xn−1]]. Hence, we conclude by induction on
n that dim k[[x1, . . . , xn]] = n. The result follows. )*

Remark 4.6.22. We mention in passing that every regular local ring (R, m)
is an integral domain (to prove this, induct on dimR and use Nakayama’s
lemma). This, in turn, implies that if y1, . . . , yd is a regular system of pa-
rameters for R, then y1, . . . , yd is a regular sequence on R. That is, each
yi represents a nonzerodivisor of R/〈y1, . . . , yi−1〉, i = 1, . . . , d. See Eisenbud
(1995), Corollaries 10.14, 10.15 for details and further reading. )*

At this point, the general definition of a Cohen-Macaulay ring deserves men-
tioning (though we will not need it in this book). According to this definition
and the remark above, every regular local ring is Cohen-Macaulay.

Definition 4.6.23. A local Noetherian ring (R, m) is called Cohen-Macau-
lay if it has a system of parameters which is at the same time a regular
sequence for R. An arbitrary Noetherian ring is called Cohen-Macaulay iff
its lcoalization Rp is Cohen-Macaulay for every prime ideal p of R. )*

The first statement made in Remark 4.6.22 says, in particular, that the local
ring of an algebraic set at a smooth point is an integral domain. In the next
two propositions, we give a direct proof for this fact:

Proposition 4.6.24. Let p = (a1, . . . , an) ∈ An be a point, let f1, . . . , fr ∈
k[x1, . . . , xn] be polynomials vanishing at p, where 1 ≤ r ≤ n, and let R :=
OAn,p/〈f1, . . . , fr〉OAn,p. Suppose the matrix M =

(
∂fi

∂xj
(p)
)

1≤i,j≤r
has maxi-

mal rank r. Then R is isomorphic to a subring of K[[xr+1−ar+1, . . . , xn−an]].
In particular, R is an integral domain.

Proof. By translating p to the origin o, we may assume that p = o. We
write M−1 = (aki) and set gk =

∑r
i=1 akifi, k = 1, . . . r. Then each gk is of

type xk + terms of degree ≥ 2. In particular, by Buchberger’s criterion, the
gk form a Gröbner basis for the ideal generated by the fi in K[[x1, . . . , xn]]
(fix a degree-anticompatible monomial order on K[x1, . . . , xn]). Given any
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g ∈ OAn,o ⊂ K[[x1, . . . , xn]], the uniquely determined remainder h on Grauert
division of g by the gk is contained in K[[xr+1, . . . , xn]]. Sending g to h defines,
thus, a map OAn,o → K[[xr+1, . . . , xn]] whose kernel is 〈f1, . . . , fr〉OAn,o. The
result follows. )*

Proposition 4.6.25. Let A ⊂ An be an algebraic set, let p ∈ A be a point,
and let d = dimp A. Suppose we can find polynomials f1, . . . , fn−d ∈ I(A)
such that the matrix M =

(
∂fi

∂xj
(p)
)

1≤i,j≤n−d
has maximal rank n − d. Then

OA,p
∼= OAn,p/〈f1, . . . , fn−d〉OAn,p, and this ring is a regular local ring.

Proof. Of course, up to renumbering the variables, the assumption just means
that p is a smooth point of A. To establish the result, we consider the natural
epimorphism of local rings

φ : R := OAn,p/〈f1, . . . , fn−d〉OAn,p → OA,p.

Corollary 4.6.20 gives us d = dimOA,p ≤ dimR ≤ dimR/m m/m2 = d, where
m is the maximal of R (for the latter equality, note that dpf1, . . . , dpfn−d are
K-linearly independent by virtue of the assumption on the matrix M). Since
R is an integral domain by the preceeding proposition, we conclude that kerφ
is zero (which completes the proof): if f ∈ kerφ were a nonzero element,
Krull’s principal ideal theorem would give us d = dimOA,p ≤ dimR/〈f〉 ≤
dimR − codim 〈f〉 = d− 1. )*

We can, now, prove part 2 of Remark 4.1.11:

Corollary 4.6.26. Let A be an algebraic set. If A = V1 ∪ · · · ∪ Vs is the
decomposition of A into its irreducible components, then

Asing =
⋃

i"=j

(Vi ∩ Vj) ∪
⋃

i

(Vi)sing.

Proof. Let p ∈ A be a smooth point of A. Then, since OA,p is an integral
domain by the preceeding propositions, p lies on a unique component Vi of
A. It is, then, a smooth point of Vi. We conclude that A \ Asing ⊂ (

⋃
i Vi \

(Vi)sing) \
⋃

i"=j(Vi ∩ Vj). The converse inclusion is clear. )*

Furthermore, we can show the corollaries to the Jacobian criterion. For this,
let I = 〈f1, . . . , fr〉 ⊂ k[x1, . . . , xn] be an ideal, let A = V(I) ⊂ An, and let
In−d

(
∂fi

∂xj

)
be the ideal generated by the (n − d) × (n − d) minors of the

Jacobian matrix of the fi. Moreover, let Ie = I K[x1, . . . , xn].

Proof of Corollary 4.1.13, conclusion. Supposing that A is equidimen-
sional of dimension d, we have to show: If

In−d

(
∂fi

∂xj

)
+ I = 〈1〉,
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then Ie = I(A).
Let m ⊂ K[x1, . . . , xn] be any maximal ideal, and let p ∈ An be the

corresponding point. Since Ie ⊂ I(A) ⊂ K[x1, . . . , xn], also Ie
m ⊂ I(A)m ⊂

OAn,p by the injectivity part of Proposition 4.5.8, and our claim will follow
from the surjectivity part of that proposition once we show that Ie

m = I(A)m.
For this, we distinguish two cases.

If p ∈ An \ A, there is a polynomial f ∈ Ie ⊂ I(A) which is not contained
in m. Then f is a unit in OAn,p, which implies that Ie

m = I(A)m = OAn,p.
If p ∈ A, then Ie ⊂ I(A) ⊂ m. By assumption, at least one (n − d) ×

(n − d) minor of
(
∂fi

∂xj
(p)
)

is nonzero, say det
(
∂fi

∂xj
(p)
)

1≤i,j≤n−d
#= 0. Then

(〈f1, . . . , fn−d〉K[x1, . . . , xn])m = I(A)m by Proposition 4.6.25 and, thus, also
Ie
m = I(A)m. )*

Proof of Corollary 4.1.14. Supposing that k[x1, . . . , xn]/I is Cohen-Macau-
lay of dimension d, we have to show: If

dim V(In−d

(
∂fi

∂xj

)
+ I) < dim V(I) = d,

then Ie = I(A) and V(In−d

(
∂fi

∂xj

)
+ I) = Asing.

Arguing as in the previous proof, we see that the equality Ie
m = I(A)m

holds for the maximal ideal m of any point p ∈ A which is not contained in
B := V(In−d( ∂fi

∂xj
) + I). On the other hand, by virtue of the Cohen-Macau-

lay assumption, we conclude from the Unmixedness Theorem 3.3.12 that Ie

has only isolated primary components, all of dimension d. In particular, by
the 2nd uniqueness theorem for primary decomposition, Ie admits a uniquely
determined minimal primary decomposition, say, Ie =

⋂t
i=1 qi. The radicals

pi = rad qi are the associated primes of I(A), and the vanishing loci Vi = V(qi)
are the irreducible components of A.

For each i, since dim Vi = d > dimB, there is a point pi ∈ Vi \ (B ∪⋃
j "=i Vj). Localize R = K[x1, . . . , xn] at the maximal ideal mi of pi, and let

ι : R → Rmi be the natural homomorphism. Then, by Proposition 4.5.5, we
have qi = ι−1(Ie

mi
) = ι−1(I(A)mi) = pi. This shows that Ie = I(A).

Replacing I by I(A) in the definition of B, we see that dim TpA > d iff
p ∈ B. Hence, B = Asing since A is equidimensional of dimension d. )*

4.7 Analytic Type and Tangent Cone

So far, we have defined two invariants of an algebraic set A at a point p ∈
A, namely the local ring OA,p with its maximal ideal mA,p, and the Zariski
tangent space TpA ∼= (mA,p/m2

A,p)∗. In this section, motivated by the fact that
both invariants have their drawbacks at singular points, we will introduce two
further invariants of A at p.
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To begin, we note that the concept of the local ring is too fine at singular
points in that two rings OA,p and OB,q may differ although our intuition is
that locally, near p respectively q, the algebraic sets A and B look alike.

Example 4.7.1. For the plane curves

C = V(y2 − x2 − x3) ⊂ A2(C) and D = V(v2 − u2) ⊂ A2(C),

our intuitive understanding is that C and D look alike near the origin o:

y2 − x2 − x3 = 0 v2 − u2 = 0

Nevertheless, the local rings OC,o and OD,o are not isomorphic. In fact, since
C is irreducible, OC,o is a subring of the rational function field k(C) and, thus,
an integral domain. In contrast, reflecting the fact that o is contained in two
irreducible components of D, the ring OD,o contains zerodivisors: (v− u)(v +
u) = 0 mod 〈v2 − u2〉. )*

From a geometric point of view, the problem in the example is that near the
origin, both curves consist of two different “branches”, but for the curve C,
the decomposition into branches does not happen in a Zariski neighborhood
of the origin. In terms of functions, the polynomial y2 − x2 − x3 cannot be
factored in OC.o. Naively, to overcome the problem, we should work with
smaller neighborhoods and, correspondingly, a larger class of functions. This
is easy to establish in case K = C where we may consider arbitraryly small
Euclidean neighborhoods and allow convergent power series as functions on
these:

y2 − x2 − x3 = (y + x
√

1 + x) · (y − x
√

1 + x),

where the Taylor series

√
1 + x =

∞∑

k=0

(
1/2
k

)
xk

is convergent for |x| < 1. Ring theoretically, this suggests to consider the local
ring

C{x1 − a1, . . . , xn − an}/I(A)C{x1 − a1, . . . , xn − an}

instead of the local ring

OA,p
∼= OAn(C),p/I(A)OAn(C),p.
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Over an arbitrary field K, there is no analogue to the Euclidean topology, and
it is not meaningful to speak of convergent power series. We, may, however,
consider the local ring

K[[x1 − a1, . . . , xn − an]]/I(A)K[[x1 − a1, . . . , xn − an]].

It turns out that this ring is naturally obtained from the local ring OA,p by
completing OA,p with respect to the mA,p-adic topology.

In what follows, we describe the construction of the completion in a general
algebraic context: Let R be any ring, and let m be any ideal of R. Consider-
ing the m-adic topology on R, we call two Cauchy sequences (fν), (gν) ⊂ R
equivalent if the sequence of differences (fν−gν) converges to zero. The set of
all equivalence classes of Cauchy sequences carries a natural ring structure: If
(fν), (gν) ⊂ R are Cauchy sequences, then so are (fν + gν) and (fν · gν), and
the classes of these depend only on the classes of (fν) and (gν). Suppressing
the ideal m in our notation, we write R̂ for the resulting ring, and call it the
completion of R with respect to m. For each f ∈ R, the class of the con-
stant sequence (f) is an element ι(f) ∈ R̂. This defines a ring homomorphism
ι : R → R̂. The kernel of ι is the ideal

⋂∞
k=0 mk. Hence, we may consider R as

a subring of R̂ if this ideal is zero, that is, if R is Hausdorff with respect to the
m-adic topology. By Krull’s intersection theorem, this holds, in particular, if
(R, m) is a local Noetherian ring.

In treating the completion of affine rings and, similarly, that of OA,p, we
make use of the following lemma.

Lemma 4.7.2. Let I ⊂ k[x1, . . . , xn] be an ideal, let > be a degree-anticompa-
tible monomial order on k[x1, . . . , xn], and let f1, . . . , fr form a Gröbner basis
for I. Then, for any k ≥ 1, the fi together with the monomials of degree k
form a Gröbner basis for the ideal I + 〈x1, . . . , xn〉k.

Proof. We write G for the set of proposed Gröbner basis elements. By as-
sumption, the remainder in any standard expression for an S-polynomial of
type S(fi, fj) in terms of G is zero. On the other hand, each term of an S-
polynomial of type S(fi, xα), where |α| = k, has degree ≥ k since with respect
to >, L(fi) is chosen among the lowest degree terms of fi. Hence, also in this
case, Buchberger’s test yields a remainder which is zero. )*

Proposition 4.7.3. If R = k[x1, . . . , xn]/I is an affine ring, the completion
of R with respect to the maximal ideal m = 〈x1, . . . , xn〉 ⊂ R is

R̂ ∼= k[[x1, . . . , xn]]/I k[[x1, . . . , xn]].

Proof. Let Ie = I k[[x1, . . . , xn]]. Given a power series g =
∑
α aαxα ∈

k[[x1, . . . , xn]], we write g(ν) for the truncation
∑

|α|≤ν aαxα. Associating to
each g the sequence of truncations (g(ν)) and taking residue classes, we get a
homomorphism
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φ : k[[x1, . . . , xn]] → R̂

with Ie ⊂ kerφ. The proposition will follow once we show that Ie = kerφ,
and that φ is surjective. For this, fix a degree-anticompatible monomial order
on k[x1, . . . , xn].

We first show that Ie = kerφ. Given g ∈ kerφ, let h ∈ k[[x1, . . . , xn]] be
the normal form of g mod Ie. Then, in particular, no term of h is contained
in L(I). Moreover, since φ(g) = 0, also φ(h) = 0. In terms of the truncations
h(ν) this means that for all k ≥ 0, there is an index ν0 such that h(ν) + I ∈ mk

for all ν ≥ ν0. By Lemma 4.7.2, the latter condition is equivalent to h(ν) ∈
I + 〈x1, . . . , xn〉k for all ν ≥ ν0. Since k can be chosen arbitarily high, we
have L(h) ∈ L(I). By the choice of h, this is only possible if h = 0 and, thus,
g ∈ Ie.

Next, we show that φ is surjective. For this, consider a sequence of poly-
nomials (gν) in k[x1, . . . , xn] ⊂ k[[x1, . . . , xn]] which represents a Cauchy se-
quence in R. For each ν, let hν ∈ k[[x1, . . . , xn]] be the normal form of gν
mod Ie. By Lemma 4.7.2, given ν, k ≥ 0, the truncation h(k)

ν coincides with
the normal form of gν mod I + 〈x1, . . . , xn〉k+1. In particular, for each k, the
sequence of polynomials h(k)

ν , ν ≥ 0, is ultimately constant, say h(k)
ν = fk

for ν ; 0. Then f& − fk ∈ 〈x1, . . . , xn〉k for * ≥ k. We conclude that the fk

constitute a power series whose image under φ in R̂ coincides with the class
represented by (gν). )*

Exercise 4.7.4. Let R be a ring, let m be an ideal of R, and let R̂ be the
completion of R with respect to m. Show:

1. If R is Noetherian, then so is R̂.
2. If R is Hausdorff with respect to the m-adic topology, then R̂ is complete

with respect to mR̂.
3. If m is a maximal ideal, then R̂ is a local ring with maximal ideal mR̂.

Furthermore, R̂ = R̂m, where R̂m denotes the completion of the local ring
Rm with respect to its maximal ideal. )*

Now, we focus on the completion of OA,p with respect to mA,p, denoted ÔA,p.
By translating p to the origin and by either imitating the proof of Proposition
4.7.3 or by combining the proposition with part 3 of the exercise, we get:

Corollary 4.7.5. Let A ⊂ An be an algebraic set, and let p = (a1, . . . , an) ∈ A
be a point. Then

ÔA,p
∼= K[[x1 − a1, . . . , xn − an]]/I(A)K[[x1 − a1, . . . , xn − an]]. )*

With respect to dimension, we have:

Corollary 4.7.6. Let A ⊂ An be an algebraic set, and let p ∈ A be a point.
Then

dimOA,p = dim ÔA,p. )*
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Exercise 4.7.7. Prove Corollary 4.7.6.
Hint. Consider systems of parameters in both rings OA,p and ÔA,p. Further-
more, consider the natural projection K[[x1 − a1, . . . , xn − an]] → ÔA,p from
Corollary 4.7.5 and make use of Exercise 1.9.3. )*

Our next result refines Proposition 4.6.24. In particular, we show once more
that the local ring of an algebraic set at a smooth point is an integral domain.

Corollary 4.7.8. Let A ⊂ An be an algebraic set, and let p ∈ A be a point.

1. If p is a smooth point of A, then

ÔA,p
∼= K[[t1, . . . , td]], where d = dimp A = dimOA,p.

2. More generally, if p is arbitrary, we have a representation of ÔA,p as a
quotient

ÔA,p
∼= K[[t1, . . . , te]]/J, where e = dimK TpA,

and where J is an ideal of K[[t1, . . . , te]] such that J ⊂ 〈t1, . . . , te〉2.

Proof. We assume that p = o is the origin.
1. By part 1 and the principal ideal theorem, any quotient of K[[t1, . . . , td]]

by a nonzero ideal J has dimension < d since K[[t1, . . . , td]] is an integral
domain. Hence, part 1 is a special case of part 2.

2. If I(A) = 〈f1, . . . , fr〉, then TpA = V(dpfi | i = 1, . . . , r) ⊂ An. We may,
hence, choose coordinates x1, . . . , xn such that dpfi = xi, for i = 1 . . . , n − e,
and such that fi ∈ 〈x1, . . . , xn〉2, for i > n − e. Sending the ti to the xn−e+i

and composing with the natural projection K[[x1 − a1, . . . , xn − an]] → ÔA,p

from Corollary 4.7.5, we get a ring homomorphism

φ : K[[t1, . . . , te]] → K[[x1, . . . , xn]] → ÔA,o.

To show that φ is surjective, fix a degree-anticompatible monomial or-
der on K[x1, . . . , xn]. Given an element ĝ ∈ ÔA,o, choose a power series
g ∈ K[[x1, . . . , xn]] representing ĝ, and let h be the normal form of g mod
I(A). Then h also represents ĝ. Moreover, no term of h is contained in L(I(A)).
Since L(fi) = xi for i = 1, . . . , n − e, it follows that h is in the image of
K[[t1, . . . , te]] → K[[x1, . . . , xn]].

To finish the proof, we note that J := kerφ is contained in 〈t1, . . . , te〉2
since fn−e+1, . . . , fr ∈ 〈x1, . . . , xn〉2. )*

In the situation of the corollary, the number e = dimK TpA is called the
embedding dimension of the pair (A, p). Note that always n ≥ e. We say
that (A, p) is minimally embedded in (An, p) if n = e.

Exercise 4.7.9. For Oo and K[[x1, . . . , xn]], formulate and prove statements
analogous to those in Propositions 3.3.3 and 3.3.11 on Noether normalization
respectively to those in the Unmixedness Theorem 3.3.12. )*
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Definition 4.7.10. Given affine algebraic sets A, B and points p ∈ A, q ∈ B,
we call the pairs (A, p) and (B, q) analytically isomorphic if ÔA,p

∼= ÔB,q

as K-algebras. )*

Example 4.7.11. In Example 4.7.1, the pairs (C, o) and (D, o) are analyti-
cally isomorphic. Indeed, by the formal inverse function theorem (see Exercise
4.4.30), the homomorphism

φ : C[[u, v]] → C[[x, y]]

obtained by substituting

u -→ x
√

1 + x = x
∞∑

k=0

(
1/2
k

)
xk, v -→ y,

is an isomorphism. Since φ maps v2−u2 to y2−x2−x3, it induces the desired
isomorphism

ÔD,o
∼= C[[u, v]]/〈v2 − u2〉 → C[[x, y]]/〈y2 − x2 − x3〉 ∼= ÔC,o. )*

In particular, the analytic type is a coarser invariant than the local ring. It
is finer than the tangent space: If R = ÔA,p, and m is the maximal ideal of
R, then m/m2 ∼= mA,p/m2

A,p. Indeed there is a well-defined map mA,p → m →
m/m2 of OA,p-modules which is surjective with kernel m2

A,p.

Remark 4.7.12. Let K = C, let A, B be analytic sets, and let p ∈ A, q ∈ B
be points. Suppose that (A, p), (B, q) are minimally embedded in (Ae, o).
Moreover, suppose that (A, p) and (B, q) are analytically isomorphic, where
the isomorphism ÔB,q → ÔA,p is given by an e-tuple of convergent power
series (z1, . . . , ze). In this case, there are neighborhoods U of p ∈ Ae(C) and
V of q ∈ Ae(C) in the Euclidean topology such that

z : U → V, a -→ (z1(a), . . . , ze(a)),

is biholomorphic, and with z(A ∩ U) = B ∩ V . )*

Exercise 4.7.13. Let p be a point of a plane curve C ⊂ A2.

1. Assume charK #= 2. Show that p is a node respectively a cusp of C iff
(C, p) is analytically isomorphic to V(y2 − x2) respectively V(y2 − x3).

2. Show that p is an ordinary triple point iff (C, p) is analytically isomorphic
to V(xy(x − y)). )*

The precise definition of a tacnode is as follows (see Examples 4.3.1 and 4.3.6):

Definition 4.7.14. Assume char K #= 2. A point p of a plane curve C ⊂ A2

is called a tacnode if (C, p) is analytically isomorphic to (V(y2 − x4), o). )*
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Exercise 4.7.15. Let f ∈ K[x, y] be a square-free polynomial, and let C =
V(f) ⊂ A2.

1. Show that C has at most nodes as singularities iff 〈f, ∂f
∂x , ∂f

∂y 〉 ⊂ K[x, y] is
a radical ideal.

2. Show that C has at most double points as singularities iff

〈f,
∂f

∂x
,
∂f

∂y
,
∂2f

∂x2
,
∂2f

∂x∂y
,
∂2f

∂y2
〉 = 〈1〉 ⊂ K[x, y].

3. Formulate and prove a criterion for C to have at most nodes and cusps
as singularities.

4. The curve defined by

f = x4 + y4 − 8x3 + 18xy2 + 18x2 +
27
2

y2 − 27

has only nodes and cusps as singularities. How many of each type are
there? )*

We, now, turn from the local ring to the tangent space. The drawback of TpA
is that it fails to approximate A near a singular point p ∈ A. In fact, in this
case, the dimension of TpA, which determines TpA as a K-vector space up to
isomorphism, is simply too big. In this sense, TpA is too coarse at a singular
point. To overcome this failure, we introduce our second new invariant of A
at p which is the tangent cone TCpA. This coincides with TpA at a smooth
point, but is better behaved than TpA at a singular point.

Recall that according to our definitions, the tangent space at a smooth
point is the union of lines which can be seen as the analogue of limiting
positions of secant lines in calculus. Mimicing this if A is not necessarily
smooth at p gives the tangent cone.

We suppose for simplicity that p = o = (0, . . . , 0) ∈ A is the origin. Then
the lines through p admit parametrizations of type t → tv, where v ∈ An,
and every secant line to A through p gives a point tv ∈ A with t #= 0. We are
interested in what is happening if t tends to zero. Consider the set

B = {(v, t) ∈ An × A1 | tv ∈ A} ⊂ An × A1 ∼= An+1.

As we will see more clearly in the proof of proposition 4.7.16 below, B is an
algebraic set. Obviously, B1 = An × {o} is an irreducible component of B (if
B #= An). We write B2 = B \ B1 for the residual algebraic set. The tangent
cone of A at o is defined to be the algebraic set

TCoA = B1 ∩ B2 ⊂ An × {o} ∼= An.

In determining equations for the tangent cone, given a polynomial f ∈
k[x1, . . . , xn], we write m = mult(f, o), and denote by fi the homogeneous
component of f of degree i.
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Proposition 4.7.16. Let I ⊂ k[x1, . . . , xn] be an ideal, and let A = V(I) ⊂
An. Suppose that A contains the origin o. Then, with notation as above, the
tangent cone TCoA ⊂ An is the locus of zeros of the ideal

J = 〈{fm | f ∈ I}〉.

Proof. The set B ⊂ An×A1 is the common vanishing locus of the polynomials

f(tx) = tmfm(x) + tm+1fm+1(x) + . . . + tdfd(x), f ∈ I

(note that m ≥ 1 since o ∈ A). Saturating with respect to t, we obtain
equations for the algebraic set residual to B1 = V(t). That is, B2 ⊂ An × A1

is the common vanishing locus of the polynomials

fm(x) + tfm+1(x) + . . . + td−mfd(x), f ∈ I.

As a subset of An, the intersection B1 ∩B2 ⊂ An × {o} ∼= An is, then, defined
by the ideal J . )*

In particular, if A = V(f) ⊂ An is a hypersurface with o ∈ A, then TCoA is
defined by the vanishing of the lowest degree part of f .

Example 4.7.17. If A = V(x2 + y2− z2 + z4), then TCoA = V(x2 + y2− z2).

A

z

TCoA

x

y

)*

Being defined by homogenous polynomials, TCoA is the union of lines through
the origin and, thus, indeed a cone: With notation as in the proposition, if
o #= p ∈ TCoA is a point, and q = λp is any point on the line op, then
fm(q) = λmfm(p) = 0 for all fm ∈ J , so that q ∈ TCoA as well. See also
Exercise 4.7.19, where we will give an alternative description of the tangent
cone. Furthermore, note that TCoA is contained in the tangent space ToA. In
fact, according to our definitions, if I = I(A) ⊂ K[x1, . . . , xn] is the vanishing
ideal of A, then the linear polynomials in J define the tangent space ToA.

Exercise 4.7.18. In the situation of the proposition, let f1, . . . , fr be a
Gröbner basis for the ideal IOo with respect to a degree-anticompatible mono-
mial order on k[x1, . . . , xn]. Then show that TCoA = V((f1)m, . . . , (fr)m). )*
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Remark 4.7.19. In more abstract terms the ring of the tangent cone can be
defined as the graded ring

grR = R/m⊕m/m2 ⊕m2/m3 ⊕ . . . ,

where R can be either the local ring or its completion. This shows that TCpA

depends only on ÔA,p. )*

Example 4.7.20. Consider the algebraic set A = V(f1, f2, f3, f4) ⊂ A4,
where

f1 = x3
2 − x2

1x3 + x1x2x4 − x1x3x4 − x2x2
4 − x1x2,

f2 = x1x2
2 − x1x2

3 + 2x2x3x4 − x2
3x4 − x2x3,

f3 = x3
1 − x1x2x3 + x2

2x4 + x1x2
4 − x3

4 − x1x4,
f4 = x2

1x3 − x2x2
3 + x1x2x4 + 2x3x2

4 − x3x4.

In the exercise below, we will show that these polynomials form a Gröbner
basis with respect to >ldrlex. Thus, the tangent cone of A at the origin o ∈ A4

is defined by the ideal

〈x1x2, x2x3, x1x4, x3x4〉 = 〈x1, x3〉 ∩ 〈x2, x4〉

which gives two planes in A4 intersecting at o. )*

Exercise 4.7.21. Check the assertion about the Gröbner basis in Example
4.7.20. Then show that (A, o) and (TCpA, o) are analytically isomorphic. )*

In general, a singularity p of an algebraic set A is called an improper node
if (A, o) and (TCpA, o) are analytically isomorphic.

Exercise 4.7.22. Show that an ordinary quadrupel point is analytically iso-
morphic to a curve of type

Cλ := V(xy(y − x)(y − λx)), where λ ∈ k \ {0, 1}.

Furthermore, show that two such curves Cλ and Cλ′ are analytically isomor-
phic iff

λ′ ∈ {λ, 1 − λ, 1/λ, 1/(1− λ), (λ− 1)/λ, λ/(λ− 1)}. )*

4.8 Additional Exercises

Exercise 4.8.1.
For the curve V(f) ⊂ A2(C) considered in part 2 of Exercise 4.1.5, deter-
mine the multiplicity at each singular point. Are all singular points ordinary
multiple points?
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Part II

Projective Algebraic Geometry





Chapter 5

Linear Systems of Plane Curves

This chapter provides a first impression of projective algebraic geometry. We
will consider a new ambient space, projective n-space Pn(k), which is obtained
from affine n-space An(k) by adding a “point at infinity in every direction”. In
this larger space, many geometric statements become simpler in that special
cases are avoided.

The additional points form a hyperplane H ⊂ Pn(k) which is often re-
ferred to as the “hyperplane at infinity”. In fact, starting from a more formal
definition of Pn(k), we will see that there are many ways of writing Pn(k)
as the union of an “affine chart” An(k) and a hyperplane at infinity. Local
concepts can be extended from An(k) to Pn(k) by considering a covering of
Pn(k) by affine charts.

The introduction of homogeneous coordinates will allow us to define a
projective algebraic set as the common locus of zeros of a collection of homo-
geneous polynomials. With respect to an affine chart, a projective algebraic
set can be regarded as an affine algebraic set “completed” by adding relevant
points at infinity (over the real or complex numbers, considering the Euclidean
topology instead of the Zariski topology, the projective algebraic set is a natu-
ral compactification of the affine algebraic set). Postponing the general study
of this and other facts about projective algebraic sets to the next chapter, we
will, in this chapter, mainly focus on projective hypersurfaces, specifically on
projective plane curves.

The natural parameter space for projective plane curves of a given degree
d is a projective space itself. Its linear subspaces are classically known as
linear systems of plane curves of degree d. They arise naturally in the context
of a number of geometric questions. In fact, many geometric conditions on
plane curves are linear in that the curves satisfying these conditions form a
linear system. For instance, given a finite set of points in Pn(k), we impose
linear conditions by asking that the curves under consideration pass through
these points (have multiplicities exceeding particular values at these points).
After a basic treatment of linear systems in Section 5.3, we will use resultants
to prove Bézout’s theorem. Given two projective plane curves of degrees d, e
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without a common component over an algebraically closed field, the theorem
states that C and D intersect in d · e points, counted with multiplicity. As
applications of Bézout’s theorem, we will show how to bound the number of
singular points of a plane curve and how to compute parametrizations of a
rational plane curve with at most ordinary singularities.

In Section 5.5, we will treat Max Noether’s fundamental theorem which, as
we will see in Chapter 8, is central to the proof of the Riemann-Roch theorem
given by Brill and Noether. Applications of Noether’s result presented in this
chapter are Pascal’s theorem on the mystic hexagon and its generalizations.

In the final section of this chapter, we will define an addition law for points
on cubic curves. We will use a general version of Pascal’s theorem to show
that this addition law is associative (and, thus, indeed a group law). We will,
then, give a sketch of further results on cubic curves. In particular, we will
adress the topology and the arithmetic of cubic curves.

5.1 Projective Space and Projective Algebraic Sets

In the affine plane, Bézout’s theorem already fails in simple cases. For in-
stance, two distinct circles have at most two points of intersection, even if
we allow complex solutions and take multiplicities into account (see Exercise
5.3.10). Still simpler, two distinct lines do not intersect if they are parallel.
The construction of the projective plane is custom-made to remedy the situa-
tion in the case of lines. As we will see in Section 5.4.8, it is universal enough
to make Bézout’s theorem hold in general.

Intuitively, we think of parallel lines as meeting at an “infinitely distant
point” on the horizon (Renaissance painters referred to these points as van-
ishing points and used them as in Figure 5.2 to allow for perspective drawing):

p
horizon

Fig. 5.1. Vanishing points on the horizon

Taking into account that the relation on lines in A2(R) defined by ‘is parallel
to’ is an equivalence relation, the idea is to require that all lines in a given
equivalence class meet in the same point at infinity, with different classes
corresponding to different points. Writing H for the set of all these points, we
provisionally define the projective plane P2(R) by setting

P2(R) = A2(R) ∪H.
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Fig. 5.2. A sketch by Leonardo da Vinci

A line in P2(R) is, then, a line L ⊂ A2(R) together with the common point at
infinity of all lines parallel to L. Moreover, we regard H as a line in P2(R), and
call it the line at infinity. This makes sense since, now, any pair of distinct
lines determines a unique point, and any pair of distinct points determines a
unique line. Note that Figure 5.1 is somewhat inaccurate in that the horizon
is not representing all points of H : It is missing the point at infinity of the
lines “parallel to the horizon”.

Our provisional definition makes it cumbersome to work with P2(R) since
the points of P2(R) are not treated on equal footing. To motivate the formal
definition below, we write x0, x1, x2 for the coordinates on the affine 3-space
A3(R), and choose V(x0 − 1) ⊂ A3(R) as a reference plane for A2(R):
Each point of A2(R) determines, then, a line in A3(R) through the origin o.
In this way, we get all lines through o, except those lying in the plane V(x0).
The latter lines, in turn, form a copy of H . Indeed, the span of a given line
L ⊂ A2(R) and o intersects V(x0) in a line through o which only depends on
the class of lines parallel to L. We make the following general definition:

Definition 5.1.1. The projective n-space over the field k is the set

Pn(k) =
{
lines through the origin in An+1(k)

}

=
{
one-dimensional linear subspaces of kn+1

}
. )*

Considering a line L through the origin o ∈ An+1(k) as an element of the new
space Pn(k), we call it a point of Pn(k). If p denotes this point, then p is
determined (or represented) by any point (a0, . . . , an) ∈ L \ {o}. Accordingly,
we write p = [a0 : · · · : an], and call a0, . . . , an a set of homogeneous
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V(x)

V(x+1) = A2(R)

L

Fig. 5.3.

coordinates for p. Here, the colons and square brackets indicate that the
homogeneous coordinates are determined up to a nonzero scalar multiple (if
ai #= 0, the ratio aj : ai depends on p only). Representing the points of Pn(k) in
this way means that we regard Pn(k) as the quotient of An+1(k)\{o} modulo
the equivalence relation defined by (a0, . . . , an) ∼ (b0, . . . , bn) iff (a0, . . . , an) =
λ(b0, . . . , bn) for some nonzero scalar λ:

Pn(k) ∼=
(
An+1(k) \ {o}

)
/ ∼,

and we have the canonical projection

π : An+1(k) \ {o} → Pn(k), (a0, . . . , an) -→ [a0 : · · · : an].

Remark-Definition 5.1.2. 1. It is often useful to have a basis-free defini-
tion of Pn. If W is any k-vector space of dimension n + 1, then

P(W ) =
{
one-dimensional linear subspaces of W

}

is called the projective space of lines in W . Of course, after choosing a
k-basis for W , we can identify P(W ) with Pn(k), and regard the homogeneous
coordinates on Pn(k) as homogeneous coordinates on P(W ).
2. If (tij) ∈ GL(n + 1, k) is an invertible matrix, the linear change of coor-

dinates xi -→
∑

tijxj induces a bijective map

T : Pn(k) → Pn(k), [a0 : · · · : an] -→ (
∑

t0jaj : · · · :
∑

tnjaj).

Any such map is called a change of coordinates of Pn(k). Since multiples
of the identity matrix act trivial, we are led to consider the group

PGL(n + 1, k) := GL(n + 1, k)/k∗

which is called the projective general linear group. Later in the book,
once we will have introduced morphisms between projective algebraic sets, we
will see that any automorphism of Pn(k) is an element of PGL(n + 1, k):
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Aut(Pn(k)) = PGL(n + 1, k)

3. Two subsets A, B ⊂ Pn(k) are called projectively equivalent if there
is a change of coordinates T of Pn(k) such that T (A) = B.
4. We say that P1(k) and P2(k) are the projective line and the projective

plane over k, respectively. )*

In contrast to the affine case, the homogeneous coordinates do not constitute
functions on Pn(k). More generally, given any nonconstant polynomial f ∈
k[x0, . . . , xn], the value f(a0, . . . , an) depends on the choice of homogeneous
coordinates for the point p = [a0 : · · · : an] ∈ Pn(k) and can, therefore, not
be called the value of f at p. Note, however, that if f is homogeneous, then
f(λx0, . . . ,λxn) = λdeg(f)f(x0, . . . , xn) for all nonzero scalars λ, so that

f(a0, . . . , an) = 0 ⇐⇒ ∀ λ ∈ k \ {0} : f(λa0, . . . ,λan) = 0.

As a consequence, any homogeneous polynomial f ∈ k[x0, . . . , xn] has a well-
defined locus of zeros (or vanishing locus) V(f) in Pn(k). If f is noncon-
stant, we say that V(f) is a hypersurface in Pn(k). A hypersurface in P2(k)
is called a projective plane curve.

More generally, if T ⊂ k[x1, . . . , xn] is any subset of homogeneous polyno-
mials, its locus of zeros (or vanishing locus) is the set

V(T ) = {p ∈ An(k) | f(p) = 0 for all f ∈ T }.

If T = {f1, . . . , fr} is finite, we write V(f1, . . . , fr) = V(T ).

Definition 5.1.3. A subset A ⊂ Pn(k) is called an algebraic subset if
A = V(T ) for some subset T ⊂ k[x0, . . . , xn] of homogeneous polynomials.
A projective algebraic set is an algebraic subset of some Pn(k). )*

Remark-Definition 5.1.4. As for An(k), the distinguished open sets

D(f) := Pn(k) \ V(f), f ∈ k[x0, . . . , xn] homogeneous,

form the basis for a topology on Pn(k) whose closed sets are the algebraic sub-
sets of Pn(k). This topology (the topology induced on any subset) is called the
Zariski topology on Pn(k) (on the subset). An algebraic subset of Pn(k) is
called irreducible (a subvariety of Pn(k)) if it cannot be written as a union
of two strictly smaller closed subsets. A projective variety is a subvariety
of some Pn(k). Every nonempty Zariski open subset of a projective variety A
is Zariski dense in A (see Proposition 1.11.8 and its proof). )*

If not otherwise mentioned, subsets of Pn(k) will carry the Zariski topology.

Exercise∗ 5.1.5. Recall that a map between topological spaces is said to
be open if it sends open sets to open sets. Show: The canonical projection
π : An+1(k)\{o} → Pn(k) is continous and open with regard to the respective
Zariski topologies. )*
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Remark-Definition 5.1.6. Given a subset of homogeneous polynomials T ⊂
k[x0, . . . , xn], rather than looking at the vanishing locus A = V(T ) ⊂ Pn, we
might also look at the vanishing locus of T in An+1. This locus is a cone with
vertex o: It is the union of all lines in An+1 through o which correspond to
points in A. We call this cone the affine cone over A, written C(A). )*

Classically, homogenous polynomials are known as forms. The adjectives lin-
ear, quadratic, cubic, quartic, quintic refer to forms of degree 1,2,3,4,5,
respectively.

Example 5.1.7. The subsets of Pn(k) defined by linear forms are precisely
the subsets P(W ) ⊂ Pn(k), where W ⊂ kn+1 is a linear subspace. Every
such subset is called a linear subspace of Pn(k) of dimension dimk W − 1.
Any two linear subspaces of the same dimension are projectively equivalent.
Given a subset ∅ #= X ⊂ Pn(k), there is a smallest linear subspace of Pn(k)
containing X . This subspace is called the span of X . A line in Pn(k) is a linear
subspace of dimension 1. A plane in Pn(k) is a linear subspace of dimension
2. A hyperplane in Pn(k) is a linear subspace of dimension n− 1. )*

Exercise 5.1.8. Let p0, . . . , pn, pn+1 ∈ Pn(k) be a collection of n + 2 points
such that no subset of n + 1 points is contained in a hyperplane. Show that
there is a unique change of coordinates T of Pn(k) such that

T (p0) = [1 : 0 : · · · : 0], . . . , T (pn) = [0 : · · · : 0 : 1],
and T (pn+1) = [1 : · · · : 1].

The points [1 : 0 : · · · : 0], . . . , [0 : · · · : 0 : 1] are known as the coordinate
points of Pn(k), and [1 : · · · : 1] is the scaling point. )*

Just as in our provisional definition of the real projective plane, we can write
Pn(k) as the union of An(k) and a hyperplane at infinity:

Pn(k) = U0 ∪ H0
∼= An(k) ∪ Pn−1(k),

where
U0 := D(x0) = {[a0 : · · · : an] ∈ Pn(k) | a0 #= 0},

and H0 is the complement H0 = Pn(k) \ U0 = V(x0). We identify H0 with
Pn−1(k) by disregarding the first coordinate, and U0 with An(k) via

ϕ0 : U0 → An(k), [a0 : · · · : an] = [1 : a1
a0

: . . . , · · · : an
a0

]
-→ (a1

a0
, . . . , . . . , an

a0
).

This map is bijective, with inverse

An(k) → U0, (b1, . . . , bn) -→ [1 : b1 : · · · : bn].

Given a point p = [a0 : · · · : an] ∈ U0, the ratios ai/a0 are sometimes called
the affine coordinates for p in U0.
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Example 5.1.9. In the special case of P1(R), the map ϕ0 sends a point p =
[a0 : a1] ∈ U0 to the slope a1/a0 of the line in A2(R) corresponding to p.

The point [0:1] is the single point at infinity. It corresponds to the x1-axis
which is vertical and has, thus, slope ∞. )*

The proof of our next proposition exhibits the geometric meaning of deho-
mogenization and homogenization.

Proposition 5.1.10. The map ϕ0 : U0 → An(k) is a homeomorphism with
regard to the respective Zariski topologies.

Proof. Let A ⊂ Pn(k) be a projective algebraic set. Then A = V(T ) for some
subset of homogeneous polynomials T ⊂ k[x0, . . . , xn]. Let Ta ⊂ k[x1, . . . , xn]
be obtained from T by dehomogenizing each element of T with respect to x0.
Then it is immediate from the definitions that ϕ0(A∩U0) is the algebraic set
Va(Ta) ⊂ An(k), where Va indicates that we look at the affine vanishing
locus. Since the closed subsets of U0 arise as intersections of type A∩U0, the
map ϕ0 is closed.

Conversely, let A ⊂ An(k) be an affine algebraic set. Then A = Va(Ta)
for some subset of polynomials Ta ⊂ k[x1, . . . , xn], and it is easy to check
that ϕ−1

0 (A) is the closed subset V(T h
a ) ∩ U0 of U0, where T h

a ⊂ k[x0, . . . , xn]
is obtained from Ta by homogenizing each element of Ta with respect to
x0. Hence, the inverse map ϕ−1

0 is also closed. We conclude that ϕ0 is a
homeomorphism. )*

Given an algebraic subset A of Pn(k), we will identify A∩U0 with the algebraic
set ϕ0(A ∩U0) ⊂ An(k). Conversely, we will identify an algebraic subset A of
An(k) with ϕ−1

0 (A) ⊂ Pn(k). Hence, the following definition makes sense:

Definition 5.1.11. If A ⊂ An(k) ∼= U0 is an algebraic subset, its Zariski
closure A in Pn(k) is said to be the projective closure of A. )*

Remark 5.1.12. In Section 6.2, considering the homogenization of ideals, we
will show how to compute the projective closure. In the special case of a
hypersurface, if f ∈ k[x1, . . . , xn] is any nonconstant polynomial, and fh is
its homogenization with respect to x0, the argument will show that

Va(f) = V(fh) ⊂ Pn(k). )*

In accordance with our provisional definition of P2(R), we have:
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Example 5.1.13. In P2(k), the projective closure of a line in A2(k) ∼= D(x0)
with equation x2 = mx1 + b is defined by the equation x2 = mx1 + bx0.
It intersects the line V(x0) at infinity in the point [0 : 1 : m]. A line with
equation x1 = c is completed by adding the point [0 : 1 : 0]. )*

In the discussion above, there is nothing special with x0: For 0 ≤ i ≤ n, we
define Ui, Hi and ϕi by using xi instead of x0. Then the Ui, which are known
as the (affine) coordinate charts of Pn(k), cover Pn(k):

Pn(k) =
n⋃

i=0

Ui.

Hence, Pn(k) looks locally like An(k), and we may study a projective algebraic
set A ⊂ Pn(k) by examining the different intersections A ∩ Ui.

Example 5.1.14. Let k = R.

1. The projective closure C of the affine conic

V(x2 − 1/4y2 − 1) ⊂ A2(R) ∼= D(z)

is defined by the quadratic form x2 − 1/4y2 − z2 = 0. We show C in all
three coordinate charts:

z = 1

y

x

x2 − 1/4y2 = 1

y = 1

y

x

x2 − z2 = 1/4

x = 1

z

y

1/4y2 + z2 = 1

2. Similarly, starting from the affine curve

V(y − x3) ⊂ A2(R) ∼= D(z),

we get the pictures below:
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z = 1

y

x

y = x3

y = 1

z

x

z2 = x3

x = 1

z

y

yz2 = 1
)*

Exercise 5.1.15. Draw the curve V(zy2 − x2z + x3) ⊂ P2(R) in all three
coordinate charts. For each chart, determine the points of the curve which lie
on the line at infinity. Similarly for the curves in the previous example. )*

Exercise 5.1.16. A conic in P2(k) is defined by a nonzero quadratic form.

1. Show: A conic in P2(R) is projectively equivalent to one of the following:

a) V(x2 + y2 − z2) (nondegenerate conic)
b) V(x2 + y2 + z2) (empty set)
c) V(x2 − y2) (pair of lines)
d) V(x2 + y2) (single point)
e) V(x2) (“double” line).

2. Similarly, show that there are three classes of conics in P2(C):

a) V(x2 + y2 + z2) (nondegenerate conic)
b) V(x2 + y2) (pair of lines)
c) V(x2) (“double” line).

3. More generally, show that quadric hypersurfaces in Pn(C) are classified
by their rank. For this, recall that every quadratic form f ∈ C[x0, . . . , xn]
may be written as

f(x) = xt · A · x,

where x is the column vector with entries x0, . . . , xn, and where A = (aij)
is a symmetric (n+1)× (n+1) matrix of scalars aij ∈ C. The rank of the
corresponding quadric Q = V(f) ⊂ P2(C) is defined to be the rank of A.
Now show that Q has rank r iff it is projectively equivalent to a quadric
with defining equation

r∑

i=0

x2
i = 0.

If r = n + 1, then Q is nondegenerate.
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4. Exactly, what invariants classify quadratic forms over R?

By comparing the projective classification of conics with the classification of
conics in the respective affine planes (work this out), you will find another
example of how geometric statements become simpler if we pass from affine
to projective geometry. In particular, as should be already clear from Ex-
ample 5.1.14 and Figure 5.5, the difference between ellipses, parabolas, and
hyperbolas disappears in the projective setting. )*

Remark 5.1.17. In parts 2 and 3 of Exercise 5.1.16, we may replace C by
any algebraically closed field of characteristic #= 2. )*

Before we go further, we adopt a convention which extends Convention 2.7.2:

Convention 5.1.18. From now on, K will be an algebraically closed exten-
sion field of k. We will write Pn := Pn(K). If T ⊂ k[x0, . . . , xn] is a set of
homogeneous polynomials, then A = V(T ) will be its vanishing locus in Pn.
We will, then, say that k is a field of definition of A, or that A is defined
over k. A k-rational point of A is a point of the intersection

A(k) := A ∩ Pn(k).

Furthermore, an element of PGL(n + 1, k) ⊂ PGL(n + 1, K) will be called an
automorphism of Pn defined over k. )*

Remark 5.1.19. Convention 5.2.1 is justified by the projective Nullstellen-
satz which will be proved in the next chapter. The Nullstellensatz says, in
particular, that hypersurfaces in Pn correspond to nonconstant square-free
forms in K[x0, . . . , xn], where the form f is uniquely determined by the hy-
persurface H up to multiplication by a nonzero scalar. Then H is irreducible
iff f is irreducible, and the degree of f is also called the degree of H . A
hypersurface is a quadric, cubic, quartic, quintic if its degree is 2,3,4,5,
respectively. )*

As for the elements of the polynomial ring K[x0, . . . , xn], most elements of
the rational function field K(x0, . . . , xn) cannot be regarded as functions in
the projective context. However, if g, h ∈ K[x0, . . . , xn] are forms of the same
degree d, then f = g/h defines a function on D(h) ⊂ Pn. Indeed, in this case,
substituting the homogeneous coordinates of a point p ∈ D(h) for the xi in g
and h gives a well-defined value f(p):

g(λx0, . . . ,λxn)
h(λx0, . . . ,λxn)

=
λdg(x0, . . . , xn)
λdh(x0, . . . , xn)

=
g(x0, . . . , xn)
h(x0, . . . , xn)

.

Specific examples are the affine coordinate functions xj/xi on Ui = D(xi).
The rational function field of Pn is the subfield

K(Pn) = {g/h ∈ K(x0, . . . , xn) | g, h forms of the same degree}
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of K(x0, . . . , xn). Equivalently, K(Pn) is the rational function field of any co-
ordinate chart Ui

∼= An (dehomogenize respectively homogenize to show that
the two definitions give isomorphic fields). Similarly, we may define the local
ring of Pn at a point p ∈ Pn either as the subring

OPn,p = {g/h ∈ K(Pn) | D(h) = p} ⊂ K(Pn),

or as the local ring at p of any coordinate chart containing p. Concepts for-
mulated in terms of the local ring can, then, be directly extended from the
affine to the projective case. For instance, if f ∈ k[x0, . . . , xn] is a nonconstant
form, and p ∈ Pn is a point, the multiplicity of f at p, written mult(f, p),
is well-defined as the multiplicity at p of the dehomogenization of f in any
chart Ui containing p. Similarly for the intersection multiplicity i(f, g; p)
of two nonconstant forms f, g ∈ k[x, y, z].

More generally, the local ring OA,p of any projective algebraic set A ⊂ Pn

at a point p ∈ A can be defined in an analogous way, and in accordance with
what is happening in the affine charts (we will treat this more systematically in
Chapter 6). It makes, then, sense to say that p is a smooth point of A if OA,p

is a regular local ring. Equivalently, if Ui is any coordinate chart containing
p, the affine algebraic set A∩Ui is smooth at p. The notions singular point
and Asing are as before.

Recall that A∩Ui is singular at p if the dimension of the tangent space to
A∩Ui at p is strictly larger than the local dimension of A∩Ui at p. Though this
can be checked in the chart Ui, it is occassionally useful to have a projective
version of the tangent space:

Definition 5.1.20. Let A ⊂ Pn be a projective algebraic set, and let p =
[a0 : · · · : an] ∈ A be a point. The projective tangent space to A at p is
the linear subspace TpA ⊂ Pn defined as follows: If A is a hypersurface, and
f ∈ K[x0, . . . , xn] is a square-free form such that A = V(f), set

TpA = V

(
n∑

i=0

∂f

∂xi
(a0, . . . , an) · xi

)
⊂ Pn.

In the general case, let TpA be the intersection of all projective tangent spaces
at p to hypersurfaces containing A. )*

Exercise∗ 5.1.21. If f ∈ K[x0, . . . , xn] is a square-free form, and A = V(f) ⊂
Pn, use Euler’s rule to show:

1. If Ui is any coordinte chart containing p, then TpA is the projective closure
of the tangent space to the affine algebraic set A ∩ Ui at p.

2. If C(A) ⊂ An+1 is the affine cone over A, and q ∈ C(A) is any point
representing p, the tangent space to C(A) at q passes through the origin.
It is, thus, a linear subspace W of Kn+1. Furthermore, W is independent
of the choice of q, and TpA = P(W ). )*
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For a hypersurface A = V(f) as in the exercise, p is a smooth point of A iff
TpA is a hyperplane. That is,

Asing = V
(

f,
∂f

∂x0
, . . . ,

∂f

∂xn

)
.

If chark does not divide deg f , it is clear from Euler’s rule that only the partial
derivatives need to be considered.

Exercise 5.1.22. Determine the singular points of the curves in Example
5.1.14 and Exercise 5.1.15. )*

In the discussion above, there is no need to restrict ourselves to coordinate
charts: We may take any hyperplane H to be the hyperplane at infinity, re-
garding its complement U as affine n-space, and calling U an affine chart.
Explicitly, if H = V(

∑
λixi), where at least one λj is nonzero, identify

U ∼= An(k)

via
[a0 : · · · : an] -→

(
a0∑
λiai

, . . . ,
âj∑
λiai

, . . . ,
an∑
λiai

)
.

This is useful since a convenient choice of chart may ease explicit computa-
tions. Given any collection y0, . . . , yn of linearly independent linear forms, the
D(yi) form a covering of Pn(k) which is obtained from the one given by the
D(xi) by a projective change of coordinates.

In Renaissance texts on perspective, the idea of considering different affine
charts is a central theme. We illustrate this in Figure 5.5, where the reader
may think of one chart as the floor in a medieval palace, of the other chart as
the canvas of a painter, and of the origin o ∈ A3(R) as the artist’s eye.

In case k = R respectively k = C, the projective space Pn(k) also carries an
Euclidean topology, namely the quotient topology induced from the Euclidean
topology on kn+1 \ {0} via the canonical projection kn+1 \ {0} → Pn(k).

Remark 5.1.23. 1. Let k = R respectively k = C. Then Pn(k) carries an
Euclidean topology, namely the quotient topology induced by the canonical
projection kn+1 \ {0}→ Pn(k). With respect to this topology, the coordinate
charts exhibit Pn(k) as a real respectively complex manifold, which is, in fact,
compact. Indeed, we may regard Pn(k) as the quotient

Pn(k) ∼= Sn/ ∼,

where
S = {x ∈ kn+1 | ||x|| = 1}

is the (compact) unit sphere, and where ∼ refers to identifying antipodal
points.
Compactness follows since Pn(R) is the image of the compact unit sphere
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Fig. 5.4. Different charts in perspective drawing.

S = {x ∈ kn+1 | ||x|| = 1} ⊂ Rn+1.

In case k = C, Pn(C) is the image of the 2n + 1-dimensional unit sphere in
Cn+1.
2. Let k = C. If f ∈ C[x1, . . . , xn} ia a polynomial, then V(fh) is not

only the Zariski closure of V(f) ⊂ U0 ⊂ Pn(C), but also the closure of V(f)
with respect to the Euclidian topology. To see this we may assume that f is
irreducible. Then all affine hypersurface V(fh)∩Ui are irreducible hence path
connected by Theorem 6.7.13 in Chapter
. The claim follows since the

⋃
i Ui covers Pn. In particular we see that a

projective hypersurface equipped with the Euclidean topology is compact as
a closed subset of the compact manifold Pn(C). )*

We will discuss the structure of the differentiable maps Sn → Pn(R) and
S2n+1 → Pn(C) for small n = 2 respectively n = 1.

In the last two remarks of this section, we discuss the construction of P2(R)
and P1(C) by focusing on their Euclidean topology. These considerations will
not play a role in subsequent parts of the book.

Remark 5.1.24. The real projective plane P2(R) has an interesting structure
as a 2-dimensional real manifold. Every line through the origin in R3 intersects
the unit sphere S2 = {(x0, x1, x2 ∈ R3 | x2

0 +x2
1 +x2

2 = 1} in two points. Thus

P2(R) = S2/ ∼,

where the equivalence relation ∼ identifies antipodal points. Thus as real
manifold we obtain P2(R) by gluing the Moebius strip, which is the image of
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a belt around the equator in S2, with a disc, which is the image of the cap
around the north (or south) pole. Hence, the manifold P2(R) is not orientable.
In particular, we cannot embed P2(R) into R3. There are however models of
P2(R) in R3, if we allow self-intersections. The Steiner roman surface discussed
in Example 2.6.6 ,

is such an example, because

S2 → R3, (x0, x1, x2) -→ (x1x2, x0x2, x0x1)

factors over P2(R). The map ϕ : P2(R) → R3 is an immersion at all points
p ∈ P2(R) except at the 6 pinch points on the coordinate axes. (A map between
ϕ : M → N differential manifolds is a immersion at p ∈ M , if the induced
map on the tangent spaces dpϕ : TpM → TpN is an inclusion. An immersion
is a map which is an immersion everywhere). An immersion of P2(R) → R3 is
given by the Boy surface.

Remark 5.1.25. For the complex projective line we have established two points
of view. We can regard P1(C) = C∪∞ ∼= S2 via the projection from the north
pole onto the Gaussian number plane.

The other description realizes P1(C) as the complex lines in C2. On the
unit sphere S3 ⊂ C2 every point in P1 has an S1 ∼= {z ∈ C | |z| = 1} of
representatives. Combining both descriptions, we find a map

h : S3 → S2,

whose fibers are S1’s, the Hopf fibration.
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Identifying S3 = R3 ∪ {(1 + i0, 0 + i0)} via stereographic projection, we
find that R3 is fibered into an R2 of circles and a line.

Exercise 5.1.26. Prove that there is no continues section σ : S2 → S3 of h,
but that there exists a continues section of h : S3 \ h−1(∞) → C. What is the
closure of the graph in your example? )*

5.2 The Extension of Basic Concepts

Coordinate charts allow us to extend concepts such as function fields, local
rings, smoothness, tangent spaces, and dimension with almost no extra effort
to the projective case. In this section, we will give some examples of how this
works. First of all, we adopt a convention which adds to Convention 2.7.2:

Convention 5.2.1. From now on, K will be an algebraically closed extension
field of k. We will write Pn := Pn(K). If T ⊂ k[x0, . . . , xn] is a set of homoge-
neous polynomials, then A = V(T ) will be its vanishing locus in Pn. We will,
then, say that k is a field of definition of A, or that A is defined over k.
A k-rational point of A is a point of the intersection

A(k) := A ∩ Pn(k).

Furthermore, an element of PGL(n + 1, k) ⊂ PGL(n + 1, K) will be called an
automorphism of Pn defined over k. )*

Remark 5.2.2. Convention 5.2.1 is justified by the projective Nullstellensatz
which will be proved in the next chapter. The Nullstellensatz says, in partic-
ular, that hypersurfaces in Pn correspond to nonconstant square-free forms in
K[x0, . . . , xn], where the form f is uniquely determined by the hypersurface
H up to multiplication by a nonzero scalar. Then H is irreducible iff f is ir-
reducible, and the degree of f is also called the degree of H . A hypersurface
is a quadric, cubic, quartic, quintic if its degree is 2,3,4,5, respectively. )*

As for the elements of the polynomial ring K[x0, . . . , xn], most elements of
the rational function field K(x0, . . . , xn) cannot be regarded as functions in
the projective context. However, if g, h ∈ K[x0, . . . , xn] are forms of the same
degree d, then f = g/h defines a function on D(h) ⊂ Pn. Indeed, in this case,
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substituting the homogeneous coordinates of a point p ∈ D(h) for the xi in g
and h gives a well-defined value f(p):

g(λx0, . . . ,λxn)
h(λx0, . . . ,λxn)

=
λdg(x0, . . . , xn)
λdh(x0, . . . , xn)

=
g(x0, . . . , xn)
h(x0, . . . , xn)

.

Specific examples are the affine coordinate functions xj/xi on Ui = D(xi).
Definition 5.2.3. The rational function field of Pn is the subfield

K(Pn) = {g/h ∈ K(x0, . . . , xn) | g, h forms of the same degree}
⊂ K(x0, . . . , xn).

The local ring of Pn at a point p ∈ Pn is the subring

OPn,p = {g/h ∈ K(Pn) | D(h) = p} ⊂ K(Pn). )*
Note that OPn,p is indeed a local ring. Note also that the definition of OPn,p

is consistent with our definition in the affine case: If Ui is a coordinate chart
containing p, then OPn,p is isomorphic to the local ring of An ∼= Ui at p
(dehomogenize; for the inverse map, homogenize).

Concepts formulated in terms of the local ring can, thus, be directly ex-
tended from the affine to the projective case. For instance, if f ∈ k[x0, . . . , xn]
is a nonconstant form, and p ∈ Pn is a point, the multiplicity of f at p, writ-
ten mult(f, p), is well-defined as the multiplicity at p of the dehomogenization
of f in any chart Ui containing p. In the same way, given two nonconstant
forms f, g ∈ k[x, y, z] and a point p ∈ P2, we define the intersection mul-
tiplicity of f and g at p, written i(f, g; p). As in Chapter 4, these notions
carry over to hypersurfaces (plane curves) by considering square-free forms
defining the hypersurfaces (plane curves).

More generally, the local ring OA,p of any projective algebraic set A ⊂ Pn

at a point p ∈ A can be defined in an analogous way, and such that the
definition is consistent with that in the affine case (we will treat this more
systematically in Chapter 6). It makes, then, sense to say that p is a smooth
point of A if OA,p is a regular local ring. Equivalently, if Ui ia any coordinate
chart containing p, the affine algebraic set A∩Ui is smooth at p. Otherwise, p
is a singular point of A. As before, we write Asing for the set of these points.

Recall that A∩Ui is singular at p if the dimension of the tangent space to
A∩Ui at p is strictly larger than the local dimension of A∩Ui at p. Though this
can be checked in the chart Ui, it is occassionally useful to have a projective
version of the tangent space. Here is the definition in the hypersurface case
(see Chapter 6 for the general case):
Definition 5.2.4. Let A ⊂ Pn be a hypersurface, let p = [a0 : · · · : an] ∈ A be
a point, and let f ∈ K[x0, . . . , xn] be a square-free form such that A = V(f).
The projective tangent space TpA to A at p is the linear subspace

TpA = V

(
n∑

i=0

∂f

∂xi
(a0, . . . , an) · xi

)
⊂ Pn.

)*
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Exercise∗ 5.2.5. In the situation of the definition, use Euler’s rule to show:

1. If Ui is any coordinte chart containing p, then TpA is the projective closure
of the tangent space to the affine algebraic set A ∩ Ui at p.

2. If C(A) ⊂ An+1 is the affine cone over A, and q ∈ C(A) is any point
representing p, the tangent space to C(A) at q passes through the origin.
It is, thus, a linear subspace W of Kn+1. Furthermore, W is independent
of the choice of q, and TpA = P(W ). )*

With notation as in the definition, p is a smooth point of A iff TpA is a
hyperplane. That is,

Asing = V
(

f,
∂f

∂x0
, . . . ,

∂f

∂xn

)
.

If chark does not divide deg f , it is clear from Euler’s rule that only the partial
derivatives need to be considered.

Exercise 5.2.6. Determine the singular points of the curves in Example
5.1.14 and Exercise 5.1.15. )*

With regard to local studies, there is no need to restrict ourselves to coordi-
nate charts: We may take any hyperplane H to be the hyperplane at infinity,
regarding its complement U as affine n-space, and calling U an affine chart.
Explicitly, if H = V(

∑
λixi), where at least one λj is nonzero, identify

U ∼= An(k)

via
[a0 : · · · : an] -→

(
a0∑
λiai

, . . . ,
âj∑
λiai

, . . . ,
an∑
λiai

)
.

This is useful since a convenient choice of chart may ease explicit computa-
tions. Given any collection y0, . . . , yn of linearly independent linear forms, the
D(yi) form a covering of Pn(k) which is obtained from the one given by the
D(xi) by a projective change of coordinates.

In Renaissance texts on perspective, the idea of considering different affine
charts is a central theme. We illustrate this in Figure 5.5, where the reader
may think of one chart as the floor in a medieval palace, of the other chart as
the canvas of a painter, and of the origin o ∈ A3(R) as the artist’s eye.

5.3 Linear Systems of Plane Curves

The concept of linear systems is a classical concept of algebraic geometry. In
this section, we study the special case of linear systems of plane curves. As
motivation for this, we consider the following question:
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Fig. 5.5. Different charts in perspective drawing.

Given d ≥ 1 and finitely many points in the projective plane,
how many curves of degree d pass through these points? (5.1)

To give the question a precise meaning, we describe the curves with the help of
equations. We denote the coordinates by x, y, z. Recall from Remark 5.2.2 that
each curve C ⊂ P2 of degree d is defined by a square-free form f ∈ K[x, y, z]
of degree d, where f is determined up to multiplication by a nonzero scalar.
In other words, C defines a point in the projective space P(L(d)), where

L(d) = K[x, y, z]d = {f ∈ K[x, y, z] | f is homogenous of degree d}.

In P(L(d)), there are also points corrsponding to polynomials with multiple
factors. Nevertheless, we prefer to work with this space since the subset defined
by the square-free polynomials is difficult to handle. By abuse of notation, we
refer to every point of P(L(d)) as a projective plane curve of degree d, and
to P(L(d)) itself as a parameter space for the plane curves of degree d.
In speaking of components, of curves passing through a point, and of curves
intersecting at a point, we extend the terminology introduced in Section 4.3
from the affine to the projective case.

Note that P(L(d)) is a projective space of dimension
(

d + 2
2

)
− 1 =

d(d + 3)
2

.

In fact, since the monomials of degree d form a K-basis for L(d), we may
regard the coefficients of the polynomials in L(d) as homogeneous coordinates
on P(L(d)) (listed in some order). Note that every change of coordinates of
P2 induces a change of coordinates of P(L(d)) (in the obvious way).
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We can, now, illustrate question (5.1) by an example:

Example 5.3.1. Consider the four points

p1 = [0 : 0 : 1], p2 = [1 : 0 : 1], p3 = [0 : 1 : 1], p4 = [1 : 1 : 1] ∈ P2.

To describe the conics passing through these points, note that a quadratic
polynomial

f = f20x
2 + f11xy + f10xz + f02y

2 + f01yz + f00z
2

vanishes at p1, p2, p3, p4 iff

f00 = 0, f20 + f10 = 0, f02 + f01 = 0, f20 + f11 + f10 + f02 + f01 = 0.

This gives four linear conditions on the coefficients of f which are, in fact,
independent – the conditions determine the two-dimensional linear subspace

L = {λx(x − z) + µy(y − z) | λ, µ ∈ K} ⊂ K[x, y, z]2.

Geometrically, the generators x(x − z) and y(y − z) of L define two pairs of
lines in P2 which, considered as points of L(2), span the line P(L) ⊂ L(2).
This line parametrizes the conics passing through p1, p2, p3, p4 – there is a
P1 of such conics.

The following real picture shows the conics in the affine chart D(z):

)*
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It is clear from the example that “passing through a point p ∈ P2 ” imposes
one linear condition on the curves of degree d – the curves passing through p
form a hyperplane in P(L(d)). More generally, as we will see in Proposition
5.3.3 below, we impose linear conditions by asking that the multiplicities of
the curves at p exceed a given value r.

Definition 5.3.2. Let d ≥ 1 be an integer.

1. A linear system of curves of degree d in P2 is a linear subspace P(L) ⊂
P(L(d)). A point p ∈ P2 is a base point of P(L) if every curve in P(L)
passes through p. The words pencil, net, and web refer to a linear system
of dimension 1,2, and 3, respectively.

2. If p1, . . . , ps ∈ P2 are distinct points, and r1, . . . , rs ≥ 1 are integers, we
write

L(d; r1p1, . . . , rsps) := {f ∈ L(d) | mult(f, pi) ≥ ri for all i},

and call
P(L(d; r1p1, . . . , rsps)) ⊂ P(L(d))

the linear system of curves of degree d with multiplicity at least
ri at pi, for all i. Moreover, we say that p1, . . . , ps are the assigned
base points of P(L(d; p1, . . . , ps)). )*

Proposition 5.3.3. Let p1, . . . , ps ∈ P2 be distinct points, and let r1, . . . , rs ≥
1 be integers. Then L(d; r1p1, . . . , rsps) is a linear subspace of L(d) of dimen-
sion

dimK L(d; r1p1, . . . , rsps) ≥
(

d + 2
2

)
−
∑

i

(
ri + 1

2

)
. (5.2)

Proof. Since L(d; r1p1, . . . , rsps) =
⋂

i L(d; ripi), it suffices to treat the points
seperately. After a change of coordinates, we may suppose that the given point
is the point p = [0 : 0 : 1]. Then, a polynomial f =

∑
fαβxαyβzd−α−β ∈ L(d)

vanishes at p with multiplicity at least r iff fαβ = 0 for all α,β with α+β < r.
The result follows since there are

(r+1
2

)
monomials xαyβ with α+ β < r. )*

Whether equality or strict inequality holds in (5.2) depends on whether the
conditions imposed by the different points are linearly independent or not.
Both cases do occur. In the example below, which illustrates this, we say that
three or more points p1, . . . , ps ∈ P2 are collinear if the points lie on a line.

Example 5.3.4. For four distinct points p1, . . . , p4 ∈ P2, (5.2) gives

dimK L(2; p1, . . . , p4) ≥ 2.

If no three of these points are collinear, equality holds (make use of a suitable
change of coordinates to reduce to the case treated in Example 5.3.1). If three
of the points are collinear, say p1, p2, p3 ∈ L, where L ⊂ P2 is a line, then L
must be a component of any conic containing p1, p2, p3 (one way of seeing this
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is to apply Bézout’s theorem which will be proved in the next section). Hence,
a conic through p1, p2, p3 is determined by the component residual to L, which
may be any line. If we require that the conic also contains p4, and if p4 #∈ L, the
residual line must pass through p4 which imposes one extra linear condition. If
p4 ∈ L, there is no extra condition. We conclude that dimK L(2; p1, . . . , p4) = 2
iff p1, . . . , p4 are not collinear, and that dimK L(2; p1, . . . , p4) = 3 if the four
points lie on a line. )*

In the example, the dimension of the linear system under consideration de-
pends on the position of the points in the plane – for “almost all” collections
of four points, the dimension is 2, and it is 3 only in the special case where
the four points are collinear. To give “almost all” a more precise meaning, we
say that a condition on a collection of points is satisfied for points p1, . . . , ps

in general position if the points for which the condition is satisfied can be
chosen in the following way: if p1, . . . , pr, r < s, are already given, there is a
nonempty Zariski open (hence dense) subset U ⊂ P2 such that we can choose
pr+1 from among the points in U (in the example, if p1, p2, p3 are not collinear,
take U = P2; if p1, p2, p3 lie on a line L, take U = P2 \L). With this notation,
we have:

Proposition 5.3.5. Let p1, . . . , ps ∈ P2 be distinct points in general position.
If
(
d+2
2

)
≥ s, then

dimK L(d; p1, . . . , ps) =
(

d + 2
2

)
− s.

Proof. The result follows from the lemma below by induction on s. )*

Lemma 5.3.6. Let P(L) ⊂ P(L(d)) be a nonempty linear system. Then there
is a nonempty Zariski open subset U ⊂ P2 such that L ∩ L(d; p) ⊂ L has
codimension 1 for all p ∈ U .

Proof. Since L(d; p) is a hyperplane in L(d), the linear subspace L ∩ L(d; p)
of L has codimension one iff L #⊂ L(d; p). But if f is any nonzero polynomial
in L, then f #∈ L(d; p) for any point p ∈ U := P2 \ V(f). )*

In the case where not each ri = 1, it is an open problem to determine the
tupels (d, r1, . . . , rn) for which the analogue of Proposition 5.3.5 holds (see
Ciliberto and Miranda (2000) for some recent research).

Example 5.3.7. For five distinct points p1, . . . , p5 ∈ P2, inequality (5.2) gives

dimK L(4; 2p1, . . . , 2p5) ≥ 0.

However, we always have the sharper estimate

dimK L(4; 2p1, . . . , 2p5) ≥ 1.

Indeed, since dimK L(2; p1, . . . , p5) ≥ 1, there is a conic V(f) passing through
all 5 points, and f2 ∈ L(4; 2p1, . . . , 2p5). )*
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The remark below contains a simple example which prepares for the subse-
quent exercises:

Remark 5.3.8. If p = [a0 : a1 : a2], q = [b0 : b1 : b2] ∈ P2(k) are two distinct
points, the unique line passing through p and q is defined by the determinantal
equation

det




x0 x1 x2

a0 a1 a2

b0 b1 b2



 = 0.
)*

Exercise 5.3.9. If p1, . . . , p5 ∈ P2 are five distinct points such that no three
are collinear, show that there is a unique conic passing through the five points,
show that this conic is nondegenerate, and give a determinantal equation for
the conic. What happens if we only suppose that no four of the points are
collinear? )*

Exercise 5.3.10. If p1, p2, p3 ∈ R2 are three points not lying on a line, show
that there is a unique circle passing through these points, and give a determi-
nantal equation for the circle.
Hint. Note that the set of all circles is an affine chart of a 3-dimensional linear
system L ⊂ P(R[x, y]≤2) = P(R[x, y, z]2). The base points of this system in
P2(C) are known as the circle points. Where do these points lie? )*

If d is large enough, we always get the dimension expected from (5.2):

Proposition 5.3.11. Let p1, . . . , ps ∈ P2 be distinct points, and let r1, . . . , rs

be integers ≥ 1. If d ≥ (
∑

i ri) − 1, then

dimK L(d; r1p1, . . . , rsps) =
(

d + 2
2

)
−
∑

i

(
ri + 1

2

)
.

Proof. We do induction on m := (
∑

i ri) − 1. If m ≤ 1, then either s = 1,
or s = 2 and r1 = r2 = 1. In both cases, the result is clear. We may, hence,
suppose that d ≥ m > 1. In the induction step, we distinguish two cases.

Case 1. Suppose that each ri = 1. Choose a linear form l0 not vanish-
ing at any pi (this is possible since “not vanishing at a point” imposes a
Zariski open (dense) condition on lines). In addition, for i = 1, . . . , s − 1,
choose linear forms li such that pi ∈ V(li), but pj #∈ V(li) for j #= i. Then
f := l1 · · · ls−1 · ld−s+1

0 ∈ L(d; p1, . . . , ps−1) \ L(d; p1, . . . , ps). This shows that
L(d; p1, . . . , ps) " L(d; p1, . . . , ps−1), and we are done by applying the induc-
tion hypothesis.

Case 2. Now, suppose that not all ri = 1, say r := r1 > 1. Assume that
p1 = [0 : 0 : 1], and set L0 = L(d; (r1 − 1)p1, r2p2, . . . , rsps). Then, for any
f ∈ L0, the dehomogenization f(x, y, 1) is of type

f(x, y, 1) =
r−1∑

i=0

fix
iyr−1−i + terms of higher degree.
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Setting Li = {f ∈ L0 | fj = 0 for all j < i}, we get a filtration

L0 ⊃ L1 ⊃ . . . ⊃ Lr = L(d; r1p1, . . . , rsps).

Since the induction hypothesis applies to L0, it suffices to show that Li # Li+1,
i = 0, . . . , r−1. For this, set W0 = L(d−1; (r−2)p1, r2p2, . . . , rsps). Following
the recipe above, define a filtration

W0 ⊃ W1 ⊃ . . . ⊃ Wr−1 = L(d− 1; (r − 1)p1, r2p2, . . . , rsps).

By the induction hypothesis, Wi # Wi+1, i = 0, . . . , r − 2. Choosing poly-
nomials fi ∈ Wi \ Wi+1, we have yfi ∈ Li \ Li+1, i = 0, . . . , r − 2, and
xfr−2 ∈ Lr−1 \ Lr. This concludes the proof. )*

Exercise 5.3.12. For each set of integers r1, . . . , rs ≥ 1, show by example
that the conclusion of the proposition may be wrong if d = (

∑
ri) − 2. )*

5.4 Bézout’s Theorem and Applications

The projective plane has been constructed such that any two distinct lines
intersect in a unique point. The theorem of Bézout says that much more is
true: given two curves in P2 of arbitrary degrees d, e ≥ 1, the curves intersect
in d · e points, counted with multiplicity. The proof of the theorem, which
will be given in this section, is an application of elimination: we proceed by
projecting the intersection points to a line. For this, we will consider the
resultant which is a classical tool in elimination theory (its use can be traced
back to work of Leibniz, Newton, Euler, and others – see the accounts in Kline
(1972) and von zur Gathen and Gerhard (1999)).

Given two univariate polynomials f, g, the resultant of f and g is a poly-
nomial expression in the coefficients of f and g which vanishes iff f and g
have a nontrivial common factor (see Theorem 5.4.3 below). In the classical
papers, the authors obtained the resultant by different ways of eliminating the
variable from the system f = g = 0. Accordingly, there are different ways of
representing the resultant. We will define it, here, as the determinant of the
Sylvester matrix which provides one natural way of introducing linear algebra
into the common factor problem.

Let R be a ring, and let

f = a0xd + a1xd−1 + . . . + ad,
g = b0xe + b1xe−1 + . . . + be ∈ R[x] (5.3)

be two polynomials of degrees d, e ≥ 1. Then the Sylvester matrix of f and
g is the matrix
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Syl(f, g) =





a0 0 . . . 0 b0 0 . . . 0

a1 a0

... b1 b0

...
... a1

. . .
...

... b1
. . .

...
...

...
. . . a0

...
...

. . . b0

ad a1 be b1

0 ad

... 0 be

...
...

. . .
...

...
. . .

...
0 0 . . . ad 0 0 . . . be





.

Note that Syl(f, g) is a square matrix of size d+e: there are e colums containing
ai’s, and d columns containing bj ’s.

Definition 5.4.1. With notation as above, the resultant of f and g is the
determinant

Res(f, g) = det Syl(f, g) ∈ R. )*

Remark 5.4.2. No matter what ring we are considering, the resultant as a
determinant can always be computed using the same recipe. We conclude that
the construction of the resultant is universal in the following sense: If S is the
polynomial ring

S = Z[ui, vj | i = 0, . . . , d, j = 0, . . . , e]

in d + e + 2 variables with integer coefficients, and

F = u0xd + u1xd−1 + · · · + ud,
G = v0xe + v1xe−1 + · · · + ve ∈ S[x]

are the “generic” polynomials in x of degrees d, e, then for any ring R and
any two polynomials f, g as in (5.3), Res(f, g) is obtained from Res(F, G) by
substituting the ai, bj for the ui, vj . )*

Theorem 5.4.3. Let R be a UFD, and let f, g ∈ R[x] be polynomials of
degrees d, e ≥ 1. Then f and g have a common factor of degree ≥ 1 iff
Res(f, g) = 0.

Proof. Consider the “linear combination map”

φ : R[x]<e ⊕R[x]<d → R[x]<d+e, (A, B) -→ Af + Bg.

This is a map between two free R-modules of rank d + e which, with respect
to the R-bases

(xe−1, 0), (xe−2, 0), . . . , (1, 0), (0, xd−1), . . . , (0, 1)

and
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xd+e−1, . . . , x, 1,

is represented by the Sylvester matrix Syl(f, g). We conclude that φ is injective
iff Res(f, g) #= 0. On the other hand, since R is a UFD, φ is injective iff
GCD(f, g) = 1. Indeed, if h := GCD(f, g) #= 1, then (−g/h, f/h) ∈ kerφ.
Conversely, suppose that GCD(f, g) = 1, and let (A, B)t ∈ kerφ be a syzygy
on f, g. Then Af = −Bg, which implies that B is a multiple of f . By degree
reasoning, B and, thus, A are zero. )*

Note that if R = k is a field, then f and g have a nontrivial common factor iff
they have a common root in some algebraically closed extension field of k. It
was precisely the search for common (complex) roots which led the classical
authors to consider the resultant.

Example 5.4.4. Computing the resultant of the two polynomials

f = 3x2 + 5x− 2, g = 7x3 + x + 4 ∈ Q[x],

we get

Res(f, g) = det Syl(f, g) = det





3 0 0 7 0
5 3 0 0 7
2 5 3 1 0
0 2 5 4 1
0 0 2 0 4




= 1142792 #= 0.

Hence, f and g do not have a common root in C. )*

Exercise 5.4.5. Let R be an integral domain, and let f, g ∈ R[x] be two
polynomials of degrees ≥ 1. Then show that

Res(f, g) ∈ 〈f, g〉 ∩ R. (5.4)

More precisely, show that there are polynomials A, B ∈ R[x] such that Af +
Bg = Res(f, g), deg A < deg g, and deg B < deg f . )*

It is property (5.4) which links the resultant to elimination. Here are the
details: Given two polynomials f, g ∈ k[x1, . . . , xn] of degree ≥ 1 in x1, we
may associate a resultant to f, g and the variable x = x1 by regarding f, g as
univariate polynomials in x1. To indicate the distinguished variable, we, then,
write Syl(f, g, x1) for the Sylvester matrix and Res(f, g, x1) for the resultant.
Note that Res(f, g, x1) is a polynomial in R = k[x2, . . . , xn] which, by (5.4), is
contained in the first elimination ideal of 〈f, g〉 ⊂ k[x1, . . . , xn]. Moreover, if
(a2, . . . , an) ∈ An−1(k) is a point such that neither of the leading coefficients
of f, g ∈ R[x1] vanishes at (a2, . . . , an), then, by Remark 5.4.2,

Res(f, g, x1)(a2, . . . , an) = Res(f(x1, a2, . . . , an), g(x1, a2, . . . , an)). (5.5)

The following exercise illustrates the use of this by an example which, at the
same time, shows that Res(f, g, x1) may fail to generate the elimination ideal.
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Exercise 5.4.6. Consider the polynomials

f = xy2 − xy − y3 + 1, g = x2y2 − x2y + xy − 1 ∈ Q[x, y].

1. Compute that

Res(f, g, x) = det




y2− y 0 y2− y
−y3+ 1 y2− y y

0 −y3+ 1 −1





= y8 − y7 + y6 − 3y5 + y4 + y3 + y2 − y

= y(y − 1)2(y5 + y4 + 2y3 − y − 1).

Since the resultant is contained in the elimination ideal 〈f, g〉 ∩ Q[y], the
y-values of the complex solutions of f = g = 0 must be among its roots.
This gives eight candidates for the y-values.

2. If π : A2 → A1 is projection onto the y-component, show that

π(V(f, g)) " V(Res(f, g)).

Exactly, what y-value does not have a preimage point?
3. Use Gröbner bases to compute that the elimination ideal 〈f, g〉 ∩ Q[y] is

generated by the polynomial (y−1)2(y5 + y4 +2y3− y−1). Compare this
with the result of the previous part. )*

Exercise∗ 5.4.7. Let f, g ∈ k[x1, . . . , xn] be forms of degrees d, e ≥ 1. Sup-
pose that both f(1, 0, . . . , 0) and g(1, 0, . . . , 0) are nonzero. That is, the leading
coefficients of f and g – regarded as polynomials in x1 – are nonzero constants.
Then show that Res(f, g, x1) is homogeneous of degree d · e. )*

In the projective setting, there is no value for the point p = [1 : 0 : · · · : 0] ∈ Pn

under projection onto the last n components. We are, thus, led to consider
the projection map

π : Pn \ {p} → Pn−1, [a0 : · · · : an] -→ [a1 : · · · : an].

More geometrically, think of Pn−1 as the hyperplane H0 = V(x0) ⊂ Pn. Then
the image of a point q ∈ Pn \ {p} under π is the intersection of the line
spanned by p and q with H0. More generally, if H ⊂ Pn is any hyperplane,
and p ∈ Pn \ H is any point, the same recipe gives a map from Pn \ {p} to
H ∼= Pn−1. This map is called projection from p to H.
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We can, now, prove Bézout’s theorem:

Theorem 5.4.8 (Bézout). Let f, g ∈ k[x, y, z] be forms of degrees d, e ≥ 1.
Assume that f and g have no common component. Then

∑

p∈P2

i(f, g; p) = d · e. (5.6)

Proof. Step 1. It follows from the assumption on f, g and property 2 of inter-
section multiplicities (see Theorem 4.3.18) that i(f, g; p) < ∞ for each point
p. Using the assumption again, we find that there are only finitely many in-
tersection points of f and g (apply Exercise 1.7.13 in each coordinate chart).
Since i(f, g; p) #= 0 iff p ∈ V(f) ∩V(g) (this is property 1 of intersection mul-
tiplicities), we conclude that the sum on the left hand side of (5.6) makes
sense.

Step 2. Since V(f)∪V(g) is strictly contained in P2 by the Nullstellensatz,
we may choose the coordinates such that the point [0 : 1 : 0] /∈ V(f) ∪ V(g).
That is, we may assume the leading coefficients of the forms f, g – regarded
as polynomials in y – are nonzero constants. Let

π : P2 \ [0 : 1 : 0] → P1, [a : b : c] -→ [a : c],

be projection from [0 : 1 : 0] to the line V(y) ∼= P1:
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Then a point q = [a : c] ∈ P1 is the image of a point p ∈ V(f) ∩ V(g)
iff f(a, y, c) and g(a, y, c) have a common factor. Equivalently, by Theorem
5.4.3, the resultant

F := Res(f, g, y) ∈ k[x, z]

vanishes at [a : c]. By Exercise 5.4.7, F is a form of degree d · e which by
Theorem 5.4.3 and the assumption on f, g, is nonzero. It follows that

∑

q∈P1

mult(F, q) = d · e

(counted with multiplicity, there are deg F (x, 1) zeros of F in the affine chart
D(z) of P1, whereas mult(F, [1 : 0]) = deg F − deg F (x, 1)).

To prove (5.6), it remains to show that the relevant multiplicities match:
We claim that

mult(F, q) =
∑

p∈V(f)∩V(g)
π(p)=q

i(f, g; p),

for all points q ∈ P1 with F (q) = 0.
Step 3. Given a point q ∈ P1 as above, we may suppose after a further

projective change of coordinates that q = [0 : 1]. Then all intersection points
mapped to q lie in the affine chart U = D(z) ∼= A2 of P2. Thus, writing
fa = f(x, y, 1), ga = g(x, y, 1), and Op = OA2,p, the claim from Step 2 reads

mult(F (x, 1), 0) = dimK
∏

p∈V(f)∩V(g)
π(p)=q

Op/〈fa, ga〉Op.

Step 4. Since there are only finitely many intersection points, Corollary
4.6.17 gives us an isomorphism of K-algebras
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M := K[x, y]/〈fa, ga〉 ∼=
∏

p∈V(f)∩V(g)∩U

Op/〈fa, ga〉Op. (5.7)

Step 5. To relate (5.7) to the claim in Step 3, we have to get rid of
the intersection points which are not mapped to q. For this, we localize: Let
h ∈ k[x] be a generator for 〈F (x, 1)〉 : x∞. Then h vanishes precisely at the
points of V(f)∩V(g)∩U \π−1(q). In algebraic terms, for p ∈ V(f)∩V(g)∩U ,
the residue class of h in Op/〈fa, ga〉Op is a unit if p ∈ π−1(q), and is nilpotent
otherwise (recall from Step 1 that dimK Op/〈fa, ga〉Op < ∞). Hence, after
inverting h on both sides of (5.7), we have

M [h−1] := K[x, y, h−1]/〈fa, ga〉 ∼=
∏

p∈V(f)∩V(g)
π(p)=q

Op/〈fa, ga〉Op. (5.8)

Step 6. Since M is generated by (the residue class of) y as a K[x]-algebra,
and since the leading coefficients of the forms f, g – regarded as polynomials
in y – are nonzero constants, the powers 1, y, . . . , ymin(d,e)−1 generate M as a
K[x]-module. Working with the larger set of generators yd+e−1, . . . , y, 1, and
writing R = K[x], we get the free presentation

R[y]<e ⊕R[y]<d
φ−→ R[y]<d+e → M → 0,

where φ is the linear combination map

(A, B) -→ Af + Bg.

This map is represented by the Sylvester matrix Syl(fa, ga, y) which, then, is
also a representation matrix for M [h−1] considered as an R[h−1] = K[x, h−1]-
module. Since R[h−1] is a PID, and M [h−1] is annihilated by a power of x
(this is clear from the right hand side of (5.8)), the structure theorem for
modules over PID’s gives that Syl(fa, ga, y) has a Smith normal form of type

Syl(fa, ga, y) ∼
R





xm1 0 . . . 0
0 xm2 . . . 0
...

...
. . .

...
0 0 . . . xmd+e





(see Example 2.8.8, Definition 2.8.9, and Exercise 2.8.10). We conclude that

mult(F (x, 1), 0) = mult(det Syl(fa, ga), 0) =
e+d∑

i=1

mi = dimK M [h−1].

This finishes the proof. )*

Example 5.4.9. Consider the quadratic forms
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f = x2 + y2 − xz, g = (x − y)2 + 2(y + x)2 − 3xz.

Then [0 : 1 : 0] /∈ V(f) ∪ V(g). With notation as in the proof above, we have

Syl(fa, ga, y) =





1 0 3 0
0 1 2x 3

x2 − x 0 3x2 − 3x 2x
0 x2 − x 0 3x2 − 3x



 ∼
K[x]





1 0 0 0
0 1 0 0
0 0 x 0
0 0 0 x2(x − 1)



 ,

so that, as K[x]-modules,

M = coker Syl(fa, ga, y) ∼= K[x]/〈x〉 ⊕ K[x]/〈x2〉 ⊕ K[x]/〈x − 1〉

(see Exercise 2.8.10). From this decomposition, it is clear that f and g intersect
with multiplicity one at a point p1 of type p1 = [1 : β1 : 1], and one might be
tempted to believe that there are two distinct intersection points p2/3 of type
pj = [0 : βj : 1]. This naive guess, however, is not true. One way of seeing this
is to interchange the role of x and y in the proof of Bézout’s theorem (note
that [1 : 0 : 0] /∈ V(f) ∪ V(g)):

Syl(fa, ga, x) =





1 0 3 0
−1 1 2y − 3 3
y2 −1 3y2 2y − 3
0 y2 0 3y2



 ∼
K[y]





1 0 0 0
0 1 0 0
0 0 y 0
0 0 0 y3



 .

Now, we conclude, that there is an intersection point p2 of multiplicity at least
three of type p2 = [α2 : 0 : 1] (and possibly another intersection point of the
same type). Taking Bézout’s Theorem into account and comparing with what
we got above, we find that

V(f) ∩ V(g) = {[1 : 0 : 1], [0 : 0 : 1]},

with intersection multiplicities

i(f, g; p1) + i(f, g; p2) = 1 + 3 = 4 = deg C · deg D. )*

Exercise 5.4.10. Let f, g ∈ k[x, y, z] be nonconstant forms. Show that f and
g intersect transversally at each point of V(f)∩V(g)∩D(z) iff, with notation
as in the proof of Bézout’s theorem, every elementary divisor of Syl(fa, ga, y)
over K[x] is square-free. )*

Exercise 5.4.11. Let p1, . . . , p4 ∈ A2 be four points in the affine plane such
that no three are collinear. Then show that there is a parabola passing through
these points iff p1, . . . , p4 do not form a parallelogram.
Hint: A parabola in A2 is the affine part of a nondegenerate conic in P2 which
intersects the line at infinity in a single point with multiplicity 2. )*

As an application of Bézout’s Theorem, we give a bound on the number of
singular points of a plane curve:
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Theorem 5.4.12. Let C ⊂ P2 be a curve of degree d ≥ 1. If rp denotes the
multiplicity of C at a point p ∈ P2, then:

1. C has at most
(
d
2

)
singular points. More precisely,

∑

p∈C

(
rp

2

)
≤
(

d

2

)
.

2. If C is irreducible, then C has at most
(
d−1
2

)
singular points. More pre-

cisely,
∑

p∈C

(
rp

2

)
≤
(

d − 1
2

)
.

Proof. If d = 1, then C is a line, and there is nothing to show. We may, hence,
assume that d ≥ 2. Let p1, . . . , ps be the distinct singular points of C, and
write ri = rpi . Moreover, let f ∈ K[x, y, z] be a square-free form defining C.

1. Since f is square-free, not all formal partial derivatives of f van-
ish, and we may suppose that ∂f

∂x #= 0. Then f and ∂f
∂x have no com-

mon component. Applying Bézout’s theorem, we conclude that f and ∂f
∂x

intersect in d(d − 1) points, counted with multiplicity. On the other hand,
mult(∂f

∂x , pi) ≥ mult(f, pi)− 1 = ri − 1 for all i. Taking property 3 of intersec-
tion multiplicities into account (see Theorem 4.3.18), we get, as desired:

d(d − 1) =
∑

i

i(f,
∂f

∂x
, pi) ≥

∑

i

mult(f, pi) · mult(
∂f

∂x
, pi) ≥

∑

i

ri(ri − 1).

2. By Proposition 5.3.3 and part 1,

dimK L(d − 1; (r1 − 1)p1, . . . , (rs − 1)ps) ≥
(

d + 1
2

)
−
∑

i

(
ri

2

)
≥ d.

In particular, t :=
(d+1

2

)
−
∑(ri

2

)
− 1 ≥ 1, and we may choose smooth points

q1, . . . , qt ∈ C. Once more applying Proposition 5.3.3, we see that we can
find a nonzero form g ∈ L(d − 1; (r1 − 1)p1, . . . , (rs − 1)ps, q1, . . . , qt). Since,
by assumption, f is irreducible, the forms f and g have no component in
common. Making use of Bézout’s theorem and arguing as in part 1, we get

d(d − 1) ≥
∑

i

ri(ri − 1) + t =
∑

i

ri(ri − 1) +
d2 + d− 2

2
−
∑

i

(
ri

2

)
.

The desired bound follows. )*

Theorem 5.4.13. Let C ⊂ P2 be an irreducible curve of degree d ≥ 1 such
that
(d−1

2

)
=
∑

p∈C

(rp

2

)
. Then C admits a rational parametrization.
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Proof. The basis idea is the same as in the proof of part 2 of Theorem 5.4.12.
If we choose t − 1 =

(d+1
2

)
−
∑(ri

2

)
− 2 addititional points q1, . . . , qt−1 on C

then

P(L(d − 1; (r1 − 1)p1, . . . , (rs − 1)ps, q1, . . . , qt−1)) = P(〈g0, g1〉)

is a pencil of curves, whose intersection points except one with C are known to
us. Thus, if p(t0, t1) denotes the moving intersection point of C∩V(t0g0+t1g1)
then

P1 → C, [t0 : t1] -→ p(t0, t1)

is the desired parmetrization. This proves the Theorem for algebraically closed
fields. Before we complete the proof for arbitrary fields, we discuss the result-
ing algorithm.

Remark 5.4.14. Suppose that C contains a smooth k-rational point. Then
C can be parametrized by rational functions defined over k. )*

Remark 5.4.15. Using the concept of the bihomogeneous coordinate ring R =
k[x0, x1, x2, t0, t1] of P2 × P1, which we will introduce properly in Section 6,
we can compute the parametrization explicitely as follows.

Let f be the equation of C. The zero locus of the ideal J = 〈f, t0g0+t1g1〉 ⊂
R decompose into

V(J) = (B × P1) ∪C′ ⊂ P2 × P1,

where B = V(g1, g2) ∩ C ⊂ P2 is the base loci of the pencil on C. The
component C′ is the graph of the desired parmetrization. Note that the two
hypersufaces C × P1 and V(t0g0 + t1g1) intersect transversally along (C′ \
B)× P1, because the additional intersection is simple. Thus, if we saturate J
in 〈g0, g1〉 and 〈t0, t1〉, we obtain the bihomogeneous ideal of C′ ⊂ P2 × P1:

I(C′) = (〈f, t0g0 + t1g1〉 : 〈g0, g1〉N ) : 〈t0, t1〉N ⊂ R

for N large enough. On the other hand, the rational map

P1 → C, [t0 : t1] -→ p(t0, t1) = [ϕ0(t0, t1) : ϕ1(t0, t1) : ϕ2(t0, t1)],

is defined by three forms ϕ0,ϕ1,ϕ2 ∈ k[t0, t1] of degree d. So I(C′) contains
the minors of the matrix (

x0 x1 x2

ϕ0 ϕ1 ϕ2

)
.

Since there cannot be more than 3 equations of bi-degree (1, d) in I(C′),
we can get the bi-graded piece I(C′)(1,d) spanned by these minors from I(C′).
Finally, to compute t(ϕ0,ϕ1,ϕ2) from the space of minors 〈m0, m1, m2〉, we
calculate the syzygy of the matrix (∂mi

∂xj
)i,j=0,1,2.
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Returning to the proof of the theorem, suppose that the field of definition
of C is k = Q. Then we would like the polynomials ϕ0,ϕ1,ϕ2 ∈ Q[t0, t1] such
that P1(Q) parametrizes C(Q) with perhaps of the exception of a few singular
points. For this we need that L(d−1; (r1−1)p1, . . . , (rs−1)ps, q1, . . . , qt−1) is
defined over Q. For the singular points this is no problem: They might not be
defined individually over Q, but the collection Singr = {p ∈ C | mult(C, p) =
r} is defined over Q. So we need to find additional points q1, . . . , qt−1 in C
which are defined over Q. A single point suffices if we alter the pencil.

Let q ∈ C be a smooth point defined over Q. Consider

L = {g ∈ L(d− 1; (r1 − 1)p1, . . . , (rs − 1)ps) | vq(g) ≥ t − 1}.

Then L has codimension at most t− 1 in L(d− 1; (r1 − 1)p1, . . . , (rs − 1)ps))
and i(g, f ; q) ≥ t − 1 for every g ∈ L. Thus L is a pencil, again there is only
one free intersection point and we obtain a parametrization defined over Q.
The same argument works for arbitrary fields of definition. )*

Exercise 5.4.16. Parametrize V (2x2y2−y2(z−x−y)2− (z−x−y)2x2) over
Q.

z = 1

y

x

y = 1

z

x

)*

Remark 5.4.17. In view of the application it is inconvenient, that we need a
smooth rational point. Indeed this can be avoided as proved by Hilbert and
Hurwitz [19xx]. A computer implementation of this algorithm was given in
Maple packages [Winkler,19xx] and [?] and in Singular []. In general curves
of odd degree defined over Q with

(d−1
2

)
=
∑

p∈C

(rp

2

)
always allow a Q-

rational parametrization. For even degree a quadratic field extension might
be necessary, as we can see from the example of the conic V (x2 + y2 + z2),
which has no real point, hence also no rational point.

Exercise 5.4.18. Compute a rational parametrization of the curve from Ex-
ample 1.4.4,
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-1

-0.5

0

0.5

1

1.5

2

v

-1 0 1 2 3
u

11 y7 + 7 y6x + 8 y5x2 − 3 y4x3 − 10 y3x4 − 10 y2x5 − x7 − 33 y6 − 29 y5x

−13 y4x2 + 26 y3x3 + 30 y2x4 + 10 yx5 + 3 x6 + 33 y5 + 37 y4x − 8 y3x2

−33 y2x3 − 20 yx4 − 3 x5 − 11 y4 − 15 y3x + 13 y2x2 + 10 yx3 + x4 = 0

without using additional rational points except the 4 singular points.
Hint: Use a suitable pencil of curves of degrees ≤ d − 1. )*

5.5 Max Noether’s Fundamental Theorem

Let f, g ∈ k[x, y, z] be two forms of degrees ≥ 1 without common components.
Then f and g intersect in finitely many points, and we could ask: which other
forms pass through these points? Of course, there are the obvious forms of
type h = Af + Bg. In the special case where f and g intersect in deg f · deg g
distinct points, it follows from Max Noether’s theorem that there are no other
possibilities. More generally, if we allow arbitrary intersection multiplicities,
the theorem tells us that a form h is contained in the image of the linear
combination map (A, B) -→ Af +Bg iff this containment condition is fulfilled
locally at each intersection point of f and g.

In formulating a precise statement, we use the following notation. Given a
form f ∈ k[x, y, z] and a point p ∈ P2, choose a coordinate chart U containing
p and set fp = fa ∈ Op, where fa is the dehomogenization of f in U . Then
fp depends on the choice of U , but only up to multiplication by a unit in Op.
Hence, the local conditions in Max Noether’s theorem below make sense.
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Theorem 5.5.1 (Max Noether’s Fundamental Theorem). Let f, g, h
be forms of degrees ≥ 1 in k[x, y, z]. Assume that f and g have no common
component. Then there is an expression

h = Af + Bg,

with forms A, B ∈ K[x, y, z] of degrees deg h − deg f , deg h− deg g, iff

hp ∈ 〈fp, gp〉 ⊂ Op

for every point p ∈ V(f) ∩ V(g).

Proof. Clearly, the global condition in the theorem implies the local ones. For
the converse, arguing as is in the proof of Proposition 5.3.11, we can find a
linear form not vanishing at any of the finitely many intersection points of f
ang g. We may, hence, choose the coordinates such that V(f)∩V(g)∩V(z) = ∅.
That is, to work with the local conditions, we may dehomogenize with respect
to z. We give the remaining part of the proof in two steps, consisting of an
affine and projective argument, respectively.

Step 1. We write fa = f(x, y, 1), ga = g(x, y, 1) ∈ K[x, y] and consider the
composite map

φ : K[x, y, z] → K[x, y] →
⊕

p∈V(f)∩V(g)

Op/〈fp, gp〉

defined by

h -→ ha = h(x, y, 1) -→ (hp + 〈fp, gp〉)p∈V(f)∩V(g).

The local conditions in the theorem imply φ(h) = 0, so that ha ∈ 〈fa, ga〉 by
Corollary 4.6.17. Homogenizing, we get an equation of type

zkh = A′f + B′g,

for some k and some forms A′, B′ ∈ K[x, y, z]. The theorem will follow once
we show that multiplication by z is injective on K[x, y, z]/〈f, g〉.

Step 2. Let an equation of type zh′ = A′f + B′g in K[x, y, z] be given. We
show that h′ ∈ 〈f, g〉. For this, if E ∈ K[x, y, z] is any polynomial, we write
E0 = E(x, y, 0). We, then, have A′

0f0 + B′
0g0 = 0. On the other hand, since f

and g have no common zero on the line V(z), the polynomials f0 and g0 have
no common factor. It follows that (A′

0, B
′
0) = c · (−g0, f0) for some c ∈ K[x, y].

Setting A′′ = A′ + cg and B′′ = B′ − cf , we have A′′
0 = B′′

0 = 0, so that
A′′ = zA and B′′ = zB for some forms A and B. Since zh′ = A′f + B′g =
A′′f + B′′g = z(Af + Bg), we conclude that h′ = Af + Bg, as desired. )*

Remark 5.5.2. Nowadays, Max Noether’s theorem is usually not treated in
textbooks on algebraic curves since it can be easily deduced from the coho-
mological vanishing result
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H1(P2,O(h − d− e)) = 0.

In this first course on algebraic curves, we will not develop the machinery
of sheaves and cohomology. In a second course, Max Noether’s theorem may
serve as a motivation for the interest in vanishing theorems. )*

Corollary 5.5.3. Let f, h ∈ k[x, y, z] be forms of degrees ≥ 1 which intersect
in deg f ·deg h distinct points. Let g ∈ k[x, y, z] be a form of degree ≥ 1 passing
through deg f · deg g of these points. Then there is a form of degree h − e in
x,y,z passing through the residual deg f · (deg h− deg g) points.

Proof. The conditions hp ∈ 〈gp, fp〉 are satisfied, because g and f intersect
transversally by Bézout’s Theorem. Thus

h = af + bg

by Noether’s Theorem. The polynomial b defines the curve of degree h − e,
which contains the remaining d · (h − e) intersection points. )*

A special case of the Corollary is Pascal’s Theorem.

Example 5.5.4 (Pascal’s Theorem). Consider a hexagon with vertices p1, . . . , p6 ∈
P2 and the three intersection points q1 = p1p2 ∩ p4p5, q2 = p2p3 ∩ p5p6, q3 =
p3p4 ∩ p6p1 of the opposite lines. Then p1, . . . , p6 lie on a conic iff q1, q2, q3 lie
on a line.

To prove this, we consider the cubic curves C = p1p2 ∪ p3p4 ∪ p5p6 and
H = p2p3 ∪ p4p5 ∪ p6p1, which intersect in {p1, . . . , p6} ∪ {q1, q2, q3}.
The statement for hexagons with vertices on a reducible conic is known as
Pappus’ Theorem.

5.6 Cubic Curves

Let C = V(f) ⊂ P2 be an absolutely irreducible cubic. Given two points
p, q ∈ C, we can construct another point on C as the third intersection point
of the line p, q with C. We denote this point momentarily by ¬(p∨q). Similarly
for a single smooth point p ∈ C, the third intersection point of the projective
tangent line TpC ⊂ P2 with C gives another point, momentarily called ¬(p∨p).
With this secant-tangent construction, we can give C the structure of an
abelian group as follows:
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Fix a smooth point o ∈ C, which will serve as the “zero” element in the
group. The group law is defined as

p + q := ¬((¬(p ∨ q)) ∨ o),

that is the third intersection point of C with the line ¬(p ∨ q), o. We illustrate
the group law on the curve given by the affine equation

11x3 − 4xy2 + 23y3 − 6x2 − 32xy − 67y2 + 43x + 32y = 0

and points o, p, q with affine integral coordinates.

o

p+q

q

p

0

0

Similarly, replacing the secant by the tangent, we define

2p := ¬((¬(p ∨ p)) ∨ o),

that is the third intersection point of C with the line ¬(p ∨ p), o.

o

p

2P

0

0



246 5 Linear Systems of Plane Curves

Theorem 5.6.1. Let k be a not necessarily algebraically closed field. Let C
be an absolutely irreducible cubic, let C0 = C \ Sing C denote the set of non-
singular points, and let o ∈ C0 be a fixed point. The binary operation

C0 × C0 → C0, (p, q) -→ p + q

defined above, gives C0 the structure of an abelian group with o ∈ C as zero
element. If o ∈ C(k) then C0(k) ⊂ C0 forms a subgroup.

Proof. All is clear except the associativity law. For example, the statement
about the subgroup follows, because a cubic polynomial in one variable with
two k-rational roots has all three roots k-rational. For the negative of a point
p ∈ C0, we consider the third intersection o′ of C with ToC. Then −p is the
third intersection of C with o′, p.

-p

o’
p

o0

0

Note that we get only smooth points, because a secant or tangent through
smooth points cannot intersect C in a singular point by Bézout’s Theorem
and Proposition 4.3.18.3.

To prove (p + q) + r = p + (q + r), we consider all lines involved in the
construction. We have to prove that the lines p + q, r and p, q + r intersect in
a point of C.
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x

q+r

o

p+q

r

q

p

0

0

For this we consider the cubics C and p, q ∪ p + q, r ∪ o, q + r, which intersect
in the nine points

p, q,¬(p ∨ q), p + q, r, x = ¬((p + q) ∨ r), o, q + r, and ¬(q ∨ r),

which we assume to be different. Out of these, the following six q, r,¬(q ∨
r), o, p + q,¬(p ∨ q) lie on the quadric q, r ∪ o, q + q. Thus, the remaining
three p, q + r,¬((p + q)∨ r) lie on the line p, q + r by Corollary 5.5.3, and the
points

¬((p + q) ∨ r) and ¬(p ∨ (q + r))

coincide. To prove 2p + q = p + (p + q) or other cases, where some of the
points coincide, we argue with continuity. So far, we have proved that ¬((p +
q) ∨ r) = ¬(p ∨ (q + r)) holds for an non-empty Zariski open subset of triples
(p, q, r) ∈ C0 × C0 × C0. We will define the Zariski toplogy on C × C × C in
Chapter 6 precisely. It is clear, that iff some of the points in the construction
come together, some secant lines might become tangent lines, and that some
lines might coincide as well. The condition ¬((p + q) ∨ r) = ¬(p ∨ (q + r)) is
an algebraic condition on the irreducible algebraic set C0 ×C0 ×C0. Since it
holds on a non-empty Zariski open subset, it holds everywhere. )*

The negative in the group law becomes particularly simple, if we can choose
a flex as the origin o. In that case o and o′ coincide, and −p is the third
intersection of o, p with C.

Definition 5.6.2. Let p ∈ C ⊂ P2 be a smooth point on a curve. The point
p ∈ C is a flex of C, if i(TpC, C; p) ≥ 3. The multiplicity of the flex is
i(TpC, C; p) − 2.
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Thus, every point on a line is a flex. A smooth conic has no flexes at all by
Bézout’s Theorem.

To determine the flexes of a curve C(f) defined by a square-free polynomial
f ∈ k[x, y, z], we consider the Hessian and the Hessian matrix. We abbreviate
fx = ∂f

∂x and so on. Then

Hess(f) = det




fxx fxy fxz

fxy fyy fyz

fxz fyz fzz



 .

Note, that the Hessian curve H = V(Hess(f)) is independent of the choice
of the coordinate system, because a change coordinates (x, y, z)t = A(u, v, w)t

amounts to the multiplication with the matrices At and A.

Proposition 5.6.3. Assume char k = 0 and that f ∈ k[x, y, z] is square-free.
Then C = V(f) and H = V(Hess(f)) intersect in the singular points of C
and in the flexes. More precisely,

i(C, TpC; p) − 2 = i(C, H ; p)

for smooth points of p ∈ C.

Proof. We may assume that d = deg C ≥ 2. That H and C intersect in
singular points of C follows with the Euler relation:

xgx + ygy + zgz = deg g · g,

for g homogeneous. Thus

(d − 1)




fx

fy

fz



 =




fxx fxy fxz

fxy fyy fyz

fxz fyz fzz








x
y
z



 .

Since fx, fy, fz vanish at singular points of C, we conclude that at a
singular point [α : β : γ] of C the Hessian matrix has a nonzero kernel,
hence determinant zero. For a smooth point p ∈ C, we consider
appropriate coordinates. Suppose p = [0 : 0 : 1] and TpC = V(y). Then
the affine equation of C is of the form

f(x, y, 1) = yu(x, y) + xkg(x) with k ≥ 2

with u(0, 0) #= 0, g(0) #= 0. Homogenization gives

f(x, y, z) = yu(x, y, z) + xkg(x, z)

for suitable homogeneous polynomials u, g with u(0, 0, 1), uz(0, 0, 1) and g(0, 1) #=
0. We evaluate the vanishing order vp(Hess(f)) at p on C. Since
vp(y) = k and vp(x) = 1, we find that vp(fxx) = vp(yuxx +k(k−1)xk−2g +
2kxk−1gx + xkgxx) = k − 2 and vp(fyz) = vp(uz) = 0. It follows that
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i(C, H ; p) = vp(Hess(f)) = vp(−fxxf2
yz) = k − 2 = i(C, TpC; p)− 2,

since all other terms in the Laplace expansion of the Hessian have
higher vanishing order. )*

Corollary 5.6.4. Let chark = 0. A smooth curve C of degree d has 3d(d−2)
flexes counted with multiplicity.

Proof. The degree of the Hessian is 3(d-2). )*

Exercise 5.6.5. Suppose chark = 0. Let C ⊂ P2 be a curve with singularities.
Prove:

1. i(C, Hess(C), p) = 6, for p ∈ C an ordinary node,
2. i(C, Hess(C), p) = 8, for p ∈ C an ordinary cusp.

Conclude that a curve with δ ordinary nodes and κ ordinary cusps as its only
singularities has

f = 3d(d − 2)− 6δ − 8κ

flexes counted with multiplicities. )*

A smooth cubic curve can have only simple flexes by Bézout. Analysing in
the proof the assumption char k = 0, we find for cubic curves

Corollary 5.6.6. If chark #= 2, 3 then a smooth cubic curve has precisely 9
flexes.

Corollary 5.6.7. Suppose that chark #= 2, 3. Then, after a change of coordi-
nates, any smooth cubic curve C ⊂ P2 can be defined by an equation

y2z = x3 + axz2 + bz3

with coefficients a, b. Conversely, the cubic defined by such an equation is
smooth iff the disriminant 27a3 + 4b2 #= 0.

Proof. We may change coordinates such, that o = [0 : 1 : 0] is a flex, and that
ToC = V(z). Then the affine equation of C has shape

a′
0y

2 + a′
1xy + a′

2 = x3 + b′1x
2 + b′2x

2 + b′3

Taking a′
0 into z, we arrive at

y2 + a1xy + a2y = x3 + b1x
2 + b2x + b3.

Finally, substituting first y = y − a1/2x − a2/2 and then x = x − b′′1/3, we
arrive at

y2 = x3 + ax + b.

The curve defined by such an equation is singular iff x3 +ax+b has a multiple
root iff 27a3 + 4b2 = 0. Note that this change of coordinates is defined over
the ground field iff the flex is a k-rational point. )*



250 5 Linear Systems of Plane Curves

Definition 5.6.8. An elliptic curve in Weierstrass normal form is a
smooth cubic curve E defined by an affine Weierstrass equation

y2 + a1xy + a2y = x3 + b1x
2 + b2x + b3.

The curve E carries a group structure with the single intersection point o =
[0 : 1 : 0] of E and the line at infinity as Null in the group. If chark #= 2, 3
then the equation can be simplified to

y2 = x3 + ax + b.

The main difference between a smooth cubic and an elliptic curve is, that
an elliptic curve has a k-rational point over its field of definition. We will see
in Chapter 8, that indeed any smooth cubic curve C with a k-rational point
is isomorphic to a cubic in Weierstrass normal form. However, in general the
isomorphism is not induced by a linear automorphism of P2.

Exercise 5.6.9. Suppose that char k #= 2, 3. Prove that the secant line
through two flexes of an irreducible cubic curve intersects the curve in a fur-
ther flex. Hint: Choose one of the flexes as the Null in the group, and consider
the 3-torsion elements of the group. )*

Exercise 5.6.10. Proove that the incidence correspondence between flexes
and secant lines joining them, coincides with the incidence configuration of
F3-rational points and lines in A2(F3). )*

Exercise 5.6.11. Prove that for an irreducible cubic defined over R, at most
three of the flexes can be real. )*

Exercise 5.6.12. Let C = V(f) be a cubic defined by an affine Weierstrass
equation

y2 = x3 + ax + b.

Choose as Null the single intersection point o = [0 : 1 : 0] of C with the line
at infinity. Prove the following formulas for the group law on C0:

1. −(x, y) = (x,−y)
2. (x1, y1) + (x2, y2) = (x3, y3) with

x3 = (
y2 − y1

x2 − x1
)2 − x1 − x2 and y3 = (

y2 − y1

x2 − x1
)(x3 − x1) + y1

3. 2(x1, y1) = (x3, y3) with

x3 = (
3x1 + a

2y1
)2 − 2x1 and y3 = (

3x1 + a

2y1
)(x3 − x1) + y1

)*
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Exercise 5.6.13. Let C be the projective closure of V(y2 − x3) and the Null
o ∈ C as in Exercise 5.6.12. Prove that

C0(k) ∼= (k, +).

Let C be the projective closure of V(y2 − x3 − x2) and the Null o ∈ C as
in Exercise 5.6.12. Prove that

C0(k) ∼= (k∗, ∗).

)*

Remark 5.6.14. Elliptic curves E defined over the finite field Fq with q ele-
ments recently found applications in cryptography, see Koblitz [1994]. Choos-
ing an elliptic curve over Fq at random, is like choosing a random abelian
group of size ≈ q + 1 by the famous Hasse-Weil Theorem. Let 6E(Fq) denote
the number of Fq-rational points.

Theorem 5.6.15 (Hasse-Weil Theorem). Let E be a smooth elliptic curve
defined over Fq. Then the number of Fq-rational points is estimated by

|6E(Fq) − q − 1| ≤ 2
√

q.

We will prove a more general formula for arbitrary smooth curves in Chap-
ter 8, Theorem 8.8.24. A plausibility argument runs as follows: E(Fq) contains
the point o at infinity. All other points project onto a point of A1(Fq) ⊂ P1(Fq).
There are q points in A1(Fq). Over the possible three roots α of x3 + ax + b
in A1(Fq) we have precisely one point [α : 0 : 1] in E(Fq). Over the other
points α ∈ A1(Fq), we find either two or no point depending on whether
α3 + aα+ b ∈ (F∗

q)2 or not. If we assume that the map

D(x3 + ax + b)(Fq) → F∗
q/(F∗

q)
2, α -→ α3 + aα+ b

behaves like a random function then we can model 6E(Fq) − q − 1 with a
random path with steps ±1 of length q. Then the expectation value of 6E(Fq)
is q + 1 and the expectation value of |6E(Fq) − q − 1| is ≈ √

q.
A much more precise statemant about the distribution of the orders 6E(Fq)

of elliptic curves over Fq, when E runs through the finite set of elliptic curves
over Fq, can be found in [Gekeler, 2003].

A different application of elliptic curves over finite fields due to Lenstra
and Lenstra concerns integer factorization and primality tests, see ? and ?.

Elliptic curves over number fields are an intense area of current research.
To start, we have Mordell’s Theorem:

Theorem 5.6.16 (Mordell, 1922). Let E be an elliptic curve defined over
Q. Then E(Q) is a finitely generated group.
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Thus, every Q-rational point on E can be constructed via the tangent-
secant construction from finitely many points. For a proof we refer to Silver-
man [1986].

Example 5.6.17. The point p = (1, 1) on the elliptic curve E defined by y2 =
x3 − x + 1 generates an infinite subgroup of E(Q).

16
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87

6

4

3

2 1

The torsion part of E(Q) was clarified by the celebrated Theorem of
Mazur.

Theorem 5.6.18 (Mazur, 1976). Let E be an elliptic curve over Q. Then
E(Q)tors is one of the following groups

Z/n with 1 ≤ n ≤ 10 or n = 12

or
Z/2 × Z/2n with 1 ≤ n ≤ 4.

On the other hand, the rank of E(Q) is the topic of one of most famous
conjectures in Mathematics. Let E(Q) be a smooth elliptic curve with defining
equation in Z[x, y]. Then for almost all prime numbers p, we obtain a smooth
cubic curve E mod p over the finite field Fp = Z/p. Write its number of
points in the form

E(Fp) = 1 − ap + p.
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A more precise version of the Hasse-Weil Theorem (Theorem 8.8.25) says that
the reciprocal roots α,α of

1 − apt + pt2 = (1 − αt)(1 − αt)

are integral algebraic numbers of absolute value |α| = √
p.

We collect the local information of E mod Fp with an Euler product to
an analytic function: The Hasse-Weil L-function of E is defined by

L(E/Q; s) =
ζ(s)ζ(1 − s)∏

p(1 − app−s + p1−2s)

where ζ(s) =
∏

p(1 − p−s)−1 =
∑

n n−s denotes the Riemann zeta function.
The product of the denominators of L(E/Q, s) converges to an holomorphic
function of s for s with real part Re s > 1. As the Riemann zeta function, the
function L(E/Q, s) should have an analytic continuation.

Conjecture 5.6.19 (Birch and Swinnerton-Dyer, 1963, 1965). The Hasse-Weil
L-function has an analytic continuation to the whole complex plane, and
rankE(Q) equals the vanishing order of L(E/Q, s) at the critical point s = 1.

They also conjecture a precise statement about the leading coefficient. For
reading on this fascinating topic in number theory we recommend Silverman
[1986] or Husemöller [1986].

We now turn to the complex analytic side of the story about elliptic curves.
One way to think about the elliptic curve E ⊂ P2(C) defined by y2 = x3 +
ax + b over C is as the Riemann surface of the 2-valued analytic function√

x3 + ax + a. This amount to study E via the projection from o = [0 : 1 : 0].
The image of o will be the point at infinity ∞ = [1 : 0] ∈ V(y) ∼= P1. Moreover,
this is a ramification point, because o is a flex. The other ramification points
lie on the line V(y). The three roots ρ1, ρ2, ρ3 of x3 + ax + a give us three
further ramification points pj = [ρj : 0 : 1] ∈ E.

We can make
√

x3 + ax + a to a single valued function, if we restrict the
domain of definition appropriately. Consider the line segment S1 joining p1

and p2 and a half-line S2, disjoint from S1, which connects p3 with ∞ on
the Riemann number sphere P1(C). Then

√
x3 + ax + a is single valued on

P1(C)\ (S1∪S2), and the Riemann surface E is obtained by gluing two copies
of P1(C) \ (S1 ∪ S2) crosswise along the cuts.
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It is easier to understand the Euclidean topology globally, if we draw the
spheres not in each other and deform them a little bit. Note that the angle of
two arcs ending at one of the branch point get divided by 2. Thus the angle
of 360o of the cut gives an angle of 180o and thus a smooth arc. We conclude
that the Riemann surface E is homeomorphic to a torus.

The universal covering space Ẽ of E is C as Riemann surface and

E = C/Λ,

where Λ ⊂ C is a lattice. We see the group structure on E very clearly from
this: (E, +) is the quotiont group of (C, +) by the subgroup (Λ, +). To prove
Ẽ ∼= C, one considers the elliptic integral

∫
dx√

x3 + ax + b
.

ω =
dx√

x3 + ax + b
=

dx

y
=

2dy√
3x2 + a

is a nowhere vanishing holomorphic 1-form, because y =
√

x3 + ax + b and
x3 + ax + b has no multiple roots. Thus we can define the integral

∫ p

o

dx√
x3 + ax + b

by choosing an arbitrary path from o to p, and the result is well defined up
to a period, that is the integral of ω along a closed path. The first homology
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group H1(E, Z) has as basis represented by the red and blue/green paths
γ1, γ2 indicated above.

One can prove that the periods

λj =
∫

γj

ω

are R-linearly independent. Thus Λ = Zλ1 ⊕ Zλ2 is a lattice, and integration
defines an unramified holomorphic map

∫

o
: E → C/Λ, p -→

∫ p

o
ω mod Λ

The inverse is given by the Weierstraß ℘-function and its derivative. Recall
from the theory of complex function in one variable that

℘(z) =
1
z2

+
∑

λ∈Λ\{0}

1
(z − λ)2 − 1

λ2

defines a meromorphic function with poles of order 2 at the lattice points.
Moreover, the ℘-function and its derivative

℘′(z) =
∑

λ∈Λ

1
(z − λ)3

are double periodic and satisfy the functional equation

(℘′)2 = 4℘3 + g2℘+ g3

with g2 = 1
60

∑′
λ∈Λ

1
λ4 and g3 = 1

140

∑′
λ∈Λ

1
λ6 . The inverse of

∫
o : E → C/Λ is

given by
C/Λ→ E ⊂ P2, z -→ [℘(z] : ℘′(z)/2 : 1]

In particular, we claim that a = g2/4 and b = g3/4 holds. We do not prove this
fact, but refer to Silverman [1986] and Husemoeller [1986] for further reading.





Chapter 6

Projective Algebraic Sets and Morphisms

In this Chapter we study arbitrary subvarieties of Pn. In the first section we
develop the algebra geometry dictionary for the projective setting and settle
the question, how to compute the projective closure of arbitrary algebraic
sets.

The second section is devoted to the definitions of products and mor-
phisms. The main result of this section is the fundamtental theorem of elimi-
nation theory, which says that the image of an algebraic set under a projective
morphism is an algebraic set. As consequence we get that regular functions
on absolutely irreducible algebraic varieties are constant.

In Section 6.4 we introduce the Hilbert polynomial, which allows to define
the degree of algebraic sets of higher codimension. Using the Hilbert poly-
nomial we prove another version of Bézout’s Theorem for the intersection of
projective varieties of arbitrary codimension with hypersurface

In Section 6.5 we prove the dimension bound for intersections and the
semi-continuity of the fiber dimension in a projective morphism. Section 6.6
deals with Bertini’s Theorem and projective duality. An appendix contains
the monodromy arguments for the uniform position of a general hyperplane
section of curves and the irreducible of general hyperplane sections of higher
dimensional varieties over fields of characteristic zero.
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6.1 The Projective Nullstellensatz

In this section, we will explain how to link algebraic sets to ideals in the
projective case. Since projective algebraic sets are defined by homogeneous
polynomials, the ideals under consideration will have homogeneous generators.
The general context for such ideals is that of graded rings.

Definition 6.1.1. A graded ring is a ring S with a decomposition S =⊕
d≥0 Sd as Abelian groups such that SdSe ⊂ Sd+e for all d, e. A homoge-

neous element of S is an element f of some graded piece Sd, and d is then
called the degree of f . If f = f0 + f1 + f2 + . . . is the unique decomposition
of an element f ∈ S into homogeneous summands fi of degree i, the fi are
called the homogeneous components of f . A homogeneous ideal of S is
an ideal generated by homogeneous elements. )*

If S =
⊕

d≥0 Sd is a graded ring, then S0 is a ring with 1 ∈ S0, and S is
an S0-algebra. Furthermore, S+ :=

⊕
d≥1 Sd is a homogeneous ideal. In the

case where S0 = k is a field, this ideal is maximal and contains all other
homogenous ideals of S.

Proposition 6.1.2. Let I be an ideal of a graded ring S =
⊕

d≥0 Sd. Then
the following are equivalent:

1. I is homogeneous.
2. For each f ∈ I, the homogeneous components of f are in I as well:

I =
⊕

d≥0

(I ∩ Sd)

Proof. 1 =⇒ 2: Let {f (λ)} be a set of homogenous generators for I, with
dλ := deg f (λ) for all λ. Moreover, let f ∈ I, and let fm #= 0 be the homogenous
component of f of least degree. The result will follow by induction once we
show that f − fm ∈ I. For this, we write f as a sum f = g(λ1)f (λ1) +
· · · + g(λr)f (λr). Then, with the obvious notation, fm = g(λ1)

m−dλ1
f (λ1) + · · · +

g(λr)
m−dλr

f (λr) ∈ I.
2 =⇒ 1: If condition 2 is satisfied, the homogeneous components of the

elements of any given set of generators for I generate I, too. )*

Exercise∗ 6.1.3. Let S be a graded ring.

1. Show that the sum, product, intersection, ideal quotient, and radical of
homogeneous ideals are homogeneous.

2. Show that a homogeneous ideal p ⊂ S is prime iff for any two homogeneous
elements f, g ∈ S with fg ∈ p we must have f ∈ p or g ∈ p. )*

It is clear from the proof of Proposition 6.1.2 that every homogeneous ideal of
a Noetherian graded ring is generated by finitely many homogeneous elements.
The polynomial ring k[x0, . . . , xn] with its natural grading by the degree of
polynomials is our basic example of a Noetherian graded ring.
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Exercise∗ 6.1.4 (Characterization of Noetherian Graded Rings). Let
S =
⊕

d≥0 Sd be a graded ring. Show that the following are equivalent:

1. S is Noetherian.
2. S0 is Noetherian and S+ is a finitely generated ideal.
3. S0 is Noetherian and S is a finitely generated S0-algebra. )*

At this point, setting up an I–V-correspondence between algebraic subsets of
Pn(k) and homogeneous ideals of k[x0. . . . , xn], the reader will have no diffi-
culty in verifying results analogous to those proved in Chapter 1. In particular,
each algebraic set A ⊂ Pn(k) is defined by finitely many homogeneous poly-
nomials; it has finitely many irreducible components; and, it is irreducible
iff I(A) is a prime ideal. Moreover, the Zariski closure of the difference of
two projective algebraic sets is obtained as in Theorem 1.9.1. For the sake of
brevity, we will only treat the projective version of the Nullstellensatz in some
detail. In doing so, we will use I and V in accordance with Convention 5.2.1:

Definition 6.1.5. 1. If I ⊂ k[x0, . . . , xn] is a homogeneous ideal, its locus
of zeros (or vanishing locus) in Pn is the projective algebraic set

V(I) := {p ∈ Pn | f(p) = 0 for all homogeneous f ∈ I}.

2. Let S := K[x0, . . . , xn]. If A ⊂ Pn is any subset, its vanishing ideal is
the homogeneous ideal

I(A) := 〈f ∈ S | f is homogeneous and f(p) = 0 for all p ∈ A〉. )*

Remark 6.1.6. Note that

I(A) = {f ∈ S | f(a0, . . . , an) = 0 for any p ∈ A and any set
a0, . . . , an of homogeneous coordinates for p}.

Indeed, if f = fm + . . . + fd is an element of the ideal on the right hand side,
where the fi are homogenous of degree i, and p = [a0 : · · · : an] ∈ A, then

0 = f(λa0, . . . ,λan) = λmfm(a0, . . . , an) + · · · + λdfd(a0, . . . , an)

for all λ ∈ K. Since K is infinite, this is only possible iff fi(a0, . . . , an) = 0 for
all i. It follows that f ∈ I(A). The reverse inclusion is clear. )*

Theorem 6.1.7 (Projective Nullstellensatz). Let I ⊂ k[x0, . . . , xn] be a
homogeneous ideal. Then:

1. V(I) = ∅ ⇐⇒ I ⊃ 〈x0, . . . , xn〉d for some d ≥ 1.
2. If V(I) is nonempty, then

I(V(I)) = rad (I K[x0, . . . , xn]).
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Proof. The theorem follows by applying the affine version of the Nullstellen-
satz to the affine cone C(V(I)):

1. We have

V(I) = ∅ ⇐⇒ C(V(I)) ⊂ {0} ⇐⇒ rad (I) ⊃ 〈x0, . . . , xn〉.

2. If V(I) is nonempty, we have

f ∈ I(V(I)) ⇐⇒ f ∈ I(C(V(I))) ⇐⇒ f ∈ rad (I K[x0, . . . , xn]). )*

Corollary 6.1.8. There is an inclusion-reversing one-to-one correspondence

{algebraic subsets of Pn}
I ""

V
$$






homogeneous radical ideals
of K[x0, . . . , xn]

not equal to 〈x0, . . . , xn〉




 .

Under this correspondence, subvarieties of Pn correspond to homogeneous
prime ideals of K[x0, . . . , xn] not equal to 〈x0, . . . , xn〉. )*

Since the ideal K[x0, . . . , xn]+ = 〈x0, . . . , xn〉 is missing in this correspon-
dence, it is often called the irrelevant ideal.

Definition 6.1.9. The homogeneous coordinate ring of an algebraic set
A ⊂ Pn is the quotient ring

K[A] = K[x0, . . . , xn]/I(A). )*

In terms of affine algebraic sets, K[A] is the coordinate ring of the affine cone
C(A) ⊂ An+1. Note that K[A] has a natural grading. In fact, if S =

⊕
d≥0 Sd

is any graded ring, and I =
⊕

d≥0(I∩Sd) is any homogeneous ideal of S, then

S/I =
⊕

d≥0

Sd/(I ∩ Sd).

The relationship between algebraic subsets of A and homogeneous ideals of
K[A] is analogous to Exercise 1.11.7.

Remark 6.1.10 (Buchberger’s Algorithm and Homogeneous Ideals).
With respect to computational aspects, we note that Buchberger’s algorithm
applied to homogeneous polynomials yields Gröbner basis elements which are
homogeneous, too. In particular, given any global monomial order on S =
k[x0, . . . , xn], the elements of the reduced Gröbner basis for a homogeneous
ideal I of S are homogeneous. Hence, the computational recipes given in
Chapter 2 are valid in the projective case as well. )*

We finish this section by defining the dimension of a projective algebraic set.
One way of doing this is to extend the affine notion of dimension via coordinate
charts (alternative ways will be discussed in subsequent sections):
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Definition 6.1.11. The dimension of an algebraic subset A ⊂ Pn, written
dimA, is defined to be the number

dim A = max{A ∩ Ui | i = 0, . . . , n}. )*

We will use the words codimension, equidimensional, curve, and sur-
face exactly as in the affine case. It follows from that case that dim A is the
maximum dimension of the irreducible components of A, and that A is a hy-
persurface iff it is equidimensional of dimension n− 1. In algebraic terms, we
will see in Corollary 6.4.19 that if A ⊂ Pn is any projective algebraic set, then

dimA = dimC(A) − 1 = dim K[A]− 1.

6.2 Computing the Projective Closure

To describe the projective closure of an affine algebraic set in algebraic terms,
we introduce the following notation: The homogenization of an ideal I ⊂
k[x1, . . . , xn] with respect to an extra variable x0 is the ideal

Ih = 〈fh | f ∈ I〉 ⊂ k[x0, . . . , xn].

Theorem 6.2.1. Let I ⊂ k[x1, . . . , xn] be an ideal, and let Ih be its homoge-
nization with respect to x0. Then V(Ih) ⊂ Pn is the projective closure of the
affine algebraic set Va(I) ⊂ An ∼= U0 ⊂ Pn.

Proof. First, it is clear that V(Ih) is an algebraic subset of Pn which contains
Va(I). To show that V(Ih) is the smallest such set, let B ⊂ Pn be any algebraic
set containing Va(I), and let F ∈ I(B) ⊂ K[x0, . . . , xn] be any form. Then the
dehomogenization f = F (1, x1, . . . , xn) is contained in Ia(Va(I)) (with obvi-
ous notation). Hence, by the affine Nullstellensatz, fm ∈ rad (I K[x1, . . . , xn])
for some m. This shows

(fh)m = (fm)h ∈ (I K[x1, . . . , xn])h = Ih K[x1, . . . , xn] ⊂ I(V(Ih)).

Since F = xs
0f

h for some s ≥ 0, it follows that F ∈ I(V(Ih)), as desired. )*

Exercise∗ 6.2.2. Let A ⊂ An ∼= U0 be an affine algebraic set, and let A be
its projective closure in Pn. Show:

1. A is irreducible iff A is irreducible.
2. If A = V1∪ · · ·∪Vr is the decomposition into irreducible components, then

A = V 1 ∪ · · · ∪ V r is the decomposition into irreducible components.

In particular, no irreducible component of A is contained in the hyperplane
at infinity. )*

With respect to computing Ih, we note that the naive approach of just ho-
mogenizing the given generators for I may lead to the wrong ideal:
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Example 6.2.3. Consider the ideal I = 〈y − x2, z − x3〉 ⊂ k[x, y, z], which
defines the twisted cubic curve C in A3. Homogenizing the generators, we get
the ideal J = 〈wy − x2, w2z − x3〉 ⊂ k[w, x, y, z], which decomposes as

J = 〈x2 − wy, xy − wz, y2 − xz〉 ∩ 〈x2 − yw, xw, w2〉.

This shows that the line V(w, x), which is contained in the hyperplane at
infinity, is an irreducible component of V(J) ⊂ P3. Hence, J cannot be the
homogenization of I (of course, this can also be seen directly by specifaying
an element of Ih not contained in J). The projective closure of C, which is
called the twisted cubic curve in projective 3-space P3, is defined by
the ideal

J : 〈w, x〉 = 〈x2 − wy, xy − wz, y2 − xz〉.

Note that the generators for this ideal are obtained by homogenizing the
elements of the (reduced) Gröbner basis for I with respect to >drlex. )*

In general, we have:

Proposition 6.2.4. Let I ⊂ k[x1, . . . , xn] be an ideal. Pick a degree-compatible
(global) monomial order > on k[x1, . . . , xn], and set

xαxd
0 >h xβxe

0 ⇐⇒ xα > xβ or (xα = xβ and d > e).

Then >h is a global monomial order on k[x0, . . . , xn]. Moreover, when homog-
enizing with respect to x0, the following holds: If f1, . . . , fr form a Gröbner
basis for I with respect to >, then the homogenized polynomials fh

1 , . . . , fh
r

form a Gröbner basis for the homogenized ideal Ih with respect to >h.

Proof. That >h is a global monomial order is immediate from the definitions.
For the second statement, note that if f ∈ k[x1, . . . , xn] is any nonzero poly-
nomial, then deg L>(f) = deg f since > is degree-compatible. Hence, L>(f)
remains unchanged when we homogenize. According to how we defined >h, it
follows that L>h(fh) = L>(f).

We use this to show that L(Ih) ⊂ 〈fh
1 , . . . , fh

r 〉 (the reverse inclusion is
clear). Let F ∈ Ih. Since Ih is a homogeneous ideal, any homogeneous com-
ponent of F is contained in Ih, and we may suppose that F itself is homeo-
geneous. Writing F as a k[x0, . . . , xn]-linear combination of polynomials gh

j ,
with all gj ∈ I, we find that the dehomogenization f = F (1, x1, . . . , xn) is a
k[x1, . . . , xn]-linear combination of the gj. In particular, f ∈ I. On the other
hand, since F is homogeneous, we have F = xs

0f for some s ≥ 0. Hence,

L>h(F ) = xs
0 · L>h(fh) = xs

0 · L>(f).

Since L>(f) is a multiple of one of the L>(fi) by assumption, we conclude
that L>h(F ) is a multiple of L>(fi) = L>h(fh

i ), as required. )*
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Exercise 6.2.5. Let d ≥ 2, and consider the image C of the parametrization

A1 → Ad, t -→ (t, t2, . . . , td).

The projectice closure C ⊂ Pd is known as the rational normal curve in Pd.
Note that for d = 2, 3, we get a nondegenerate conic respectively the twisted
cubic curve. In general, show that I(C) is generated by

(
d
2

)
quadrics, and that

there is no set of generators with fewer elements. Note that for d ≥ 3, the
number of generators is strictly larger than the codimension d− 1. )*

6.3 Products and Morphisms

We have seen in Exercise 1.11.5 that the product A×B of two affine algebraic
sets A ⊂ An and B ⊂ Am is an algebraic subset of An × Am = An+m. In the
projective setting, it is initially not even clear that Pn×Pm can be viewed as an
algebraic set. There is, however, a natural way of doing this. The basic idea is
to embed Pn×Pm in some PN such that the image is a projective variety which
locally, in the coordinate charts of PN , is isomorphic to the product An×Am.
To make this precise, we note that sending ([a0 : · · · : an], [b0 : · · · : bm]) to
[a0b0 : · · · : a0bm : a1b0 : · · · : anbm] gives a well-defined map

σm,n : Pn × Pm → PN , where N = (n + 1)(m + 1) − 1

(the map does not depend on the choice of homogeneous coordinates ai, bj ,
and at least one of the aibj is nonzero). In studying σm,n, we denote the homo-
geneous coordinates on Pn, Pm, and PN by x = x0, . . . , xn, y = y0, . . . , ym,
and z = z00, . . . , z0m, z10, . . . , znm. Moreover, we say that a polynomial of
type

f =
∑

|α|=d, |β|=e

cαx
αyβ ∈ k[x, y]

is bihomogeneous (in x and y, of bidegree (d, e)).

Proposition 6.3.1. The map σm,n is injective, and its image Σm,n is a sub-
variety of PN . The vanishing ideal I(Σm,n) is generated by the 2 × 2 minors
of the (n + 1) × (m + 1) matrix of coordinates (zij). In terms of coordinate
charts, we have

Ui × Uj
∼= Σm,n ∩ Uij .

Proof. It is clear that the minors vanish on Σm,n:

det
(

xi1yj1 xi1yj2

xi2yj1 xi2yj2

)
= 0. (6.1)

Hence, if A ⊂ PN denotes the algebraic set defined by the minors, thenΣm,n ⊂
A. To show equality, we first intersect with the coordinate chart U00. If r =
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[1 : c01 : · · · : cij : . . . ] ∈ A∩U00 is a point, then cij = ci0c0j . Hence, ([1 : c10 :
. . . : cn0], [1 : c01 : . . . : c0m]) is the unique pair of points (p, q) ∈ U0 ×U0 such
that σm,n

(
(p, q)

)
= r. We conclude that σm,n restricts to an isomorphism

U0×U0
∼= A∩U00 of affine varieties. Since the corresponding statement holds

for the other coordinate charts, we have Σm,n = A, as desired. At the same
time, the argument shows that σm,n is injective.

The proposition will follow once we show that the ideal I ⊂ K[z] generated
by the minors is prime. For this, we show that I coincides with the kernel of
the ring homomorphism

φ : K[z] → K[x, y], zij -→ xiyj .

It is clear from (6.1) that I ⊂ kerφ. For the reverse inclusion, we use a counting
argument which actually gives that the minors form a Gröbner basis for kerφ.

On K[z], consider a global monomial order > refining the partial order on
the variables defined as follows:

z00 > z01 > . . . > z0m

∨ ∨ ∨
z10 > z11 > . . . > z1m

∨ ∨ ∨
...

...
...

∨ ∨ ∨
zn0 > zn1 > . . . > znm

.

Then
L(det

(
zi1j1 zi1j2

zi2j1 zi2j2

)
) = −zi1j2zi2j1

whenever i1 < i2 and j1 < j2. Hence, if f ∈ K[z] is any polynomial, division
with remainder yields a representation

f = g + h,

where g is a K[z]-linear combination of the minors, and such that h is a
K-linear combination of monomials of type

zi1j1zi2j2 · . . . · zidjd , where i1 ≤ i2 ≤ . . . ≤ id and j1 ≤ j2 ≤ . . . ≤ jd.

Then φ(g) = 0. Since φ restricts to a bijection between the set of ordered
monomials of degree d as above and the set of bihomogeneos monomials in
K[x, y] of bidegree (d, d), we conclude that φ(f) = 0 iff φ(h) = 0 iff h = 0.
Hence, as claimed, the minors form a Gröbner basis for kerφ. In particular,
I = kerφ. Moreover, I is a prime ideal since K[z]/ kerφ is isomorpic to a
subring of the integral domain K[x, y]. )*

Being defined by by the 2 × 2 minors of the matrix (zij), the Segre variety
Σm,n is sometimes called an example of a determinantal variety.
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Exercise 6.3.2. In the situation of the proof above, describe the syzygies on
the 2 × 2 minors arising from Buchberger’s test. )*

Definition 6.3.3. The map σm,n is called the Segre embedding of Pn×Pm

into PN . Its image Σm,n is called the Segre variety. We give Pn × Pm the
structure of a projective variety by identifying it with Σm,n. )*

Example 6.3.4. The Segre variety Σ1,1 is the image of the map

σ1,1 : P1 × P1 → P3, ([a0 : a1], [b0 : b1]) -→ [a0b0 : a0b1 : a1b0 : a1b1].

It is a quadric defined by the equation z00z11−z01z10 = 0. Note that the fibers
of either projection of P1 ×P1 onto P1 form a pencil of lines on Σ1,1 such two
different lines in the same pencil do not meet, and such that two lines from
different pencils intersect in one point.

)*

Now that we have given Pn × Pm the structure of a projective algebraic set,
we wish to describe its algebraic subsets. In terms of the Segre embedding, a
subset A ⊂ Pn × Pm ∼= Σn,m ⊂ PN is closed iff it is the vanishing locus of
finitely many polynomials fk ∈ K[z], where each fk is homogenous of some
degree dk. For a characterization just in terms of Pn×Pm, substitute the xiyj

for the zij in the fk as in the proof of Proposition 6.3.1. The resulting polyno-
mials are bihomogeneous in x and y, of bidegrees (dk, dk), and their common
vanishing locus in Pn × Pm is A. In fact, every bihomogeneous polynomial
f ∈ K[x, y] has a well-defined vanishing locus V(f) in Pn × Pm, and we have:

Proposition 6.3.5. A subset of Pn × Pm is algebraic iff it is the common
vanishing locus of finitely many bihomogeneous polynomials in x and y.

Proof. The implication from left to right is clear from the discusion above. For
the converse implication, let f ∈ K[x, y] be any bihomogeneous polynomial
of any bidegree (d, e). We show that V(f) is an algebraic subset of Pn × Pm.
This is obvious if d = e since, then, we may rewrite f as a homogeneous
polynomial in the xiyj and, thus, in the zij . If d #= e, say e < d, we get(
n+d−e

n

)
bihomogeneous polynomials of bidegree (d, d) by multiplying f with

each of the monomials in y of degree d− e. Since the common vanishing locus
of these polynomials equals V(f), we are done. )*

If f ∈ K[x, y] is a nonconstant polynomial of bidegree (d, e), then its vanishing
locus V(f) in Pn × Pm is called a hypersurface of bidegree (d, e).
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Example 6.3.6. The equation z00z11 − z01z10 = 0 of the quadric Σ1,1 ⊂ P3

is one of the equations of the twisted cubic curve C in P3 which is, thus,
contained in Σ1,1. Taking the other two defining quadrics of C as in Example
6.2.3 and substituting, we get the bihomogeneous polynomials x0(x0y2

1−x1y2
0)

and x1(x1y2
0 − x0y2

1). Hence, C ⊂ P1 × P1 is defined by the single equation
x0y2

1 − x1y2
0 = 0. It is a hypersurface of bidegree (1,2). )*

Given algebraic subsets A ⊂ Pn and B ⊂ Pm, it is, now, clear that the
product A×B ⊂ Pn × Pm is an algebraic subset as well: If A = V(f1, . . . , fr)
and B = V(g1, . . . , gs), with homogeneous fk and g&, then the fk and g&
considered as bihomogeneous polynomials in x and y of bidegrees (deg fk, 0)
and (0, deg g&) define A ×B. We call

I(A ×B) = 〈f ∈ K[x, y] bihomogeneous | f(p) = 0 for all p ∈ A ×B〉

the bihomogenous ideal and K[x, y]/I(A×B) the bihomogeneous coor-
dinate ring of A×B.

Exercise∗ 6.3.7. In the situation above, show:

1. I(A ×B) =
(
(I(A) K[x, y] + I(B) K[x, y]) : 〈x〉∞

)
: 〈y〉∞ ⊂ K[x, y].

2. The Zariski topology on A×B is not the product of the Zariski topologies
on A and B, except when one of A and B is a finite set of points. )*

Identifying Am with the affine chart U0 of Pm, the product Pn × Am in-
herits a Zariski topology from Pn × Pm. With respect to this topology, a
subset A ⊂ Pn × Am is closed iff there are finitely many polynomials in
K[x0, . . . , xn, y1, . . . , ym] which are homogeneous in x0, . . . , xn, and such that
their common vanishing locus is A. Here, any polynomial of type

f =
∑

|α|=d

xαhα(y1, . . . , ym) ∈ K[x0, . . . , xn, y1, . . . , ym],

with polynomials hα(y1, . . . , ym) ∈ K[y1, . . . , ym], is called homogeneous in
x0, . . . , xn (of degree d). Note that every such polynomial f has a well-
defined vanishing locus V(f) in Pn × Am.

Our next objective is to define morphisms between projective algebraic
sets. Among the maps introduced so far in the projective setting are the
coordinate maps ϕi : Ui → An, the canonical projection An+1\{o}→ Pn, and
the projection maps Pn\{p} → Pn−1. To include these and other natural maps
in our treatment of morphisms, we work with a class of sets which embraces
the affine and projective algebraic sets, and all open subsets of these.

Definition 6.3.8. An open subset of an affine algebraic set is called a quasi-
affine algebraic set. Similarly, we have the notion of a quasi-projective
algebraic set. )*
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Remark 6.3.9. The product of two quasi-affine (quasi-projective) algebraic
sets is quasi-affine (quasi-projective) as well:

(A1 \ A2) × (B1 \ B2) = (A1 ×B1) \ ((A1 ×B2) ∪ (A2 ×B1)) . )*

As in Section 1.11, our discussion of morphisms begins with the study of ad-
missible functions. For quasi-affine algebraic sets, these have been introduced
in Definition 4.2.25. Adapting this definition, we get well-defined functions in
the quasi-projective case:

Remark-Definition 6.3.10. Let A ⊂ Pn be a quasi-projective algebraic set.
A function f : A → K is called regular at a point p ∈ A if there are
homogeneous polynomials g, h ∈ K[x0, . . . , xn] of the same degree such that
h(p) #= 0 and f agrees with the function g/h on some open neighborhood of p
in A. We say that f is regular on A if it is regular at every point of A. The
set O(A) of all regular functions on A becomes a ring, with pointwise defined
algebraic operations. )*

The definition is natural in that locally, in the coordinate charts of Pn, we get
the notion already familiar to us:

Exercise 6.3.11. Let f : A → K be a function on a quasi-projective algebraic
set A ⊂ Pn. Show that the following are equivalent:

1. f is regular.
2. If π : An+1\{o}→ Pn is the canonical projection, then f ◦π : π−1(A) → K

is regular in the sense of Definition 4.2.25.
3. For each coordinate chart Ui, the composition f ◦ ϕ−1

i : ϕi(A ∩ Ui) → K
is regular in the sense of Definition 4.2.25. )*

We use the regular functions to define morphisms:

Definition 6.3.12. Let A be a quasi-affine or quasi-projective algebraic set.

1. Let B ⊂ Am be a quasi-affine algebraic set. A map ϕ : A → B is called
a morphism if it is given by a tuple of regular functions: There exist
functions f1, . . . , fm ∈ O(A) such that

ϕ(q) = (f1(q), . . . , fm(q)) for all q ∈ A.

2. Let B ⊂ Pm be a quasi-projective algebraic set. A map ϕ : A → B is
called a morphism if it is locally given by a tuple of regular functions:
For any p ∈ A, there exist an open neighborhood U of p in A and functions
f0, . . . , fm ∈ O(U) such that

ϕ(q) = [f0(q) : · · · : fm(q)] for all q ∈ U. )*

As we will see in Example 6.3.19 below, the neighborhood U and the fj in part
2 of Definition 6.3.12 may well depend on the point p. That is, the functions
giving ϕ may not exist globally.
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Exercise∗ 6.3.13. Let A and B be quasi-affine or quasi-projective algebraic
sets, and let ϕ : A → B be a map. Show that ϕ is a morphism iff the following
two conditions hold:

1. ϕ is continous.
2. For any open subset U ⊂ B and any regular function f on U , the compo-

sition f ◦ ϕ is a regular function on the open subset ϕ−1(U) ⊂ A. )*

Clearly, the composition of two morphisms is a morphism. As usual, we have
the notions of isomorphism and isomorphic. A morphism ϕ : A → B is said
to be a closed embedding if ϕ(A) ⊂ B is closed, and ϕ is an isomorphism
of A onto ϕ(A).

Example 6.3.14. 1. The canonical projection π : An+1 \ {o} → Pn is a
morphism.
2. The coordinate maps ϕi : Ui → An are isomorphisms.
3. The Segre embedding σm,n is a closed embedding.
4. Projecting onto the y-component, we get an isomorphism of the hyperbola

V(xy − 1) ⊂ A2 with the punctured line A1 \ {0}.

Whereas the hyperbola is an affine algebraic set in the sense considered so
far, the punctured line is not.
5. More generally, if f ∈ K[y1, . . . , ym] is any polynomial, then V(xf − 1) ⊂

Am+1 and D(f) ⊂ Am are isomorphic. )*

To make the notion of affine and quasi-affine algebraic sets invariant under
isomorphisms, we alter our definitions. For this, note that if A ⊂ An is a
quasi-affine algebraic set, then ϕ−1

0 (A) ⊂ U0 ⊂ Pn is quasi-projective, and
ϕ0 restricts to an isomorphism ϕ−1

0 (A) → A. We may, thus, regard A as a
quasi-projective algebraic set.

Definition 6.3.15. An affine algebraic set is a quasi-projective algebraic
set which is isomorphic to an algebraic subset of some affine space. A quasi-
affine algebraic set is defined similarly. )*

A quasi-projective algebraic set A ⊂ Pn which is isomorphic to an algebraic
subset of some Pm is necessarily a closed subset of Pn and, thus, a projective
algebraic set in the sense of Definition 5.1.3 (see Theorem 6.3.26 below).
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Exercise 6.3.16. Show that A = A2 \ {(0, 0)} is a quasi-projective algebraic
set which is neither projective nor affine.
Hint. To exclude that A is affine, compute the ring O(A). )*

The definition of a morphism says what conditions we require, but not how
to create meaningful examples. Here is one possibility for the latter:

Remark 6.3.17. Let A ⊂ Pn be a quasi-projective algebraic set. Suppose
that f0, . . . , fm ∈ K[x0, . . . , xn] are forms of the same degree, and such that
A ∩ V(f0, . . . , fm) = ∅. Then we have a well-defined map

A → Pm, p -→ [f0(p) : · · · : fm(p)],

where [f0(p) : · · · : fm(p)] is obtained by substituting the homogeneous coor-
dinates of p for the xi in the fj. This map is a morphism: the open subsets
A \V(fj) cover A, and on A \V(fj), the map is given by the tuple of regular
functions f0/fj, . . . , fm/fj. )*

Projection from a point gives an example. More generally, we have:

Example 6.3.18. Let y0, . . . , ym ∈ K[x0, . . . , xn] be linearly independent lin-
ear forms, and let L = V(y0, . . . , ym) ∼= Pn−m−1 be the corresponding linear
subspace of Pn. Then the yj define a morphism

Pn \ L → Pm

which is called projection from L to Pm. )*

Example 6.3.19. Let n, d ≥ 1, let N =
(
d+n

n

)
− 1, and let m0, . . . , mN be

the monomials of degree d in x0, . . . , xn (listed in some order). Then the mj

define a morphism
ρn,d : Pn → PN

which is called the d-uple embedding (or Veronese embedding) of Pn

into PN . )*

If n = 1 and d is arbitrary, we get the map

ρ1,d : P1 → Pd, [s : t] -→ [sd : sd−1t : · · · : td],

whose image is the rational normal curve in Pd (see Exercise 6.2.5). Another
special case is treated in the following example:

Example 6.3.20. If n = d = 2, we get the map

ρ2,2 : P2 → P5, [a : b : c] -→ [a2 : ab : b2 : ac : bc : c2].

Let V be the image of ρ2,2, and let w0, . . . , w5 be the homogeneous coordinates
on P5. Consider the symmetric matrix
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∆ =




w0 w1 w3

w1 w2 w4

w3 w4 w5



 .

Clearly, the 2 × 2 minors of ∆ vanish on V . That is, if I ⊂ K[w0, . . . , w5] is
the ideal generated by the minors, then V ⊂ V(I). We show that V = V(I),
and that ρ2,2 maps P2 isomorphically onto V . For this, we define a morphism
ϕ : V(I) → P2 which, as the reader may easily check, is inverse to ρ2,2. We
consider a covering of V(I) by coordinate charts: V(I) ⊂ U0 ∪ U2 ∪ U5. On
V(I) ∩ U0, let ϕ be the map p -→ [w0(p) : w1(p) : w3(p)]. On V(I) ∩ U2 and
V(I) ∩ U5, define ϕ similarly by considering the second and third column of
the matrix ∆. Since ∆ has rank 1 one V(I), the respective local maps agree
on the respective overlaps Ui ∩Uj ∩V(I), so that ϕ is well-defined. Note that
ϕ is not a morphism of the type described in Example 6.3.17.

It turns out that I is in fact the vanishing ideal of V . To see this, we
proceed as in the case of the Segre embedding, using a counting argument to
show that I is prime ideal. This time, according to how we defined ρ2,2, we
consider the ring homomorphism

φ : K[w0, . . . , w5] → K[x, y, z], w0 -→ x2, w1 -→ xy, . . . , w5 -→ z2,

whose kernel contains I. To show that I = kerφ, choose the degree reverse
lexicographic order on K[w0, . . . , w5], where the variables are ordered such
that w1, w3, w4 > w0, w2, w5. Then the leading monomials of the minors are

w2
1 , w1w3, w

2
3 , w1w4, w3w4, w

2
4 .

It follows that for each d ≥ 2, there are precisely 3
(d+1

2

)
+
(d+2

2

)
=
(2d+2

2

)

standard monomials of degree d. Hence, since the map

K[w0, . . . , w5]d/Id → K[x, y, z]2d

induced by φ is surjective, it must be an isomorphism. Thus, as in the case of
the Segre embedding, a polynomial f ∈ K[w0, . . . , w5] is contained in kerφ iff
the remainder on division by the minors is zero. We conclude that the minors
form a Gröbner basis for kerφ, and the result follows. )*

The variety V ⊂ P5 in the example is known as the Veronese surface.

Exercise 6.3.21. Show that ρn,d is a closed embedding for every n and d.
Moreover, show that the vanishing ideal of the image is generated by quadrics
which are binomials. How many quadrics do you get? )*

In contrast to the affine case, the homogeneous coordinate ring of a projective
algebraic set is not invariant under isomorphism:

Exercise 6.3.22. Let A = P1, and let B ⊂ P2 be the image of A under the
2-uple embedding. Then show that S(A) #∼= S(B). )*



6.3 Products and Morphisms 271

Proposition 6.3.23. Every quasi-projective algebraic set A ⊂ Pn has a finite
open covering of affine algebraic sets.

Proof. If A = A1 \ A2, where A1 and A2 ⊂ A1 are closed subsets of Pn, let
f1, . . . , fr ∈ K[x0, . . . , xn] be forms such that A2 = V(f1, . . . , fr) (if A2 = ∅,
take the linear forms x0, . . . , xn). Then A =

⋃r
i=1

(
A1 \ V(fi)

)
. Hence, since

A1 \ V(fi) is closed in Pn \ V(fi), it is enough to show that Pn \ V(f) is an
affine algebraic set for each form f . For this, we identify Pn with its image
under the d-uple embedding of Pn into PN . Then V(f) is the intersection of
Pn with a hyperplane H of PN . The result follows since Pn \V(f) is closed in
PN \ H ∼= AN . )*

Remark 6.3.24. Let A ⊂ Pn be a quasi-projective algebraic set, and let

φ = (fij)

be a matrix of forms fij ∈ K[x0. . . . , xn], 1 ≤ i ≤ *, 0 ≤ j ≤ m. For all i,
suppose that deg fij depends only on i. In addition, suppose:

1. A ∩ V(fij | 1 ≤ i ≤ *, 0 ≤ j ≤ m) = ∅;
2. All 2 × 2 minors of φ vanish on A.

Given a point p ∈ A, choose an index i such that p /∈ V(fi0, . . . , fim), and set
ϕ(p) = [fi0(p) : . . . : fim(p)]. Then

ϕ : A → Pm, p -→ ϕ(p),

is a well-defined morphism. )*

Exercise 6.3.25. If A ⊂ Pn is a quasi-projective algebraic set, show that
every morphism A → Pm is given by a matrix as in Remark 6.3.24 above. )*

Morphisms between affine algebraic sets are easier to describe, but morphisms
between projective algebraic sets are better behaved. For instance, as we al-
ready know, the image of an affine algebraic set under a morphism needs not
be closed. In fact, the image may not even be a quasi-projective algebraic
set: As an example, consider the map ϕ : A2 → A2 corresponding to the
substitution homomorphism

K[x, y] → K[u, v], x -→ u, y -→ uv,

whose image is
(A2 \ V(x)) ∪ {(0, 0)}.

For the image of a projective algebraic set, however, we have:

Theorem 6.3.26. Let A be a projective algebraic set, and let ϕ : A → B be
a morphism of quasi-projective algebraic sets. Then ϕ(A) ⊂ B is closed.

Proof. The theorem follows from Lemma 6.3.27 and Theorem 6.3.28 below. )*
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Lemma 6.3.27. If ϕ : A → B is a morphism of quasi-projective algebraic
sets, then the graph of ϕ is a closed subset of A×B.

Proof. Closedness is a local property. Hence, by Corollary 6.3.23, we may
replace B by an open affine subset U of B, and A by an open affine subset
of ϕ−1(U) ⊂ A. That is, we may suppose that A respectively B are algebraic
subsets of some An respectively Am. Then ϕ is a polynomial map (f1, . . . , fm),
and its graph is defined by the ideal 〈f1 − y1, . . . , fm − ym〉 ⊂ K[A×B]. )*

Theorem 6.3.28 (Fundamental Theorem of Elimination Theory).
Let A be a projective algebraic set, and let B be any quasi-projective algebraic
set. Then the projection A ×B → B is a closed map.

Proof. As in the previous proof, we may suppose that B is an algebraic subset
of some Am. Hence, if Pn is the ambient space of A, then A×B ⊂ Pn ×Am is
a closed subset, and it suffices to consider the case where A ×B = Pn × Am.

So let X ⊂ Pn × Am be any closed subset. Then X is the common van-
ishing locus of polynomials f1, . . . , fr ∈ K[x0, . . . , xn, y1, . . . , ym], where each
fi is homogeneous in x0, . . . , xn of some degree di. By the projective Nullstel-
lensatz, a point q ∈ Am is in the image Y of X iff the ideal

I(q) := 〈f1(x, q), . . . , fr(x, q)〉 ⊂ K[x]

does not contain any of the ideals 〈x〉d, d ≥ 1. Writing

Yd = {q ∈ Am | I(q) # 〈x〉d},

we have Y =
⋂

d Yd, and it suffices to show that Yd is closed for any given d.
To obtain equations for Yd, multiply each fi with any monomial in x

of degree d − di, and write Td for the resulting set of polynomials. Then
q ∈ Yd iff each monomial in K[x]d is a K-linear combination of the polynomials
f(x, q), f ∈ Td. That is, the f(x, q), f ∈ Td, span K[x]d. Arranging the
coefficients of the monomials m ∈ K[x]d appearing in the polynomials f ∈ Td

as a
(d+n

n

)
×
∑

i

(d−di+n
n

)
matrix φd with entries in K[y], the condition is that

rankφd(q) <
(
d+n

n

)
. That is, the

(
d+n

n

)
×
(
d+n

n

)
minors of φd define Yd. )*

Remark 6.3.29. Theorem 6.3.26 is reminiscent of the fact that the image of
a compact topological space under a continous map to an Hausdorff space is
compact. Note that such a map is proper (that is, it is closed, and each fiber
is compact). In complex analysis, Remmert’s proper mapping theorem states
that the image of a proper holomorphic map f : X → Y of complex analytic
spaces is an analytic subset of Y (see ?).

In algebraic geometry, the usual notion of properness is not suitable since
the Zariski topology is not Hausdorff. There is, however, a corresponding no-
tion of properness: A morphism A → B of quasi-projective algebraic sets is
called proper if it can be factored as the composite of a closed embedding



6.3 Products and Morphisms 273

A → Pn × B with the projection Pn × B → B (if A is projective, this condi-
tion is automatically fulfilled). It is clear from the proof of the fundamental
theorem of elimination theory that Theorem 6.3.26 can be generalized to the
following statement: If ϕ : A → B is a proper morphism of quasi-projective
algebraic sets, then ϕ(A) ⊂ B is closed. Moreover, it is easy to show that over
the complex numbers, a morphism is proper in the sense of algebraic geometry
iff it is proper in the usual sense with respect to the Euclidean topology. )*

Corollary 6.3.30. Let A be a projective variety. Then every regular func-
tion on A is constant. More generally, every morphism from A to an affine
algebraic set is constant.

Proof. Let f ∈ O(A). Then f defines a morphism A → A1 ⊂ P1. The image is
a closed, proper subset of P1 and consists, thus, of finitely many points. Being
irreducible, it consists of a single point. This proves the first statement of the
corollary. Composing with coordinate functions, we get the second one. )*

Remark 6.3.31. For K = C, the corollary can also be deduced from the
maximum modulus principle. Indeed, a regular function f on A is holomor-
phic. Since A is compact in the Euclidian topology, the modulus |f | achieves
its maximum on A. Hence, f is constant on every connected component of
A (with respect to the Euclidean topology). The corollary follows since A is
path connected by Theorem 6.7.13 in Section 6.6 below. )*

Corollary 6.3.32. Let π : Pn \ {p} → Pn−1 be projection from the point
p = [1 : 0 : · · · : 0]. Let A ⊂ Pn be a projective algebraic subset such that
p #∈ A. Then A′ := π(A) ⊂ Pn−1 is an algebraic subset of Pn−1. Moreover,
the inclusion of homogeneous coordinate rings

K[A′] = K[x1, . . . , xn]/I(A′) −→ K[A] = K[x0, . . . , xn]/I(A)

is an integral ring extension, and dimA = dimA′.

Proof. The first statement is clear. For the second statement, we note that
K[A] = K[A′][x0] is finite over K[A′]. Indeed, since p #∈ A, the vanishing ideal
I(A) contains a form f of some degree d ≥ 1 which is monic in x0:

f = xd
0 + c1(x1, . . . , xn)xd−1

0 + . . . + cd(x1, . . . , xn).

This shows that K[A′] ⊂ K[A] is integral. For the last statement, write Vi

and Ui for the coordinate charts on Pn−1 and Pn, respectively. Then, for
i = 1, . . . , n, the inclusions of affine coordinate rings K[A′ ∩ Vi] −→ K[A∩Ui]
are also finite: A polynomial in I(A ∩Ui) which is monic in x0 is obtained by
dehomogenizing f with respect to xi. We conclude that dim A = dimA′. )*

Corollary 6.3.33 (Projective Noether Normalization). Let A ⊂ Pn be
a projective algebraic set.
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1. The dimension dimA is the least number r such that there is a linear
subspace L ⊂ Pn of dimension n− r − 1 with A ∩ L = ∅.

2. Let r = dimA, and let L be any linear subspace as above. Then projection
from L defines a morphism

π : A → Pr

which is surjective and has finite fibers. Moreover, the map of homogeneous
coordinate rings

K[y0, . . . , yr] −→ K[A]

is a Noether normalization. In particular,

dimA = dim K[A]− 1.

Proof. If r = n, then A = Pn, and we are done. If r < n, there is a point p ∈
Pn \A. After a change of coordinates, we may suppose that p = [1 : 0 : · · · : 0].
So the result follows from the preceeding Corollary by induction on n− r. )*

Remark 6.3.34. A morphism ϕ : A → B of projective algebraic sets is called
a finite morphism if for every point q ∈ B there is an open affine neighbor-
hood V of q in B such that U := ϕ−1(V ) is affine, and the induced morphism
U → V is finite in the sense of Chapter 3. We conclude from the proofs of
the last two corollaries that the morphism π : A → Pr above is finite. In the
projective case, a morphism is finite iff it has finite fibers (see Harris (1992),
Lemma 14.8). The example of the inclusion A1 \ {o} → A1 shows that this is
wrong in the affine case. )*

Exercise 6.3.35. Show: The points corresponding to reducible polynomials
f = gh form an algebraic subset of P(K[x0, . . . , xn]d). )*

We finish this section by briefly treating Grassmanians. These are natural gen-
eralizations of projective spaces and provide important examples of projective
varieties.

Definition 6.3.36. Given an n-dimensional vector space W over the field K,
the Grassmannian G(k, W ) is the set

G(k, W ) =
{
k-dimensional linear subspaces of W

}
.

If W = Kn, we write G(k, n) for G(k, W ). )*

Remark 6.3.37. Note that G(k, W ) can also be thought of as the set of
(k − 1)-dimensional linear subspaces of the projective space P(W ). )*

To show that G(k, W ) carries the structure of a projective variety, let V ⊂ W
be a k-dimensional linear subspace, and let v1, . . . , vk be a basis for V . Then
v1 ∧ · · · ∧ vk is a nonzero vector of the exterior product

∧k W . This vector is
determined by V up to scalar (choosing a different basis means to multiply
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the vector by the determinant of the change of basis matrix). We, thus, obtain
a well-defined map

G(k, W ) → P(
k∧

W ) (6.2)

whose image is the set of points corresponding to the totally decomposable
vectors of

∧k W . This map is injective: if v1 ∧ · · · ∧ vk ∈
∧k W represents a

point p in the image, the kernel of the linear map

W →
k+1∧

W, w -→ w ∧ v1 ∧ . . . ∧ vk,

is the unique linear subspace of W sent to p.
Definition 6.3.38. The map (6.2) is called the Plücker embedding of
G(k, W ) into P(

∧k W ). The homogeneous coordinates on P(
∧k W ) are called

the Plücker coordinates on P(
∧k W ). )*

Note that if p ∈ P(
∧k W ) corresponds to the linear subspace V = 〈v1, . . . , vk〉

of W under the Plücker embedding, then the Plücker coordinates of p are the
k × k minors of the n× k matrix with columns vj .
Exercise∗ 6.3.39. With notation as above, show:

1. The Plücker embedding is a closed embedding.
2. Each coordinate chart of P(

∧k W ) intersects G(k, W ) in an affine space
of dimension k(n − k). )*

We give G(k, W ) the structure of a projective variety by identifying it
with its image under the Plücker embedding.

6.4 Hilbert Functions and Hilbert Polynomials

Numerical invariants of a projective algebraic set such as the dimension are
useful in that they allow us to partition a given classification problem into
handy pieces. In this section, we will rediscover the dimension as the degree
of the Hilbert polynomial, and we will use this polynomial to obtain other
important invariants. Theorem 6.4.5, which shows the existence of the poly-
nomial, is the fourth major result of Hilbert treated in this book. Hilbert’s
goal when proving the result was to encode the infinitely many values of what
is nowadays called the Hilbert function in finite terms. The general context
for the Hilbert function is that of graded modules.
Definition 6.4.1. Let S =

⊕
d≥0 Sd be a graded ring. A graded module

over S is an S-module with a decomposition M =
⊕

d∈Z Md as Abelian groups
such that SdMe ⊂ Md+e for all d, e. An element of Md is, then, called a
homogeneous element of M of degree d. A graded submodule of M is
a submodule generated by homogeneous elements. If N =

⊕
Nd is another

graded S-module, a graded homomorphism from M to N is an S-module
homomorphism φ : M → N such that φ(Md) ⊂ Nd for any d. )*
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If we consider S as a graded module over itself, its graded submodules are
precisely its homogeneous ideals. The characterization of homogeneous ideals
in Proposition 6.1.2 extends from the ideal to the submodule case:

Aushuehren
Furthermore and if N =

⊕
Nd is a graded submodule of M =

⊕
Md,

then the quotient M/N =
⊕

Md/Nd is graded as well. The direct sum of a
collection of graded S-modules is naturally graded, and so are the kernel and
the image of a graded homomorphism.

Example 6.4.2. Let S be a graded ring. Given a graded S-module M =⊕
Md and * ∈ Z, the !th twist of M , written M(*), is the graded S-module

M(*) =
⊕

d∈Z
Md+&.

That is, M(*) is isomorphic to M as an S-module, but its grading is shifted
in degrees by *. In particular, for each *, we have the graded S-module S(*) in
which the free generator 1 of S has degree −*. Since each homomorphism of S
is multiplication by an element of S, each graded homomorphism S(k) → S(*)
is multiplication by a homogeneous element of S of degree k − l.

By specifying a basis together with a degree for each basis vector, a free
S-module F becomes a graded free S-module (with a basis of homogeneous
elements). That is, as a graded S-module, F is isomorphic to a direct sum of
graded modules of type S(*), for various *. )*
Each graded piece of a graded S-module M is an S0-module and, thus, a
k-vector space if S is a graded k-algebra. These vector spaces are of finite
dimension if, in addition, S is Noetherian, and M is finitely generated. Indeed,
in this case, M is Noetherian by Exercise 1.10.9. On the other hand, if Me

would not be of finite dimension for some e, the truncation M≥e =
⊕

d≥e Md

would be a submodule of M which is not finitely generated.

Definition 6.4.3. Let S be a Noetherian graded k-algebra, and let M =⊕
d∈Z Md be a finitely generated graded S-module. The function

H(M, ) : Z −→ Z, d -−→ H(M, d) := dimk Md,

is called the Hilbert function of M . )*

Example 6.4.4. Let S be the polynomial ring k[x0, . . . , xn]. Then

H(S, d) =
(

d + n

n

)

for all d ≥ 0. In fact, the formula holds for all d ∈ Z if we set Sd = 0 for d < 0.
Thus, H(S, d) agrees for d ≥ −n with the polynomial expression

(d + n)(d + n− 1) · · · (d + 1)
n!

.

We refer to this fact by saying that H(S, ) is of polynomial nature. )*
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More generally, we have:

Theorem 6.4.5 (Polynomial Nature of Hilbert Functions). Let S be
the polynomial ring k[x0, . . . , xn], and let M be a finitely generated graded
S-module. Then there is a unique polynomial PM (t) ∈ Q [t] such that

H(M, d) = PM (d) for all d ; 0.

Furthermore, deg PM ≤ n. )*

Definition 6.4.6. In the situation of the theorem, PM is called the Hilbert
polynomial of M . )*

Following Hilbert, we will use graded free resolutions to reduce Theorem 6.4.5
to the special case considered in Example 6.4.4. Here is the relevant notation:

Definition 6.4.7. Let S =
⊕

d≥0 Sd be a graded ring. A graded complex of
S-modules is a complex of S-modules where all modules and homomorphisms
are graded. Similarly, we define the notions graded free resolution and
graded homomorphism of graded complexes. )*

In the context of graded free resolutions, we often write homomorphisms “from
right to left” since this is consistent with how information on the resolutions
is printed by computer algebra systems. Note that a graded homomorphism
F =

⊕s
i=1 S(*i) ←− G =

⊕t
j=1 S(kj) is given by an s × t-matrix whose ij

entry is a homogeneous element of S of degree kj − *i, for each pair i, j.

Example 6.4.8. If S = k[w, x, y, z], the matrix

φ =
(

x + y + z w2 − x2 z3

1 x xy + z2

)

defines a graded homomorphism

S ⊕ S(−1) φ←− S(−1)⊕ S(−2)⊕ S(−3). )*

In the graded case, the recipe from Section 2.8 for constructing free resolutions
yields a graded free resolution if we choose homogeneous generators at each
stage. In the special case where S is the polynomial ring k[x0, . . . , xn], we get
a graded version of the syzygy theorem: Each finitely generated graded
S-module M has a graded free resolution of length ≤ n + 1, with finitely
generated graded free S-modules. Indeed, this follows from our constructive
proof of the syzygy theorem in Chapter 2 and Remark 6.1.10 on the behaviour
of Buchberger’s algorithm in the graded case.

Example 6.4.9. Consider the ideal I = 〈f1, f2, f3〉 ⊂ S = k[w, x, y, z], where
f1 = x2 − wy, f2 = xy − wz, and f3 = y2 − xz. Then I defines the twisted
cubic curve in P3, and



278 6 Projective Algebraic Sets and Morphisms

0 S/I$$ S$$ S(−2)3
(f1,f2,f3)
$$ S(−3)2

„ x w
−y −x
z y

«

$$ 0$$

is a graded free resolution of S/I. Note that f1, f2, f3 are precisely the 2 × 2
minors of the 3 × 2 matrix in the resolution (with appropriate signs). This
is no accident. It is, in fact, a consequence of the theorem of Hilbert-Burch,
proved by Hilbert in his 1890 paper to give examples of free resolutions (see
Eisenbud (1995), Theorem 20.15). )*

Given a graded free resolution

0 M$$ F0
$$ F1

φ1$$ · · ·$$ Fi−1$$ Fi
φi$$ Fi+1

φi+1$$ · · · ,$$

where all free modules are finitely generated, we usually collect all copies of
S involving the same twist when writing Fi:

Fi =
⊕

j

S(−j)βij . (6.3)

The βij are known as the graded Betti numbers of the resolution. A con-
venient way of visualizing these numbers is to write a Betti diagram as in
the following example:

0 1 2 3
------------------------------

0: 1 - - -
1: - 2 1 -
2: - 2 3 1

------------------------------
total: 1 4 4 1

A number i in the top row of the diagram refers to the ith free module Fi of
the resolution. More precisely, the column with first entry i lists the number
of free generators of Fi in different degrees and, in the bottom row, the total
number of free generators (that is, the rank of Fi). If k: is the first entry
of a row containing a number β in the column corresponding to Fi, then Fi

has β generators in degree k + i. That is, in (6.3), β is the number βij with
j = k+i. The diagram above indicates, for instance, that F2 has one generator
in degree 3 and three generators in degree 4. In total, the diagram corresponds
to a graded free resolution of type

S(−2)2 ⊕ S(−3)2 S(−3)⊕ S(−4)3$$ S(−5)$$ 0 .$$

Example 6.4.10. Resolving the homogeneous coordinate ring of the twisted
cubic curve as in Example 6.4.9, we get the Betti diagram below:
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0 1 2
------------------------

0: 1 - -
1: - 3 2

------------------------
total: 1 3 2

)*

In general, the βij cannot be called invariants of M since they depend on
the choices made when constructing the resolution. Over a Noetherian graded
k-algebra S, the concept of minimal free resolutions takes care of this prob-
lem. To show the uniqueness of such a resolution, we need a graded version
of Nakayama’s lemma. In comparison with the local version, we replace the
uniquely determined maximal ideal m by the ideal S+, which is the uniquely
determined homogeneous maximal ideal if S is a graded k-algebra.

Theorem 6.4.11 (Lemma of Nakayama, Graded Version). Let S be
any graded ring, let M be a finitely generated graded S-module, and let N ⊂ M
be a graded submodule. Then

N + S+M = M iff N = M.

Proof. Reducing to the case N = 0 as in the proof of the local version, it
suffices to show that S+M = M implies M = 0. Since M is finitely generated,
Md = 0 for d C 0. Suppose that M #= 0, let d be the least d such that Md #= 0,
and let m ∈ Md be a nonzero element. If S+M = M , then m can be written as
a sum m =

∑
i simi, with elements si ∈ S+ and mi ∈ M , and where we may

assume that all si and mi are nonzero and homogeneous. Then all di = deg si

are strictly positive, so that d − di < d for each i. This contradicts the fact
that the Md−di are zero by the choice of d. )*

If S is a graded k-algebra, and M is a graded S-module, then the quotient
M = M/S+M is a k-vector space, and each graded homomorphism φ : M →
N induces a k-vector space homomorphism φ : M → N . As in the local case,
Nakayama’s lemma gives:

Corollary 6.4.12. Let S be a graded k-algebra, and let M be a finitely gen-
erated graded S-module. Then m1, . . . , mr ∈ M generate M as an S-module
iff the residue classes mi = mi + S+M generate M = M/S+M as a k-vector
space. In particular, any minimal set of generators for M corresponds to a
k-basis for M , and any two such sets have the same number of elements. )*

Let, now, S be a Noetherian graded k-algebra, and let M be a finitely gen-
erated graded S-module. A minimal free resolution of M is obtained by
choosing a minimal set of homogeneous generators at each stage of construct-
ing a graded free resolution of M . Given any graded free resolution

0 M$$ F0
φ0$$ F1

φ1$$ . . .$$ Fi−1
$$ Fi

φi$$ Fi+1
φi+1$$ . . .$$



280 6 Projective Algebraic Sets and Morphisms

with finitely generated free modules, the images of the basis vectors of Fi

under φi form a minimal set of generators for imφi iff imφi+1 ⊂ S+Fi. That
is, if we regard φi+1 as a matrix, then φi+1 does not have a nonzero scalar
entry. In fact, the jth row of φi+1 has an entry in k \ {0} iff the image of the
jth basis vector of Fi under φi is an S-linear combination of the images of the
other basis vectors.

Example 6.4.13. The resolution of the homogeneous coordinate ring of the
twisted cubic curve in Example 6.4.9 is minimal. )*
Minimal free resolutions are uniquely determined up to graded isomorphisms
of complexes. This is a consequence of the following more general result:

Proposition 6.4.14. Let S be a Noetherian graded k-algebra, let M be a
finitely generated graded S-module, and let

0 M$$ F0
φ0$$ F1

φ1$$ F2
φ2$$ . . .$$

and

0 M$$ G0
ψ0$$ G1

ψ1$$ G2
ψ2$$ . . .$$

be graded free resolutions with finitely generated graded S-modules. Suppose
that the first resolution is minimal. Then there is a graded homomorphism of
complexes

0 M

idM

%%

$$ F0

α0

%%

φ0$$ F1

α1

%%

φ1$$ F2

α2

%%

φ2$$ . . .$$

0 M$$ G0
ψ0$$ G1

ψ1$$ G2
ψ2$$ . . .$$

such that each αi is injective and identifies Fi with a direct summand of Gi:

Gi
∼= Fi ⊕G′

i, for some graded free S-module G′
i.

Proof. Following the recipe from Exercise 2.8.17, starting from homogeneous
free generators for F0, we find a graded homomorphism α0 such that the
diagram

M

idM

%%

F0

α0

%%

φ0$$

M G0
ψ0$$

commutes. If we regard α0 as a matrix with entries in S, all entries and,
in fact, all minors are homogenous. On the other hand, by Corollary 6.4.12,
the induced maps on vector spaces φ0 and, thus, also α0 are injective. Hence,
there is a rankF0×rankF0 minor of α0 which is nonzero modulo S+. Since the
minor is homogeneous, it must be a nonzero scalar, so that the corresponding
rankF0 × rankF0 matrix is invertible over S. This shows that α0 has the
desired properties. The result follows by induction. )*
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Exercise 6.4.15. With S and M as in the proposition, design an algorithm
which computes a minimal free resolution starting from any given graded free
resolution (of finite length, with finitely generated free modules).
Hint. Use nonzero scalar entries of the given matrices as pivot elements as for
Gaussian elimination. )*

The proposition shows that the graded Betti numbers βij of a minimal free
resolution depend on the finitely generated S-module M only. We, therefore,
call these numbers the graded Betti numbers of M , written βij(M) = βij .

Remark 6.4.16. Due to the local version of Nakayama’s lemma, the concept
of minimal free resolutions makes also sense over a local Noetherian ring R. If
a finitely generated R-module M is given, its ith Betti number is the rank
of the ith free module in the minimal free resolution of M . )*

Proof of Theorem 6.4.5 (Hilbert). The uniqueness of PM is clear. For the
existence, consider any graded free resolution of M of length ≤ n + 1, with
finitely generated free modules Fi =

⊕
j S(−j)βij , where S = k[x0, . . . , xn]:

0 M$$ F0
$$ F1

$$ F2
$$ · · ·$$ Fn+1

$$ 0$$

Then, for each d, the graded pieces of degree d fit into an induced exact
sequence of finite dimensional k-vector spaces. Computing the alternating
sum of the dimensions as in Exercise 2.8.4, we get

H(M, d) =
n+1∑

i=0

(−1)i
∑

j

βijH(S(−j), d)

=
n+1∑

i=0

(−1)i
∑

j

βij

(
n − j + d

n

)

(see Example 6.4.4). For each d ≥ j − n, the value H(S(−j), d) agrees with
the polynomial expression

(d − j + n)(d − j + n − 1) · · · (d − j + 1)
n!

.

Hence, if PM is the polynomial

PM (t) =
n+1∑

i=0

(−1)i
∑

j

βij

(
t− j + n

n

)
∈ Q[t],

then H(M, d) = PM (d) for each d ≥ max{j − n | βij #= 0 for some i}. )*

In algebraic geometry, the module M in Hilbert’s theorem is the homogenous
ccordinate ring of a projective algebraic set.
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Definition 6.4.17. If A ⊂ Pn is an algebraic set, the Hilbert polynomial of
A, written PA(t), is defined to be the Hilbert polynomial of the homogeneous
coordinate ring K[A]. )*

Theorem 6.4.18. If A ⊂ Pn is a projective algebraic set of dimension r, then
its Hilbert polynomial is of type

PA(t) = d
tr

r!
+ terms of degree < r,

where d is a strictly positive integer.

Proof. By Remark 3.3.2, there is a Noether normalization

K[y0, . . . , ym] ⊂ K[A] = K[x0, . . . , xn]/I(A)

such that the yj are linear forms in the xi. Then A ∩ V(y0, . . . , ym) = ∅
since, otherwise, the yj would not be algebraically independent over K. Hence,
by Exercise ??, projection from V(y0, . . . , ym) defines finite morphisms A ∩
π−1(Uj) → π(A) ∩ Uj , where the Uj are the coordinate charts of Pm. In
particular, r = dim A = m. Furthermore, by the second defining condition
of a Noether normalization, K[A] is a finitely generated graded K[y0, . . . , yr]-
module. Considering graded free resolutions over K[y0, . . . , yr], we see that
the Hilbert function of K[A] is of type

H(K[A], d) =
r+1∑

i=0

(−1)i
∑

j

αij

(
r − j + d

r

)
.

It follows that PA(t) ∈ Q[t] is a polynomial of degree ≤ r, and that r! PA(t) ∈
Z[t]. On the other hand, since k[y0, . . . , yr] is a graded subring of K[A], we
have

H(K[A], d) ≥
(

r + d

r

)
for all d.

We conclude that PA has exactly degree r, and that its leading coefficient is
strictly positive. )*

Here are two corollaries of the proof:

Corollary 6.4.19. Let A ⊂ Pn be a projective algebraic set, and let C(A) ⊂
An+1 be the affine cone over A. Then

dim K[A] = dimC(A) = dimA + 1.

Proof. We have dim K[A] = dimC(A), and this number is obtained via a
Noether normalization as in the proof of the theorem. )*

Corollary 6.4.20. Let A ⊂ Pn be a projective algebraic set. Then dimA is
the least number r such that there is a linear subspace L ⊂ Pn of dimension
n− r − 1 with A ∩ L = ∅.
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Proof. The projection from a linear subspace Pn−r−1 ⊂ Pn with X∩Pn−r−1 =
∅ induces a morphism X → Pr, which is finite onto its image. If r is minimal,
then the map is onto Pr and corresponds to a Noether normalization of the
coordinate ring. )*

Definition 6.4.21. In the situation of Theorem 6.4.18, we write deg A = d,
and call this number the degree of A. )*

Though our definition is of purely algebraic nature, the degree has a geometric
meaning: We will show in Proposition 6.6.11 that deg A is the number of points
in which a general linear subspace of Pn of complementary dimension n−dimA
intersects A.

Example 6.4.22. Let A ⊂ Pn be a hypersurface, let f ∈ S = K[x0, . . . , xn]
be a square-free form defining A, and let d = deg f . Then

0 K[A]$$ S$$ S(−d)
f$$ 0$$

is a graded free resolution of K[A], so that

PA(t) =
(

n + t

n

)
−
(

n + t− d

n

)

= d
tn−1

(n − 1)!
+ terms of degree < n− 1.

Hence, deg A = d = deg f , and we conclude that our general definition of
degree is consistent with that for hypersurfaces given earlier. )*

Definition 6.4.23. Let A ⊂ Pn be a projective algebraic set of dimension r,
with Hilbert polynomial PA. The arithmetic genus of A is defined to be

pa(A) = (−1)r(PA(0)− 1).

Let C ⊂ Pn be a curve. Then the Hilbert function can be written in the
form

pC(t) = dt + 1 − pa.

pa is called the arithmetic genus of C. )*

Example 6.4.24. A plane curve C ⊂ P2 of degree d has Hilbert polynomial

pC(t) =
(

t + 2
2

)
−
(

t− d + 2
2

)
= dt + 1 −

(
d − 1

2

)
.

So C has arithmetic genus pa =
(
d−1
2

)
. )*



284 6 Projective Algebraic Sets and Morphisms

Remark 6.4.25. The funny way to write the constant term of the Hilbert
polynomial comes from the Riemann-Roch Theorem 8.3.2.

We already mentioned that the degree d has a geometric interpretation.
The arithmetic genus pa has an even more fundamental interpretation. For
a smooth irreducible curve over the complex numbers the arithmetic genus
pa determines the Euclidean topology of the underlying 2-dimensional man-
ifold. By Corollary 8.4.7 and 8.2.6, the Euler number of the underlying 2-
dimensional real manifold is 2 − 2pa. We will return to the arithmetic genus
in Chapter 7, where we prove Riemann’s inequality 7.4.12, and in Chapter 8.
)*

Exercise 6.4.26. Let A ⊂ P4 be the projective closure of the surface consid-
ered in Example 4.7.20. Compute equations for A as well as deg A. )*

Computing the Hilbert polynomial of a homogeneous coordinate ring S/I via
syzygies may be costly since this means to compute Gröbner bases for I as
well as for every kernel needed to construct a graded free resolution. The ideas
of Macaulay only require the computation of a Gröbner basis for I:

Theorem 6.4.27 (Macaulay). Let S = k[x0, . . . , xn], let F be a graded free
S-module, and let M ⊂ F be a graded submodule. For any global monomial
order > on F , we have

H(F/M, ) = H(F/L>M, ).

Proof. By Macaulay’s Theorem 2.3.5, the standard monomials of degree d
represent k-vector space bases for both (F/M)d and (F/L>(M))d. )*

Computing the intitial ideal of a homogeneous ideal J and then the Hilbert
polynomial of pS/L(J) is one of the fastest ways to obtain information about
V(J).

Exercise 6.4.28. Let A ⊂ Pn be a projective algebraic set, and let B be its
image under the d-uple embedding of Pn into PN , with N =

(n+e
d

)
. Show that

PA and PB have the same constant term:

PA(0) = PB(0). )*

Exercise 6.4.29. Let C ⊂ P1 ×P1 be a hypersurface of bidegree (a, b). Show
that C has degree deg C = a + b and arithmetic genus pa(C) = (a− 1)(b− 1).

)*

Exercise 6.4.30. Describe an algorithm which computes the minimal resolu-
tion from an arbitrary finite free resolution. Give a simplified algorithm which
computes only the graded Betti numbers of the minimal resolution. )*

Let X ⊂ Pn be a projective variety of dimension r, and let H = V(h) ⊂ Pn

be a hypersurface which does not contain X . By the Principal Ideal Theorem
??, every component Z of X ∩ H has dimension r − 1.
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Definition 6.4.31. The intersection multiplicity of X and H along Z is
the length of the Artinian ring OZ,Pn/(Ia

X + 〈ha〉)OZ,Pn , where Ia
X and 〈ha〉

denote the corresponding ideals in an affine chart Ui
∼= An intersecting Z:

i(X, H ; Z) = lengthOZ,Pn/(Ia
X + 〈ha〉)OZ,Pn .

Example 6.4.32. The two hypersurfaces of Exercise 4.1.16 intersect along their
common intersection curve with multiplicity two.

Theorem 6.4.33 (Bézout’s Theorem, second version). Let X ⊂ Pn be
a projective variety and let H ⊂ Pn be a hypersurface which does not contain
X. Let Z1, . . . , Zs be the irreducible components of X ∩ H. Then

deg X · deg H =
s∑

j=1

i(X, H ; Zj) deg Zj .

For the proof we need some preparations.

Definition 6.4.34. Let M be a module over a ring R and m ∈ M . Then

Ann(m) = {r ∈ R | rm = 0}

is called the annihilator of m.

Ann(M) = {r ∈ R | rm = 0 ∀m ∈ M}

is the annihilator of M . An associated prime p of M is a prime ideal which
occurs as annihilator of an element.

p = Ann(m)

for some m ∈ M \ 0.

AssM = {p prime | p = Ann(m) for some m ∈ M}

denotes the set of associated primes.

Thus with this notation the associated primes of an ideal I in the sense of
Chapter 1 are the associated primes of the quotient R/I as R-module, and
not the associated primes of the R-module I. This inconsistency in notation is
unfortunate, but has a long tradition. In practise it rarely leads to confusion.
The associated primes of R/I are of much more interest than the associated
primes of the module I.

Remark 6.4.35. Note, that in case of an module over an affine coordinate ring

V(Ann(M)) =
⋃

p∈Ass M

V(p)

is the support of M . The minimal primes in Ass(M) correspond to the
irreducible components of the support of M . Non-minimal primes are called
embedded primes, because their zero loci is strictly contained in a compo-
nent.
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Exercise 6.4.36. Let M be an R-module, and let q be a prime ideal of R.
Prove Mq = 0 iff q ⊃ p for an associated prime p ∈ Ass(M) )*

The set of associated primes is never empty for a module M #= 0 over a
Noetherian ring.

Lemma 6.4.37. Every maximal element in the set {Ann(m) | m ∈ M \ 0} is
a prime ideal.

Proof. Let p = Ann(m) be maximal among the annihilators. Suppose x, y ∈ p
and x /∈ p. Then xm #= 0 and Ann(m) ⊂ Ann(xm) and y ∈ Ann(xm) =
Ann(m) = p by the maximality. So p is prime. )*

Thus, by the Noetherian property there exist an associated prime.

Exercise 6.4.38. Every associated prime of a graded module is homogeneous.
)*

Exercise 6.4.39. Let

0 → M ′ → M → M ′′ → 0

be a short exact sequence. Prove:

Ass(M ′) ⊂ Ass(M) ⊂ Ass(M ′) ∪ Ass(M ′′)

)*

Proposition 6.4.40. Let M be a finitely generated graded S-module. M has
a filtration

0 = M0 ⊂ M1 ⊂ . . . ⊂ M r = M

by graded submodules such that the quotients M i/M i−1 ∼= (S/pi)(ai) for a
homogeneous prime ideal pi and a twist ai.

Proof. If m ∈ M is a homogeneous element of degree a with p = Ann(m) an
associated prime, then

(S/p)(−a) ↪→ M , r + p -→ rm

is an embedding.
Consider the set of graded submodules N ⊂ M , which have a filtration

as in the proposition. This set is nonempty, because M has an associated
prime. Let M ′ ⊂ M be maximal in this set. We have to show M ′ = M .
Suppose M ′ " M . Consider an associated prime p of M/M ′ and the inclusion
(S/p)(a) ↪→ M/M ′. Let M+ be the preimage of (S/p)(a) in M . Then M ′ "
M+ has a one step longer filtration. This contradicts the maximality of M ′.
)*
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Exercise 6.4.41. Let p be a minimal prime of M . Then p occurs precisely
length M(p)-times in any filtration of M . )*

Proof of Bézout’s Theorem 6.4.33. We compute the Hilbert polynomial of
M = S/(IX + IH) = RX/hRX in two ways. The short exact sequence

0 −→ RX(− deg h) h−→ RX −→ M −→ 0

gives us

pM (t) = deg X(tr/r! − (t− deg H)r/r!) + lower terms

= deg X · deg H tr−1/(r − 1)! + lower terms .

On the other hand, the filtration of M gives

pM (t) =
∑

j

pS/pj
(t + aj)

=
∑

dim V(pj)=r−1

deg V(pj) tr−1/(r − 1)! + lower terms

=
( s∑

j=1

i(X, H ; Zj) deg Zj

)
tr−1/(r − 1)! + lower terms ,

because the number, in which I(Zj) occurs in the filtration, coincides with
i(X, H ; Zj). Comparing the leading coefficients gives

deg X · deg H =
s∑

j=1

i(X, H ; Zj) deg Zj

as desired. )*

Exercise 6.4.42. Let M be a graded S-module. Prove that the Hilbert poly-
nomial of M has degree

deg pM (t) = dim suppM = max{dimV(p)|p ∈ Ass(M)},

and that the leading coefficient is

∑

dimV(p)=dim supp M

length M(p)
deg V(p)

r!
.

)*

Apriori knowledge of the Hilbert function or Hilbert polynomial can ease
Gröbner basis computation tremendously. We illustrate this in an example.
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Example 6.4.43. Consider the morphism

P1 → P3, [x0 : x1] -→ [x4
0, x

3
0x1, x0x

3
1, x

4
1].

We want to compute the equations of the image curve. One way to do this is
to compute a Gröbner basis of

〈y0 − x4
0, y1 − x3

0x1, y2 − x0x
3
1, y3 − x4

1〉

with respect to a product order. Another way is to guess the equations and
then argue. Clearly,

J = 〈y1y2 − y0y3, y
3
1 − y2

0y2, y
2
1y3 − y0y

2
2 , y1y

2
3 − y3

2〉

is contained in the kernel I = kerϕ of

ϕ : S = k[y0, . . . , y3] → R = k[x0, x1].

To prove, that this is the Gröbner basis of the kernel, we compare various
Hilbert functions. The image is imϕ = k[x4

0, x
3
0x1, x0x3

1, x
4
1] ⊂ R. Hence,

S/I ∼= imϕ has Hilbert function

hS/I(t) = hR(4t) = 4t + 1 for t ≥ 2.

On the other hand the lead terms of the generators of J with respect to the
reversed lexicographic order and variables sorted y1 > y2 > y3 > y0 generate
the ideal J ′ = 〈y1y2, y3

1 , y
2
1y3, y3

2〉. A k-basis of S/J ′ is represented by the
monomials in

k[y3, y0] ⊕ k[y3, y0]y1 ⊕ k[y3, y1]y2 ⊕ k[y3, y0]y2
2 ⊕ k[y0]y2

1 .

Thus, hS/J′(t) = t + 1 + 2t + t− 1 + 1 = 4t + 1 for t ≥ 2. On the other hand,

hS/J′(t) ≥ hS/J(t) ≥ hS/I(t).

Thus, equality holds, I = J , L(I) = J ′ and our 4 generators form a Gröbner
basis. This completes our goal.

Finally, we can now easily compute the shape of the free resolution of S/I.

M2 = 〈y1y2〉 : y3
1 = 〈y2〉,

M3 = 〈y1y2, y3
1〉 : y2

1y3 = 〈y1, y2〉,
M4 = 〈y1y2, y3

1 , y
2
1y3〉 : y3

2 = 〈y1〉

Thus, the shape of the free resolution computed as in 2.8.11 is

0 ← S/I ← S ← S(−2)⊕ S(−3)3 ← S(−4)4 ← S(−5) ← 0,

and this gives the minimal free resolution, since no constant term is contained
in syzygy matrices for degree reasons. Computing the Hilbert polynomial from
the free resolution, we get

pS/I(t) =
(

t + 3
3

)
−
(

t + 1
3

)
− 3
(

t

3

)
+ 4
(

t − 1
3

)
−
(

t− 2
3

)
= 4t + 1,

which agrees already for t ≥ 2 with the Hilbert function.
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For practical computations, the idea of using the Hilbert function in
Gröbner basis computations leads to the following spead up of the elimination
algorithm. The key point is, that a Gröbner basis with respect to a weighted
reversed lexicographic order is much sheaper to compute than a Gröbner basis
with respect to an elimination order.

Algorithm 6.4.44 (Hilbert function driven elimination). Input: A
homogeneous ideal I ⊂ k[x0, . . . , xn, y0, . . . , ym] with weighted variables of pos-
sibly different degrees. Output: I ∩ k[y0, . . . , ym]
1. Compute a Gröbner basis with respect to the weighted reverse lexicographic
order.
2. Compute the Hilbert function of k[x, y]/I.
3. Compute a Gröbner basis with respect to an elimination order, but skip
all Buchberger tests in a given degree, when there are already enough leading
terms to account for the Hilbert function.

Example 6.4.45. Here is an example, where the Hilbert function driven Buch-
berger allows to compute the elimination ideal, while without this the com-
putation takes much too long. Camera positioning.

Another way to present the Hilbert function is as follows:

Definition 6.4.46. Let M be a graded module with dim Md < ∞ for all d.
Then

HM (s) =
∑

d∈Z
dimMds

d ∈ Z[[s, s−1]]

is called the Hilbert series of M .

Lemma 6.4.47. Let M be a finitely generated graded module over the poly-
nomial ring k[x0, . . . , xn]. Then HM is the rational function

HM (s) =
∑

ij(−1)iβijsj

(1 − s)n+1
,

where the βij are the graded Betti numbers of M . If r = dim suppM then the
rational function HM (s) has a pole of order precisely r + 1 at s = 1.

Proof. The Hilbert series of k[x1, . . . , xn] is

1
(1 − s)n+1

=
∞∑

t=0

(
n + t

n

)
st.

Thus, expanding the rational function
∑

ij(−1)iβijsj

(1 − s)n+1
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at s = 0 yields a series whose coefficients satisfy the same formula as the
Hilbert function hM (t) = dim Mt:

hM (t) =
n+1∑

i=0

(−1)i
∑

j

βij

(
n− j + t

n

)
.

If we consider syzygies over a linear Noether normalization

supp M → Pr

of suppM , then we see that HM (s) has a pole of order at most r+1 at s = 1.
It cannot have a pole of smaller order, because otherwise the coefficients of
HM (s) would not grow fast enough. )*

Remark 6.4.48. A similar formula holds for graded modules over a polynomial
ring with generators xi of different degrees. If deg xi = di then the denomina-
tor takes the form (1− sd0) · . . . · (1 − sdn).

Example 6.4.49. Let d0, . . . , dn ∈ Z>0 be a set of integers with no common
divisor. We consider the group action of k∗ on kn+1 \ 0 defined by

k∗ × kn+1 → kn+1, (λ, (a0, . . . , an)) -→ (λd0a0, . . . ,λ
dnan).

The weighted projective space

P(d0, . . . , dn) = (kn+1 \ 0)/k∗

is defined as the orbit space under this action. In case d0 = d1 = . . . =
dn = 1 this is the ordinary projective space Pn. We give P(d0, . . . , dn) the
structure of a projective variety as follows. Consider the polynomial ring S =
k[x0, . . . , xn] with grading induced by deg xi = di. Let * = lcm(d0, . . . , dn)
and let m0, . . . , mN ∈ S& be a basis formed by monomials. Then

P(d0, . . . , dn) → PN

induced by
a = (a0, . . . , an) -→ [m0(a) : . . . : mN (a)]

is a well-defined embedding. However P(d0, . . . , dn) is in general not smooth.
The standard charts might carry some quotient singularities:

Ui = {[a] | ai = 1} ∼= kn/µdi ,

where µd denotes the group of d-th roots of unity.

Exercise 6.4.50. Prove that

P(1, 1, 2) ∼= V (x0x2 − x2
1) ⊂ P3.

)*
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Exercise 6.4.51. Consider S = k[x0, . . . , xn] the polynomial ring with the
grading induced by deg xi = di and the corresponding weighted projective
space. Let I ⊂ S be a homogenous ideal with respect to this grading.

1. Prove that

V (I) = {[a] ∈ P(d0, . . . , dn) | f(a) = 0 for all homogeneous f ∈ I}

is an algebraic subset of P(d0, . . . , dn), and that every algebraic subset arises
in this way.
2. Let

HS/I(s) =
∑

ij(−1)iβijsj

(1 − sd0) · . . . · (1 − sdn)
be the Hilbert series of S/I according to Remark 6.4.48. Prove that V (I) ⊂
P(d0, . . . , dn) has dimension r iff HS/I(s) has a pole of order r + 1 at s = 1.

)*

Exercise 6.4.52. Complete the proof of Theorem 3.3.8.
Hint: Consider the projective closure in a suitable weighted projective

space P(1, d1, . . . , dn), where w = (d1, . . . , dn) ∈ Zn
>0 is a weight vector, such

that the Gröbner basis for the given monomial order > and the weight order
>w coincides. )*

Exercise 6.4.53. Let I ⊂ k[x0, . . . , xn] = k[x] be a homogeneous ideal, and
let

ϕ : k[y0, . . . , ym] → k[x]/I, yi -→ fi + I

be the substitution homomorphism induced by homogeneous forms fi ∈
k[x0, . . . , xn] of degree deg fi = di. Let

J = Ik[x, y] + 〈y0 − f0, . . . , ym − fm〉

be the ideal of the graph in P(deg x0, . . . , deg xn, d0, . . . dm) of the correspond-
ing rational map

V(I) !!" P(d0, . . . , dm).

Prove
Hk[x]/I(s) = Hk[x,y]/J(s).

)*

6.5 Dimension Formulas

Theorem 6.5.1 (on the dimension of intersections). Let X, Y ⊂ Pn be
two subvarieties. Then every component Z of X ∩ Y has dimension

dimZ ≥ dim X + dim Y − n.

If the right hand side is non-negative then the intersection X∩Y is non-empty.



292 6 Projective Algebraic Sets and Morphisms

Proof. Consider the join J(X, Y ) ⊂ P2n+1 defined by the ideal I(X)+I(Y ) ⊂
k[x0, . . . , xn, y0, . . . , yn]. J(X, Y ) is the union of all lines joining a point of X ⊂
Pn ⊂ P2n+1 with a point of Y ⊂ Pn ⊂ P2n+1 contained in two complementary
linear subspaces Pn ⊂ P2n+1. With Pn ∼= ∆ = V(x0−y0, . . . , xn−yn) ⊂ P2n+1

the “diagonal” we have

X ∩ Y = ∆ ∩ J(X, Y ).

A Gröbner basis of J(X, Y ) is the union of the Gröbner basis for X and
for Y . So dimJ(X, Y ) = dimX + dimY + 1. On the other hand ∆ is defined
by n+1 equations. Thus the generalized Principle Ideal Theorem 4.6.19 gives
the desired inequality for the dimension of each component of X ∩ Y .

For the second statement we consider the affine cones C(X), C(Y ) ⊂
An+1. The origin 0 ∈ An+1 lies in the intersection of the cones. Since
every component of the intersection C(X) ∩ C(Y ) has dimension at least
dimX + 1 + dimY + 1 − n − 1 ≥ 1, there is at least one component con-
taining the origin properly. This component is a cone again. Hence, we obtain
X ∩ Y #= ∅. )*

Remark 6.5.2. The reader might ask, why we did not prove Bézout’s Theorem
in a more general version for intersections X ∩ Y ⊂ Pn, say in case all com-
ponents Z of X ∩ Y have expected dim Z = dimX + dimY − n. The reason
is that lengthOZ,Pn/(IX + IY )OZ,Pn no longer gives the correct intersection
multiplicity for the Theorem.

Exercise 6.5.3. Consider the surface X ⊂ P4 from Example 4.7.20 and Ex-
ercise 6.4.26 and let Y = V(x1 −x3, x3−x4) ⊂ P4 be a plane passing through
the improper node p = [0 : 0 : 0 : 0 : 1]. Prove that

lengthOp/(IX + IY )Op = 3,

although there are 3 intersection points away from the node. Thus, adding the
various length gives at least 3+1+1+1=6, which is larger than deg X deg Y =
5 · 1

The reason why the numbers do not match is, that the module S/(IX +IH)
for the intersection of X with a hyperplane H containing Y has already mp

as an associated prime. Thus, the full intersection ring gets too large. )*
The general correct definition of the intersection multiplicity was a topic

of Gröbner’s research [1951]. In case of an intersection of two varieties of
“expected” dimension dim X + dim Y − dim Pn, the correct definition was
finally given by Serre [1957]:

i(X, Y ; Z) =
∑

i≥0

(−1)i lengthTori
OPn,Z

(OPn,Z/IXOPn,Z ,OPn,Z/IY OPn,Z).

A disadvantage of this formula is that i(X, Y ; Z) > 0 is no longer obvious.
Fortunately, this is still true . In case we have a component Z of excess dimen-
sion, that is of dimension dimZ > dimX + dimY − dim Pn, one can apply
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the intersection theory of Fulton [1998] and/or Flenner, O’Carrel and Vogel
[1999].

Let ϕ : X → Y be a morphism. For q ∈ Y we call Xq = ϕ−1(q) the fiber
of ϕ over q. On the right is the illustration of an affine piece of the
surface

X = V(y2z − x2(t2z − x)) ⊂ P2 × A1

ϕ ↓

Y = A1

and three fibers of the projection to the
t-axis.

Theorem 6.5.4 (on the fiber dimension). Let ϕ : X → Y be a projective
morphism.

1. The function
q -→ dimXq

is upper semi-continous on Y .
2. If ϕ is a surjective map between varieties then there exists a non-empty

open subset of U ⊂ Y , such that

dimXq = dimX − dimY

for all q ∈ U .

In particular, for a surjective projective morphism,

dimXq ≥ dimX − dimY

holds for every q ∈ Y .

Proof. 1.) We may assume that X ⊂ Y × Pn is a closed subset. Let q ∈ Y be
a point and dimXq = r. Choose a linear subspace Pn−r−1 ⊂ Pn which does
not intersect Xq ⊂ Pn. Then A = X ∩ (Y × Pn−r−1) ⊂ Y × Pn is an algebraic
set, whose image pr1(A) ⊂ Y contains all points q′, where the fiber Xq′ has
dimension > r by Theorem 6.5.1 and perhaps some other points. Since the
image is algebraic by 6.3.26 and q /∈ pr1(A) the open set V = Y \ pr1(A) is
an open neighborhood of q with dim Xq′ ≤ r for all q′ ∈ V .

2.) We may assume that Y is affine and that X ⊂ Y × Pn. Consider the
function fields k(Y ) ⊂ k(X).

trdegk(Y ) k(X) = trdegk k(X) − trdegk k(Y ).
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Let I ⊂ k[Y ][x0, . . . , xn] be the ideal of X ⊂ Y × Pn. We compute a Gröbner
basis for I ⊂ k(Y )[x0, . . . , xn] over the function field k(Y ). The resulting
Gröbner basis corresponds to a variety of dimension trdegk(Y ) k(X) defined
over k(Y ). In such a computation of a Gröbner basis we have to invert finitely
many leading coefficients in k[Y ]. Let f be the product of all these leading
coefficients. Then for a point q ∈ U = Y \ V(f) the Gröbner basis of the
ideal Iq = 〈f(x, q) | f ∈ I〉 defining Xq is obtained by substituting q into the
coefficients of the Gröbner basis for I ⊂ k(Y )[x0, . . . , xn]. Thus, dimXq =
trdegk(Y ) k(X) = dimX − dimY for all q ∈ U . We have proved more: the
Hilbert function of k[x0, . . . , xn]/Iq is the same for all q ∈ U .

The last statement follows from combining 1.) and 2.). )*

Remark 6.5.5. 1. Assertion 6.5.4.1 does not hold without the hypothesis of
projectivity. An example where the assertion does not hold is Example ??.2.
2. An example of a projective morphism between varieties, where the fiber

dimension is not constant, is the blow-up 7.2.1 below.

The following result has a very similar proof.

Theorem 6.5.6 (Reduction mod p). Let I = 〈f1, . . . , fr〉 ⊂ Q[x0, . . . , xn]
be a homogeneous ideal defined by polynomials fi with integer coefficients. For
a prime number p we denote by Ip ⊂ Fp[x0, . . . , xn] the ideal generated by the
reduction of the fi mod p. For all but finitely many primes the Hilbert function
of Q[x0, . . . , xn]/I and Fp[x0, . . . , xn]/Ip coincide.

Proof. We compute a normalized Gröbner basis of I ⊂ Q[x0, . . . , xn]. In this
process we divide by finitely many leading terms. Let B be the set of primes,
which devides a numerator of some of these leading terms. For p a prime
outside B the computation of the Gröbner basis of Ip has exactly the same
steps. In particular, L(I) and L(Ip) are generated by the same monomials.
The result follows with Corollary 6.4.27. )*

Remark 6.5.7. 1. Within Grothendieck’s theory of schemes (eg. Hartshorne
[1977], Chapter II and III), Theorem 6.5.6 and Theorem 6.5.4 have indeed a
common generalization.
2. For practical purposes, Theorem 6.5.6 on the reduction mod p is of great

importants. As long as we are only interested in the qualitative behavior of
a system of equations, say in the dimension or degree, we can use a Gröbner
basis computation mod p, which is much faster than the computations over
Q, because the bit length of the coefficients do not grow over Fp. In doing
so, we have to choose p outside B, which we usually do not know in advance.
However, when choosing moderate size p, the chances for p ∈ B are really low.
The authors never had the bad luck to choose p ∈ B.

Exercise 6.5.8. Let X ⊂ Pn be a variety defined over Q, and let I(X) =
〈f1, . . . , fr〉 be generators with integral coefficients. Let Ip = 〈f1, . . . , fr〉 ⊂
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Fp[x0, . . . , xn] be generated by their reductions mod p. Prove: If X is non-
singular, then Xp = V(Ip) is non-singular for all but finitely many primes p.
)*

Exercise 6.5.9. Let f1, . . . , fr ∈ Z[x0, . . . , xn] be homogeneous polynomials,
and let I ⊂ Q[x0, . . . , xn] and Ip ⊂ Fp[x0, . . . , xn] denote the ideals generated
by them over Q and Fp, respectively. Prove

hFp[x0,...,xn]/Ip
(t) ≥ hQ[x0,...,xn]/I(t) for all t ∈ Z.

)*

6.6 Bertini’s Theorem and other Applications

The dimension formulas have many applications. One of the most important
is Bertini’s theorem.

For a given projective space Pn = P(V ) the space of hyperplanes is natural
the projective space of the dual vector space

P̌n = Pn(V ∗).

Theorem 6.6.1 (Bertini). Let X ⊂ Pn be a smooth projective variety of
dimension r. There exists a non-empty open subset U ⊂ P̌n, such that X ∩H
is smooth of dimension r − 1 for every H ∈ U .

Remark 6.6.2. It is true that for dimX ≥ 2 and H ∈ U the intersection
X ∩ H is also connected, hence irreducible. Frequently, this is considered to
be part of Bertini’s Theorem. The connectedness statement follows easily from
cohomology theory of coherent sheaves, in particular Serre duality, which we
do not treat in this book. See Hartshorne [1977] III.7.9. We will sketch a proof
for fields k of characteristic zero in the appendix to this section.

Proof. We may assume that X is non-degenerate, i.e. that X spans Pn.
Then X ∩ H is singular at p iff TpX ⊂ H . Since TpX ∼= Pr there exists an
Pn−r−1 ⊂ P̌n of hyperplanes H with H ⊃ TpX . Consider the diagram

N = {(p, H) ∈ X × P̌n | TpX ⊂ H} → P̌n

↓
X

The fibers of N → X are (n− r − 1)-dimensional. Hence, dimN = n− 1 and
the image X̌ of N in P̌n is at most a hypersurface. The open set U = P̌n \ X̌
has the desired property. )*

Definition 6.6.3. X̌ ⊂ P̌n is called the dual variety of X ⊂ Pn. More gener-
ally, for possibly singular varieties X ⊂ Pn the dual variety is defined as the
closure of the image of



296 6 Projective Algebraic Sets and Morphisms

N0 = {(p, H) ∈ X0 × P̌n | TpX ⊂ H} → P̌n

where X0 = X \ Xsing denotes the set of smooth points of X.

Example 6.6.4. For a plane curve C ⊂ P2 the dual variety is again a plane
curve Č ⊂ P̌2.

The curve defined by
y = x4 − x2.

The dual curve in the chart
b = 1.

In this example the dual curve has equation

27a4 − 4a2b2 + 144a2bc− 16b3c + 128b2c2 − 256bc3 = 0

in coordinates a, b, c dual to x, y, z.

Exercise 6.6.5. Prove: An ordinary double point of Č corresponds to a bi-
tangent of C. A cusp of Č corresponds to a flex of C. )*
Exercise 6.6.6. Consider the curve V(x4 + 4y4 − x2z2 − y2z2 − 1

10z4) ⊂ P2.

–0.5

0.5

 

–1 1 

The curve with equation
x4 + 4y4 − x2 − y2 − 1

10

–1

0

1 

–0.5 0.5 

The dual curve.
–0.1

–0.05

0

0.05

0.1

 

0.92 0.96 

A detail of the dual
curve.

Verify that the dual curve is defined by the equation

a12 +
20

13
a10b2 +

1297

676
a8b4 +

205

169
a6b6 +

239

338
a4b8 +

35

169
a2b10 +

49

676
b12

+
290

13
a10c2 −

1210

169
a8b2c2 −

3335

338
a6b4c2 +

385

338
a4b6c2 −

1355

338
a2b8c2 +

385

338
b10c2

+
23430

169
a8c4 −

34000

169
a6b2c4 +

34595

338
a4b4c4 −

9250

169
a2b6c4 +

30

169
b8c4

+
9600

169
a6c6 +

61800

169
a4b2c6 +

37800

169
a2b4c6 −

5400

169
b6c6 −

164800

169
a4c8

−
80000

169
a2b2c8 +

800

169
b4c8 +

192000

169
a2c10 +

48000

169
b2c10 −

64000

169
c12 = 0

Here a, b, c are dual coordinates to x, y, z. )*
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Exercise 6.6.7. Suppose char k = 0. Prove for an irreducible plane projective
curve, that the double dual curce is the original curve, i.e. ˇ̌C = C.

)*

Remark 6.6.8. In case of char k = p > 0, the double dual curve is not neces-
sarily the original curve. For example, each tangent of the curve V(xp +yzp−1)
passes through the point [1 : 0 : 0], so the dual curve is the line L ⊂ P̌2 dual to
this point. A curve different from a line with the property that every tangent
line passes through a fixed point is called strange. Strange curves exist only
in chark = p > 0, by the exercise above. One can prove that strange curves
are not smooth.

Exercise 6.6.9. (char k = 0). Prove ˇ̌X = X for arbitrary varieties. )*

Corollary 6.6.10. Let X ⊂ Pn be a variety. There exists a open set U ⊂ P̌n

such that (X ∩H)sing = Xsing ∩ H for all H ∈ U .

Proof. U = P̌n \ X̌ has this property. )*

Corollary 6.6.11. Let X ⊂ Pn be a variety of dimension r and degree d. A
general linear subspace Pn−r ⊂ Pn intersects X in d distinct points.

Proof. Combine Bertini’s Theorem with Bézout’s Theorem 6.4.33. )*

Exercise 6.6.12. Let X ⊂ Pn an absolutely irreducible non-degenerate vari-
ety of dimension r. Prove

deg X ≥ n− r + 1.

)*

Exercise 6.6.13. Consider the d-th Veronese embedding

Pn ↪→ PN

with N =
(n+d

d

)
. The dual variety X̌ of the image X can be identified with

the set of singular hypersurfaces of degree d in Pn. What is the degree of X?
See Ge’lfand, Kapranov and Zelevinsky [1994] for a beautiful treatise on dual
varieties. )*
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Exercise 6.6.14. Deduce Brianchon’s Theorem from Pascal’s Theorem 5.5.4
and projective duality: A hexagon in P2 is circumscribed to a smooth conic,
if and only if the lines joining opposite vertices intersect in a point.

)*

The dimension formulas and Bertini’s theorem give another proof that
every variety is birational to a hypersurface:

Theorem 6.6.15. Let the ground field k be infinite. A variety X ⊂ Pn of
dimension r can be birationally projected onto a hypersurface X ′ ⊂ Pr+1

Proof. We will project X from a center Pn−r−2 ⊂ Pn to Pr+1. The induced
map X → X ′ ⊂ Pr+1 is everywhere defined and finite if the center does not
intersect X , which is the case for a general choice of the projection center.
The problem is to prove that X → X ′ is birational. The preimage of a line
L ⊂ Pr+1 is a Pn−r containig the center of projection. For general choices this
linear space will intersect X in d = deg X many distinct points by Bertini’s
Theorem. X → X ′ is birational in a neighborhood of one of these points iff
none of the d − 1 secant lines of X through the point intersect the center
Pn−r−2. We can acchieve this if we choose the primage Pn−r of the line first
and then the center of projection Pn−r−2 ⊂ Pn−r such that it intersects none
of the

(d
2

)
secant lines. )*

Exercise 6.6.16. With the notation as in the proof of 6.6.15 and the addi-
tional assumption that X ⊂ Pn is smooth, prove that X ′ is either smooth and
X → X ′ an isomorphismen, or X ′

sing is of pure dimension r − 1. )*

The proof of the following theorem is of a simular flavour.

Theorem 6.6.17. Every smooth projective curve can be embedded into P3.

Proof. Suppose C ⊂ Pn. If n ≤ 3 there is nothing to prove. If n ≥ 4 then we
consider the secant variety. Consider the variety {(p1, p2, q) ∈ C × C × Pr |
p1 #= p2 and q ∈ p1p2}. The secant variety Sec(C) ⊂ Pn is the image of the
closure of this set. Note that all tangent lines of C are contained in Sec(C).
By the dimension formula dimSec(C) ≤ 3. Thus for n ≥ 4 we can find a point
q ∈ Pn \ Sec(C). The projection from p induces an isomorphism from C onto
its image in Pn−1. )*
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Exercise 6.6.18. Why is Theorem 6.6.17 not true for singular curves? )*

Exercise 6.6.19. Prove that every smooth projective variety of dimension d
can be embedded into P2d+1. )*

Remark 6.6.20. Surfaces which can be embedded into P4 satisfy an identity
between their numerical invariants, (see eg. Hartshorne [1977], Appendix A.
Example 4.1.3). A famous result of Severi says that a non-degenerate smooth
surface X ⊂ P5 can be isomorphically projected into P4 iff X is projectively
equivalent to the Veronese surface, i.e. the image P2 ↪→ P5 under the 2-uple
embedding.

Exercise 6.6.21. a) Prove with Computer algebra the easy part of Severi’s
theorem: P2 ↪→ P5 can be projected isomorphically. b) Describe the set of
points in P5 from which one can project the Veronese surface isomorphically,
and give a proof of the easy part without Computer algebra. (c) Prove the
hard part of Severi’s Theorem, i.e. no other surface in P5 can be projected
isomorphically. )*

6.7 Appendix: Monodromy Arguments

In this appendix we will prove the irreducibility of a general hyperplane X∩H
section of a variety X ⊂ Pn of dimension dimX ≥ 2. We start by investigating
general hyperplane sections of curves. Our first step is to establish the path
connectedness of irreducible curves.

Theorem 6.7.1. Let f ∈ C[x, y] be an irreducible polynomial and C =
V(f) ⊂ A2(C) the corresponding plane algebraic curve. Then C equipped with
the Euclidean topology is path connected.

The proof of this result is interesting in its own. However, it requires
some basic knowledge in Galois theory and analytic continuation of algebraic
functions of one complex variable.

Proof. Let
f(x, y) = gd(x)yd + . . . + g0(x)

with coefficients gj(x) ∈ C[x]. If our coordinates are choosen general, then
d = deg f , ad is a non-zero constant and deg gj ≤ d− j. In that case we have
counted with multiplicities precisely d solutions (a, b) ∈ C for any given value
a ∈ C, and these solutions are distinct, iff the resultant R(x) = Res(f, fy)
does not vanish at a. Moreover, the solutions depend continously on a. In
particular, f has no isolated zeroes. In what follows we will not assume general
coordinates. Then gd(x) might be a non-constant polynomial and some of the
roots of f(a, y) might approach infinity, if a approaches a zero of gd(x) in
A1(C) = C. Let B = V(gd(x)R(x)) ⊂ C. The projection onto the x-coordinate
induces an unramified d sheeted covering
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pr1 : C \ pr−1
1 (B) → C \ B.

Since C has no isolated points, it suffices to prove that C\B is path connected.
We will prove this with monodromy and Galois theory.

Let p ∈ C \ B be a base point. For each closed path

γ : [0, 1] → C \ B with γ(0) = γ(1) = p

and each preimage point pi ∈ Γ = pr−1
1 (p) path lifting defines a path γi :

[0, 1] → C \pr−1
1 (B) which starts in γi(0) = pi and ends in a possibly different

point pj = γ(1) ∈ Γ . Thus, path lifting of γ induces a permutation

µ(γ) : Γ → Γ, pi -→ γi(1)

of Γ . We call the subgroup G, generated all permutations µ(γ) the mon-
odromy group of the covering pr1 : C \ pr−1

1 (B) → C \ B.
Path connectedness follows, if we can prove that G acts transitively on Γ .

The key point is to identify G with a Galois group.
Consider the field extension C(x) ⊂ C(x)[y]/〈f〉. Since f is irreducible,

C[x, y]/〈f〉 is a domain, and C(x)[y]/〈f〉 is simply its quotient field. Let K ⊃
C(x)[y]/〈f〉 a splitting field of f ∈ C(x)[y]. The splitting field K can be
constructed explicitely as follows. Suppose that p = 0 ∈ C for notational
convenience. We denote by C{x} the ring of convergent power series and by
C{x}[x−1] = Q(C{x}) the quotient field of meromorphic power series. We
construct the splitting field of f over C(x) as a subfield of C{x}[x−1]. Let
pi = (0, bi) ∈ Γ be a point. By the Theorem on implicit functions , there exists
an holomorphic power series yi(x) ∈ C{x} with constant term yi(0) = bi, such
that C near bi equals the graph of yi.

More precisely, there are ε, δ > 0, such that for

Uε(bi) = {y ∈ C | |y − bi| < ε} and Uδ(0) = {x ∈ C | |x| < δ},

we have
C ∩ (Uε(bi) × Uδ(0)) = {(x, yi(x)) | x ∈ Uδ(0)}.

Then
K ∼= C(x)[y1(x), . . . , yd(x)] ⊂ C{x}[x−1],

indeed
f(x, y) = gd(x)(y − y1(x)) · . . . · (y − yd(x)).

We now consider the analytic continuation of our functions yi(x) along one
of the closed path Γ : [0, 1] → C \ B. This is possible, since for each point
γ(t) the implicit function theorem guarantees the existence of power serieses
yi,t(x − γ(t)) ∈ C{x − γ(t)}, whose graphs parametrize C locally above γ(t).
For any t′ in domain of convergence of the powerseries yi,t, the function
yi,t(x − γ(t)) coincides with some yi,t′(x − γ(t′)) in their common domain
of definition, because both parametrize the same piece of C. At the end of
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the path the analytic continuation ends up with the same set of power series
y1(x), . . . , yd(x), however, possibly permuted. The permutation coincides with
µ(γ).

We now claim, that each of these permutation induces an automorphism
of the field K over C(x). Consider

ϕ : C(x)[Y1, . . . , Yd] → K ⊂ C{x}[x−1], Yi -→ yi(x).

To prove that σ = µ(γ) gives an automorhism of K, we have to show that
for any F ∈ kerϕ the function F (yσ(1)(x), . . . , yσ(d)(x)) = 0 ∈ K. This follows
from analytic continuation. The function F (y1,t(x − γ(t)), . . . , yd,t(x − γ(t)))
stays identically zero by the identity theorem for functions in one complex
variable . Thus G is a subset of the Galois group Gal(f) of f .

The Theorem follows, if we can prove that G = Gal(f), because the Ga-
lois group of an irreducible polynomial acts transitively on the roots. So the
following theorem completes the proof. )*

Theorem 6.7.2. With notation as above, the monodromy group G coincides
with the Galois group of f over C(x).

Proof. Let h ∈ KG an invariant function. Then by the definition of G, the
invarinat function h has a well-defined meromorphic continuation to C \ B.
Moreover, also in B and infinity, the continuation of h cannot have an essential
singularity, because it is a polynomial function in the local roots yi,t(x−γ(t))
with coefficients in C(x). Thus, h extend to a meromorphic function on P1(C).
So h is rational. This proves KG = C(x), and hence G = Gal(K/C(x)) =
Gal(f) by the main theorem of Galois theory.

)*

Remark 6.7.3. The image of a closed path γ in G depends only on the homo-
topy class of γ. What we really have is an group homomorphism

π1(C \ B, p) → Aut(Γ ).

Here we use the notation π1(X, p) for Poincaré’s fundamental group of
homotopy classes of closed loops in a topological space X with base point p,
and Aut(Γ ) denotes group of permutation group of the set Γ .

Thus to determine the image G, it suffices to apply path lifting to genera-
tors of π1(C\B, p). As it is well known , generators of π1(C\B) are small loops
around each point of b ∈ B connected via a path forwards and backwards to
p.

This gives a numerical method to detect irreducibility of plane curves.

Corollary 6.7.4. Any irreducible quasi-projective curve C over C is path con-
nected with respect to the Euclidean topology.
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Proof. Consider a birational projection of C onto a plane curve C′. By the
proof of the theorem, any non-empty Zariski open part of C′ is path connected.
Since we have an isomorphism of Zariski open parts of C′ and C, and since
C has no isolated points, C is path connected as well. )*

Our next goal is to establishing the uniform position of a general hyper-
plane section of an irrreducible curve. This may be considered as an appro-
priate version of our desired irreduciblity result in case of curves.

Definition 6.7.5. Let Γ = {p1, . . . , pd} ⊂ Pn be a collection of d distinct
points. Γ is in linearly uniform position, if any subset of n points of Γ
spans a Pn−1. Γ is in (arithmetically) uniform position, if the homogeneous
ideals of any two subsets of Γ with the same number of elements have the
same Hilbert function. The arithmetically uniform position is the stronger
statement.

Our goal is to prove that the general hyperplane section of an irreducible
curve C ⊂ Pn+1 over a field k of characteristic 0 is in uniform position. The
assertion is not true in positive characteristic.

Exercise 6.7.6. Consider the curve

V(x2
0 − x1x4, x

2
1 − x2x4, x

2
2 − x3x4) ⊂ P4

over a field of characteristic 2. Prove that the points of a general hyperplane
section form the vertices of a cube. )*

To prove uniform position, we treat the case k = C first. Let C ⊂ Pn(C) be
an irreducible curve of degree d. Consider the Zariski open set U = P̌n \ Č of
transversal hyperplanes. U is path connected in the Euclidean topology. Pick
a base point H0 ∈ U and consider the monodromy action of the fundamental
group π1(U, H0) on Γ = C ∩ H0 = {p1, . . . , pd} defined by path lifting: Let

γ : [0, 1] → U, t -→ Ht

be a continuous path with γ(0) = H0. Then by the continuity of roots of
algebraic systems of equations there exist d continues paths

γi : [0, 1] → C with γi(0) = pi,

such that C ∩Ht = {γ1(t), . . . , γd(t)} for all t. Since all Ht intersect transver-
sally, a loop in U starting and ending in H0 induces a permutation of Γ :

Γ → Γ, pi = γi(0) -→ γi(1),

which in fact depends only on the homotopy class of the closed loop. Thus, if
π1(U, H0) denotes Poincaré fundamental group consisting of homotopy classes
of closed loops starting and ending at H0, we obtain a homomorphism

µ : π1(U, H0) → Aut(Γ )

to the symmetric group of permutations of Γ .
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Theorem 6.7.7 (Harris’ Monodromy Theorem). Let C ⊂ Pn(C) be an
irreducible curve of degree d. The monodromy action of π1(U, H0) on Γ =
C ∩ H0 gives the full symmetric group.

Proof. We assume that C is not a line. We have to prove that ρ is surjective.
For this, it is enough to prove that π1(U, H0) acts double transitive and that
the image contains a simple transposition. Applying if necessary a birational
projection we may assume n = 2. Since the double dual ˇ̌C ∼= C by 6.6.7, there
are only finitely many tangents lines passing through any point q ∈ P2, and all
but finitely many tangent lines are simple tangents, i.e. tangent in precisely
one smooth point of C, which is not a flex.

Consider C′ = C \ Csing and the fibers Xp of the incidence variety

X = {(p, H) ∈ C′ × U |p ∈ C ∩ H} → C′.

C′ is path connected by Corollary 6.7.4 and all Xp are path connected, since
they are Zariski open subset of a P1. So X is path connected, which implies
that π1(U, H0) acts transitively. To see double transitivity, we choose a smooth
point p ∈ C′ and choose the base point H0 in the fiber Xp. The image of
π(Xp, H0) lies in the stabilizer of p. Since

C′′ =
⋃

H∈Xp

(C ∩ H \ {p})

is still path connected by Corollary 6.7.4, we obtaion double transitivity. To
exhibit a simple transposition, we look at a general point H1 ∈ Č. Then H1∩C
is tangent at precisely one point with multiplicity 2. A small loop in U near
H1 around Č will interchanges the two nearby intersection points and leaves
the other d − 2 points unchanged. )*

We denote with Ck the product C ×C × . . .×C and with ∆ =
⋃
∆i,j the

union of the various diagonals.

Corollary 6.7.8. The closure of Xk = {((p1, . . . , pk), H) ∈ (Ck \ ∆) × U |
{p1, . . . , pk} ⊂ H ∩ C} in Ck × P̌n is irreducible for every k.

Proof. Xk is non empty only for k ≤ d = deg C. It is path connected and
irreducible, since we can connect any two points in the fiber of Xk over H0

by a closed path in the smooth part of Xk according to Harris’ Monodromy
Theorem 6.7.7. )*

Corollary 6.7.9. The general hyperplane section Γ∩H of an irreducble curve
lies in uniform position.

Proof. Suppose that two subsets of Γ of the same cardinality k have different
Hilbert functions. Since the values of the Hilbert function of a collection of
points varies semicontineously with the points and H is general, this would
give a decomposition of Xk into at least two components, a contradiction to
Corollary 6.7.8. )*
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Remark 6.7.10. Much more general statements than Corollary 6.7.9 can be
deduced. For example, the graded Betti numbers of the the image of any subset
Γ1 under the projection from the span of Γ2 for disjoint subsets Γ1 ∪ Γ2 ⊂ Γ
depend only on degΓ1 and degΓ2.

We now turn to arbitrary fields k of characteristic zero. First, if X ⊂ Pn is a
quasi-projective algebraic set, then only finitely many coefficients occur in any
finite set of defining equations of X and the complement X \X . The subfield
k0 ⊂ k generated by these coefficients is a field of definition of X . Since k0 is
a finitely generated field extension of Q and because C is algebraically closed
with uncountable transcendence degree over Q, there exists an embedding
k ↪→ C. Pick one and consider X(C) ⊂ Pn(C). Then we apply

Lemma 6.7.11 (Lefschetz principle). Let P be a property of algebraic sets
which can be formulated by the solvability of a system of algebraic equations
and inequalities with coefficients in the field of definition of X. If X(C) sat-
isfies P then X(k) satisfies P, where k denotes an algebraic closure of a field
of definition of X.

Proof. Clear, since we can embed k ↪→ C. )*

Let C ⊂ Pn be an absolutely irreducible curve over a field of characteristic
zero. Let U = P̌n \ Č be the quasi-projective variety of transversal hyper-
planes. For each k, the algebraic set Xk = {((p1, . . . , pk), H) ∈ (Ck \∆)×U |
{p1, . . . , pk} ⊂ H ∩ C} in Ck × P̌n is absolutely irreducible, because it is
irreducible over C by Corollary 6.7.8.

Corollary 6.7.12. There exists a hyperplane H ∈ U defined over the field of
definition of C such that Γ = C ∩ H lies in uniform position in H.

Proof. For each fixed t, the space of hyperplane H such that there exist two
subsets Γ1, Γ2 of C ∩H with the same number of points, but different values
hΓ1(t) #= hΓ2(t), is a proper algebraic subset Bt ⊂ U by Corollary 6.7.8 and
the Lefschetz principle.

Since the Hilbert function hΓ1(t) of a finite set of points takes value degΓ1

for t ≥ deg Γ1, there are only finitely many values t which we have to consider.
Hence B =

⋃
t≤degΓ Bt ⊂ U is an proper algebraic subset as well. (Without

the bound for t, we would just conclude, that B is a countable union of proper
algebraic subsets.) Therefore and because the field of definition k0 is infinite,
the set of k0-rational points in U \ B ⊂ P̌n is Zariski dense. )*

To prove the irreducibilty of a general hyperplane section of a variety
X ⊂ Pn of dimension r ≥ 2, we consider the ground field C first, and start by
extending the Mondromy Theorem 6.7.7 to this case.

Theorem 6.7.13. Let X ⊂ Pn be a quasi-projective variety defined over C.
Then X(C) is path connected.
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Proof. Adapt the proof of Theorem 6.7.1 and Corollary 6.7.4. )*

Consider the Grassmannian

G = G(n − r + 1, Cn+1) = {Pn−r ⊂ Pn}

of complementary dimensional linear subspaces, see Exercise 6.3.39 for a def-
inition of the Grassmannian as a projective variety. Let U be the open subset
of transversal subspaces to X :

U = {P ∈ G | P intersects in X in d distinct points},

where d = deg X . Pick a base point P0 ∈ U and consider the monodromy
action of π1(U, P0) on Γ = X ∩ P0.

Theorem 6.7.14. Let X ⊂ Pn(C) be an irreducible variety of dimension r
and degree d. The monodromy action of π1(U, P0) on Γ = X ∩ P0 gives the
full symmetric group.

Proof. With minor modifications as before. )*

Corollary 6.7.15. Suppose char k = 0. A general hyperplane section X ∩ H
of an irreducible variety X ⊂ Pn of dimension r ≥ 2 is irreducible.

Proof. We first consider the case X ⊂ Pn(C). Consider a flag P0 ⊂ H0 of a
general complementary linear subspace P0 and a general hyperplane H0. By
Berini’s Theorem 6.6.1 H0 intersects X \Xsing transversally. Suppose X ∩H0

is reducible. Then every general hyperplane section is reducible. Since a loop

γ : [0, 1] → U, t -→ Pt

can be lifted to a loop of flags t -→ (Pt, Ht) with Pt, Ht transversal to X , the
monodromy action would distinguish between pairs of points in X ⊂ P0, which
do, respectively, which do not lie on the same irreducible component of X∩H0.
This contradicts the Monodromy Theorem. Thus, X ∩ H0 is irreducible. For
arbitrary fields of chararcteristic 0, the statement follows by applying the
Lefschetz principle. )*

Remark 6.7.16. As we see from the above, path lifting allows to establish an
algorithmic test for absolute irreducibility of an algebraic set. Path lifting
itself can be computed by numerical methods. An implementation numerical
primary deomposition based on these ideas, has been developed by Sommese,
Verschelde and Wampler, see Sommese, Wampler [2005].

Remark 6.7.17. A projective algebraic set A ⊂ Pn is called non-degenerate,
if I(A) contains no linear form, equivalently, if A spans Pn. The study of de-
generate algebraic sets can be reduced to non-degenerate ones by passing to
a projective space of smaller dimension. The homogeneous coordinate ring of
an non-degenerate algebraic set is generated by n + 1 linear forms.
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A quasi-projective variety W is a open subset of a projective variety,
open with respect to the subspace topology. So W = V \ A, where V is
a projective variety and A ⊂ V an algebraic set. Quasi-projective varieties
include both affine and projective varieties.

Graded modules over the polynomial are even better behaved then modules
over a local ring.

Definition 6.7.18. A graded ring R is a ring together with a decomposition

R =
⊕

d≥0

Rd,

such that the multplication respects the grading Rd ×Re → Rd+e. A graded
module M over R is a module together with a decomposition

M =
⊕

d∈Z
Md,

such that Rd × Me → Md+e. We require, that homomorphisms of graded
modules preseverve the degree.

Example 6.7.19. S = k[x0, . . . , xn] is a graded ring. A homogenous ideal I is
a graded module, the quotient ring R = S/I is another example of a graded
ring. In particular, for X ⊂ Pn we have the homogeneous ideal I = IX = I(X)
of X and the homogeneous coordinate ring RX = S/IX of X .

Lemma 6.7.20 (Lemma of Nakayama in the graded case). Let R be a
graded ring, and let R>0 =

⊕
d>0 Rd be the ideal of elements of positive degree.

Let N ⊂ M be finitely generated graded R-modules. If N + R>0M = M then
N = M .

Proof. Since N and M are finitely generated, Nd = Md = 0 for d C 0.
Suppose N " M . Consider the smallest d such that Nd " Md. Suppose
m ∈ Md \ Nd. By assumption m = n +

∑
i rimi for n ∈ N , ri ∈ R>0 and

mi ∈ M . Since we have graded modules, we may assume that this equation
is homogeneous, i.e. n ∈ Nd, ri ∈ Rdi and mi ∈ Md−di. Since di > 0 we have
d − di < d. Hence by induction hypothesis mi ∈ Nd−di. Hence m ∈ N , a
contradiction. )*

Corollary 6.7.21. If R0 is a field and M a finitely generated graded R mod-
ule. Then dimR0 M/R>0M is the minimal number of generators of M . )*

With respect to S =
⊕

Sd, we are mainly concerned with the case where
the graded piece S0 is a field k. Then S is a k-algebra, which we call a graded
k-algebra. We usually assume that S is finitely generated as a k-algebra. Then
every finitely generated S-module M is Noetherian by Exercise 1.10.9, and
the graded pieces Md are finite dimensional k-vector spaces. Their dimensions
are important numerical invariants of M .
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Our next topic is that of a minimal free resolution which makes equally
sense over local rings and in the graded case. In fact, in both cases, we can
apply Nakayama’s lemma whose graded version is as follows (note that the
homogeneous maximal ideal plays the role of the maximal ideal considered
earlier):

If S =
⊕

Sd is a graded ring such that S0 = k is a field, then S is a
k = S/S+-algebra, and the graded pieces Sd are k-vector spaces. We, then,
say that S is a graded k-algebra.




