

Assignment 2, Combinatorial Commutative Algebra, SS 12

Dr. Madhusudan Manjunath, Raghavendra Rao B. V. http://www.math.uni-sb.de/ag/schreyer/LEHRE/12_CombCom/index.htm

due: May 25, 2012

Exercise 2.1 For any ideal I of $S = \mathbb{k}[x_1, \ldots, x_n]$, show that the betti numbers of I and S/I are related by a shift in the homological degrees, i.e.,

$$\beta_i(I) = \beta_{i+1}(S/I)$$

for *i* from 0 to n - 1. Hint: Consider the short exact sequence $0 \to I \to S \to S/I \to 0$ and associated long exact sequence of Tor.

Exercise 2.2 For each of the five Platonic solids (if unfamiliar with Platonic solids see Wikipedia entry on them), come up with a monomial ideal I_P such that a labelling of the platonic solid P resolves I_P . Furthermore, can you construct I_P that is minimally resolved by a labelling of P?

Exercise 2.3 Use your favourite computer algebra software (for example Macaulay 2) to compute the minimal free resolutions of m^2 for various values of n, and conjecture on the betti numbers of m^2 . Can you prove your conjecture?

Exercise 2.4 For a finite generated \mathbb{Z} -graded module over $S = \mathbb{k}[x_1, \ldots, x_n]$, define the k-th Hilbert coefficient $h_k = \dim_{\mathbb{K}} M_k$ and the Hilbert Series $H(t) = \sum_{k \in \mathbb{Z}} h_k \cdot t^k$. Show that the H(t) is a rational function i.e., there exist polynomials f and g such that H(t) = f(t)/g(t).

Hint: Use the existence of the Hilbert polynomial of a finite generated graded module that we proved in the lecture.

Exercise 2.5 Consider a finite generated \mathbb{Z} -graded module over $S = \mathbb{k}[x_1, \ldots, x_n]$. For any integer j, let $B_j = \sum_{i \ge 0} (-1)^i \beta_{i,j}$ where $\beta_{i,j}$ is the *i*-th Betti number of M with twist j. Show that the Hilbert series H(d) of M is equal to $\sum_j B_j \binom{n+d-j}{n}$. Hence, note that the Graded minimal free resolution of M has all the information needed to compute the Hilbert series of M.