

## Assignment 4, Combinatorial Commutative Algebra, SS 12

Dr. Madhusudan Manjunath, Raghavendra Rao B. V. http://www.math.uni-sb.de/ag/schreyer/LEHRE/12\_CombCom/index.htm

due: July 7, 2012

Let  $S = \mathbb{K}[x_1, \ldots, x_n]$ . For a monomial ideal  $M = \langle m_1, \ldots, m_t \rangle$ , let  $\mathcal{C}(M)$  be the simplicial complex with  $\{m_1, \ldots, m_t\}$  as vertices. Let all subsets  $F \subseteq \{m_1, \ldots, m_t\}$  with  $LCM(m \mid m \in F)$  not strictly divisible <sup>1</sup> by any of the monomials in the minimal generating set, and all subsets of F be the faces of  $\mathcal{C}(M)$ . Note that  $\mathcal{C}(M)$  is a labelled simplicial complex with a natural labeling, i.e., vertex  $m_i$  is labelled with the monomial  $m_i$ . The objective of this exercise is to show

**Theorem 1** The chain complex of C(M) with the labeling as above is an exact complex of free modules with  $coker(\partial_1) = S/M$ , i.e., C(M) is a free resolution of S/M.

Let  $B = \{m_1, \ldots, m_t\}$ . Using the acyclic criterion for exactness we know that  $\mathcal{C}(M)$  is exact if and only if  $(\mathcal{C}(M))_{\leq (b_1,\ldots,b_n)}$  is acyclic for every  $(b_1,\ldots,b_n) \in \mathbb{N}^n$ . In fact, in the following exercises, we will show that  $(\mathcal{C}(M))_{\leq (b_1,\ldots,b_n)}$  is not only acyclic but also contractible.

**Exercise 4.1** Show that  $\mathcal{C}(M)_{<(b_1,\ldots,b_n)}$  is homotopy equivalent to

$$\bigcup_{m \in B, m \mid x_1^{b_1} \cdots x_n^{b_n}} \partial(H^+(m))$$

where  $H^+(m)$  is the translate of the positive orthant cone with apex at  $(a_1, \ldots, a_n)$ where  $m = x_1^{a_1} \cdots x_n^{a_n}$ .

**Exercise 4.2** Show that  $\bigcup_{m \in B, m \mid x_1^{b_1} \dots x_n^{b_n}} \partial(H^+(m))$  is homeomorphic to a disc. **Hint** Embed the exponents of M ring in sufficiently high dimension such that the drawing of the simplicial complex  $\mathcal{C}(M)$  has no self intersections. Then lift a point  $p \in \mathcal{C}(M)_{\leq (b_1,\dots,b_n)}$  along  $(1,\dots,1)$  till it intersects  $\bigcup_{m \in B, m \mid x_1^{b_1} \dots x_n^{b_n}} \partial(H^+(m))$ .

**Exercise 4.3** Construct an example where  $\mathcal{C}(M)$  has dimension equal to the size of the set of minimal generators of M.

<sup>&</sup>lt;sup>1</sup>a monomial m' strictly divides m, if m'|m and degree each of the variable occurring in m' is strictly smaller than that in m.