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A family of reducible K3 surfaces

Let a > b > 2 be two integers and consider in Pat6+1 with
coordinates xg, ..., Xa, Yo, - - - , ¥p the scheme Xg(a, b) defined
by the 2 x 2 minors of

<Xo x| Xa—1> and <}/o oo yb—1>
Xy X2 ... Xa yi. Y2 ... W
and the entries of the (a— 1) x (b — 1) matrix
Xo X1 Xo
Xt x x3| (0 O e\ (Yo yi ... Yoo
: : : 0 —e O i Yoo oo Yot
. . : 1 0 o Yo Vs ... W
Xa—2 Xa—1 Xa

for parameters e1, e> in our ground field K.



Geometry of Xg(a, b)

If 2 — et + ex = (t — t;)(t — t) € K[t] has distinct nonzero
roots, then Xg(a, b) is the union of two rational normal surface
scrolls defined by the 2 x 2 minors of

m£:<Xo Xt ... Xa—1 Yo .- Yb—1>'
X1 Xo ... Xa byr ... by

Its hyperplane section consist of two rational normal curves of
degree a + b intersecting in a + b + 2-points, i.e canonically
embedded stable nodal curves of genusg=a+b+1.lfa>b
then their expected Clifford index is b.

In case t; = f, # 0 the scheme Xg(a, b) is a double structure on
the rational normal scroll defined by my, hence a K3-carpet.



Grobner basis and Schreyer resolution

Theorem

1. The defining equations of X¢(a, b) form a Grébner basis
with initial terms

XiX; fort<i<j<a-1,
Xiyj for2<i<a0<j<b-2,
Yiyj for1 <i<j<b-1.

2. The “Schreyer” algorithm computes a free resolution
defined over Z|ey, o], which for the initial ideal specalises
to the minimal free resolution of the monomial ideal.

Except for Borel fixed ideals the “Schreyer” algorithm rarely
computes the minimal resolution even for monomial ideals. The
next few slides sketch the argument which proves the
minimality in our special case.



Steps of the Schreyer algorithm and Induced orders
Given a Grébner basis (fi,...,f,) C K[xo,- .., X;] we sort them
by the degree refined by the reverse lexicographic of their initial
forms. Next we compute the monomial ideal

M; = (in(f), ..., in(f)) : in(f).

For each monomial generator x* € M; Buchberger’s test for
Grébner basis provides a syzygy

gecker(S" — S),e—f

with lead term x“g; with respect to the induces monomial order
on S" defined by

xe; > x"e; & x*in(f}) > x?in(f;) or equality and i > j.

These syzygies form a Grébner basis for ker(S" — S). The
algorithm proceeds with syzygies among the generators of the
M; and gives a finite free resolution

S+ Fi+ Fo+ ...« F.«<0.



Names of syzygies

It is convenient to use in addition to the induced orders also
recursively defined names for each generator e, € Fp in the
free resolution

S+ F+ Fo+ ...« F,+0.

Definition
The generator ¢; € F; = S" gets as name the monomial in(f;),

name(e;) := in(f;).

For p > 1 and a generator g, € Fp = S with
in(ep(ex)) = x’e; € Fp_1 we define

name(ex) := name(ey), x".

Thus a name of a generator of F, consist of a sequence of p
monomials.



Names of syzygies

Example
Consider the resolution of the monomial ideal
(wy,wz,xy,xz) C S=K[w,x,y, 2|

S+ 8«8« S«0

-z —x 0 0 —X
with @p = g 1(/)v _OX 0 | and 03 = _Zy
0O 0 w vy w

The name of the generators of F, = S* are

name(ey) = {wx,y} name(ep) = {xy,w}
name(es) = {xy,w} name(es) = {xz,y}

and for e; € F3 we have name(e;) = {xz,y, w}.



Syzygies of Xq(a, b)

The ideal of Xs(a, b) has n = (4"5~") generators. For
1 < k < n— 1 the monomial ideals M; are very simple:

in(fy) range M

XiX; 1<i<j<a-1 (X150, X-1)

XY, 2<i<a-1,0<<b-2 | (X1,..., Xa=1,Y0,-- - Yj—1)
XaY 0<j<b-2 (X2, Xae1, Y0, -+ Vi1, X2)
Yiyj 1<i<j<b-2 (X2, Xat, Y1 o s Vo1, X2)
Yi¥Yb—1 1<i<b-1 (X2, .. s Xa—1: Y15, Vo2, XZ)

The last one is more complicated. For f, whose initial form is
in(f,) = y2_, we get

2 2
Mn: <}’1a---a}’b—2;X17X1X27--~7Xa_1aX2YOa---7Xa}/O7>



Sketch of the minimality

Proposition
The Schreyer resolution of the ideal {(in(fy), ..., in(f,_1)) above
is the minimal free resolution.

Proof. Let G denote the Schreyer resolution. The names of the
generators of Gp are an initial monomial of an f, followed by a
decreasing sequence of distinct elements of M of length p — 1,
since each Mj is generated by a regular sequence of
monomials.

We can recover the total degree of a generator as the degree of
the product of the monomials of the name, which we call the
name product for short. So the generators of G, have degree
p+ 1and p + 2. To see the minimality we utilise that the
72+tb+2_grading of the monomial ideal induces a z2+0+2
-grading on G and that the multidegree of a generator coincides
with the multidegree of its name product.



Sketch of the minimality

in(f) range M

XX 1<i<j<a-1 (X155 Xj-1)

Xiyj 2<i<a-1,0<j<b—-2|(Xq,...,Xa—1,Y0,-- -, Yj—1)
XaY 0<j<b-2 (X2, oy Xa1, Y0, - s Vi1, X2)
Yiy; 1<i<j<b-2 (X2, s Xae1, Y1y ooy Vi1, XE)
Yi¥Yb—1 1<i<b-1 (X2, Xa—1, Y1s- - Vo2, X2)

Since each name product of a generator of G, of degree p + 2
is divisible by x12 and some y; and the only products names of
generators of Gp1 of degree p + 2 which are divisible by x12

are monomials in K[x, ...

the differential Gp < Gp1.

, Xz_1] there is no constant terms in

O

The proof of the minimality statement in the Theorem uses the
same ideas.



Syzygies of small K3 carpets in arbitrary characteristic

For (a, b) = (6, 6) the non-minmal resolution has Betti table

0 1 2 3 4 5 6 7 8 9 10 11
1

39 280 906 1736 2170 1832 1042 384 83 8
1 8 28 56 70 5 28 8 1

|
| . 55 320 930 1688 2060 1728 987 368 81 8
|
|
The crucial constant strand
028+ Z'7® 71728 0

has a surjective first map, which leads to a 1728 x 1728 matrix
M with determinant

det M = 21312 372 5120_



Syzygies of small K3 carpets in arbitrary characteristic

In characteristic 0 or characteristic p # 2, 3, 5 the Betti table is

0 1 2 3 4 5 6 7 8 9 10 11
1

|

| . .
| . 55 320 891 1408 1155 . L
. 1155 1408 891 320 55
|



Syzygies of small K3 carpets in arbitrary characteristic

In characteristic 0 or characteristic p # 2, 3, 5 the Betti table is

0 1 2 3 4 5 6 7 8 9 10 11
1

|

| . .
| . 55 320 891 1408 1155 . L
. 1155 1408 891 320 55
|

For the exceptional primes p = 2, 3,5 we get

| . 55 320 900 1488 1470 720 315 80 9
| . . 9 80 315 720 1470 1488 900 320 55

| . 55 320 891 1408 1162 48 7 . . |
L 7 48 1162 1408 891 320 55
|



Syzygies of small K3 carpets in arbitrary characteristic

For the exceptional primes p = 2, 3,5 we get

T . . . . T
| . 55 320 900 1488 1470 720 315 80 9 .
| . . 9 80 315 720 1470 1488 900 320 55

55 320 891 1408 1162 48 7 . . .
7 48 1162 1408 891 320 55

|
|
|
|
T . . . .
| 55 320 891 1408 1155 120 . . .
| 120 1155 1408 891 320 55
|

by computing the Smith normal forms of the non-minimal map
in the Schreyer resolution.



Syzygies of small K3 carpets in arbitrary characteristic

For the exceptional primes p = 2, 3,5 we get

T . . . . T
| . 55 320 900 1488 1470 720 315 80 9 .
| . . 9 80 315 720 1470 1488 900 320 55

55 320 891 1408 1162 48 7 . . .
7 48 1162 1408 891 320 55

|
|
|
|
B . . . .
| 55 320 891 1408 1155 120 . . .
| 120 1155 1408 891 320 55
|

by computing the Smith normal forms of the non-minimal map
in the Schreyer resolution. Can explain the case forp =2,3 !



Resonance or Poncelet phenomena

Theorem
Suppose ty /> is a primitive k-th root of unity and a,b > k + 1.
1. Xe(a, b) is contained in a rational normal scroll of type
S(ao, ce, k-1, bo, ey bk_1) with

ai=|{0<j<alj=i modk} —1

and
bi={0<j<blj=i modk} —1.
2. The map S(ay, . ..,ak_1, bo, ..., bxk_1) — P! induces a
fibration of Xe(a, b) into 2k-gons.
3. Ifa,b > 2k? then X(a, b) has non-zero graded Betti

number precisely in the range where a general 2k-gonal
curve of genus g = a+ b+ 1 has non-zero Betti numbers.



Interpretation of the Betti numbers of X(6,6)

The extra syzygies for the primes p = 2, 3 are explained by the
resonance:

| . 55 320 900 1488 1470 720 315 80 9 .
| . . 9 80 315 720 1470 1488 900 320 55

B . . .

| . 55 320 891 1408 1162 48 7 . . .
. 7 48 1162 1408 891 320 55
| 1

t2—-2t+1=t* -1 mod2and ? - 2t+1=t2+t+1 mod 2
leading to 4-gonal respectively 6-gonal curves.

However the case p = 5 is a different phenomena.



Conjectural exceptional characteristics for Green’s
Conjecture for general smooth curves of genus g < 15

| genus | char(k) |  extrasyzygies |
7 2 P24 =1
9 3 f35 =6
1| 23 Bas = 28, 10
12 5 Bag = 1
13 2.5 Bs7 = 64, 120
15 | 2,3,5 | Bos = 299, 390, 315




Refined (generic) Green Conjecture

Let C c P9~ a be a smooth canonically embedded curve and
let strand»(S¢) denote the second linear strand

0« S(—3)%13 22 §(—4)P24 #3292 §(—(g—1))Ps-39-1 0

of a minimal free resolution of the coordinate ring S¢ (here

S(—(i + 2))%i+2 sits in homological degree 7). Then

(a) Hi(strandz(S¢)) is a module of finite length for all i < p if
and only if p < Cliff(C).

(b) If Cis general inside the gonality stratum M, , C Mg with

2 < k < [242] then Hy_o(strands(Sc)) is supported on
the rational normal scroll swept out by the unique g} on C.



Experimental evidence for the Green’s conjecture in positive
characteristic performed by

Christian Bopp.




Experimental evidence for the Green’s conjecture in positive
characteristic performed by

Christian Bopp.

Notation: Let ¢ be the first non-zero map in strand»(S¢). In the
following let
X = supp(coker ¢)

denote the support of the cokernel.



Betti tables of 500 random examples of genus 9
curves over Fj

# | (deg X,dim X) Betti table
T . . . .
.21 64 70 6 . :
350 (6,0) .. . 6 70 64 21 .
: 1

103 (5,4) : 2.1 6.4 780 780 64 21

.21 &4 70 10 . .
31 (10,4) ... 10 70 64 2

16 (6, 3) 2:1 6-4 7.5 2.4 5




Betti tables of 500 random examples of genus 11
curves over [p

# | (deg X,dim X) Betti table
230 (60,0) 36 160 315 288 28
o 28 288 315
76 (6,5) 3 160 315 288 30 .
. 30 288 315
(6n,5) 3 160 315 288  28+2n
. 28120 288 315
2 (48,5) 36 160 315 288 44 .
S 44 288 315
1 (60,5) 3 160 315 288 50 .
o 50 288 315




Betti tables of 500 random examples of genus 11
curves over Fj

# | (deg X,dim X) Betti table
311 (12,0) 3 160 315 288 10 .
S 10 288 315
95 (6,5) 3 160 315 288 14 .
S 14 288 315
(6n,5) 3 160 315 283  10+4n
. 10+44n 288 315
4 (36,5) 3 160 315 288 34 .
. 34 288 315




Summary

To prove for a balanced carpet X(a, a) Green’s conjecture in
characteristic 0 amounts to verify the determinant of f(a) x f(a)
integer matrix M, has a non-zero determinant, where

42° (2a-3
flay=——~ .
(@) a+1 < a-3 )
By the resonance theorem we know that

2a—2

23( a+1 )

is a factor of this determinant. For small a the absolute value of
this determinant are

al2 3 4 5 6 7
flay|0 9 64 350 1728 8085
a7 |0 3 24 140 720 3465

det | 1 26 254 2271 36 21312 372 5120 2
Any sensible proof should explain the factors.



Summary for balanced X¢(a, a)

a| f(a) anncoker M,

3 9 2(kb) (4 +b)

4 64 3 (t1 t2)2(t1 + t2)2

5| 350 12(tt)*(t + )3(82 + titp + 13)
6 | 1728 10(t£)8(t + )4 (12 + titr + B)?

The polynomial prime factors are nicely explained by the
resonance phenomenon. The integer factors are mysterious!



Summary for balanced X¢(a, a)

a| f(a) anncoker M,

3 9 2(kb) (4 +b)

4 64 3 (t1 t2)2(t1 + t2)2

5| 350 12(tt)*(t + )3(82 + titp + 13)
6 | 1728 10(t£)8(t + )4 (12 + titr + B)?

The polynomial prime factors are nicely explained by the
resonance phenomenon. The integer factors are mysterious!

Thank You!



