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Tate Resolutions on Products of Projective Spaces

Introduction

Tate Resolutions
The Tate resolution of a coherent sheaf F on Pn is a double
infinite free complex over an exterior algebra, which encodes
the cohomology of F . Applications include
I Beilinson monads
I Chow forms, resultants
I Boij-Söderberg theory
I direct image complexes (local or affine case)

Today, work in progress with David Eisenbud and Daniel Erman

I Extension of this theory to products of projective spaces.
I Application include direct image complexes in the global

case: computation of Rπ∗F for a morphism π : X → Y
between projective varieties and F ∈ coh(X )
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Introduction

Overview

1. Review of Tate resolutions on Pn

2. Construction of the Tate resolution
3. Beilinson monads
4. Exactness property of the Tate resolution
5. Open Questions



Tate Resolutions on Products of Projective Spaces

1. Review of Tate resolutions on Pn

Koszul pair
I K a ground field, W an (n + 1)-dimensional vector space
I S = Sym W = K [x0, . . . , xn] coordinate ring of Pn

I V = W ∗ with dual basis e0, . . . ,en

I E = ΛV exterior algebra

The Koszul complex proves
I E = ExtS(K ,K ) and S = ExtE (K ,K )

.

E is Gorenstein with ωE = HomK (E ,K ) = ΛW free,
so injective=projective over E
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Tate Resolutions on Products of Projective Spaces

1. Review of Tate resolutions on Pn

BGG-Functors

M = ⊕dMd graded S-module

R(M) : . . .→ HomK (E ,Md )→ HomK (E ,Md+1)→ . . .

with differential

ϕ 7→ {e 7→
n∑

i=0

xiϕ(eie)}

P = ⊕dPd graded E-module

L(P) : . . .→ P1 ⊗ S → P0 ⊗ S → P−1 ⊗ S → . . .

with differential p ⊗ s 7→
∑n

i=0 pei ⊗ xis.

Note deg ei = −1
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1. Review of Tate resolutions on Pn

BGG-Functors

R : grmod(S)→ lincplx(E)

and
L : grmod(E)→ lincplx(S)

extend to a pair of adjoint functors

cplx(S)
L,R←→ cplx(E)

Theorem (Bernstein, Gelfand, Gelfand 1978)

Db(S) ∼= Db(E) and Db(Pn) ∼= mod E
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1. Review of Tate resolutions on Pn

Tate resolution

M = ⊕dMd and F = M̃ corresponding coherent sheaf.
If r ≥ reg M then

R(M≥r ) is acyclic

T(F) : . . .→ T r−1(F)→0→ P → Hom(E ,Mr )→ Hom(E ,Mr+1)→ . . .

double infinite minimal complex of free E modules.

Theorem (Eisenbud, Fløystad, S., 2003)

I (Reciprocity) M an S-module, P an E-module.
0→ P → R(M) is an injective resolution⇔
L(P)→ M → 0 is a projective resolution.

I Td (F) =
∑n

i=0 H i(Pn,F(d − i))⊗ ωE (i − d)
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2. Construction of the Tate resolution

Cox ring
I P = Pn1 × · · · × Pnt = P(W1)× · · · × P(Wt )

I W = W1 ⊕ . . .⊕Wt and S = Sym W = K [x1,0, . . . , xt ,nt ] the
Zt -graded Cox ring of P

I V = W ∗ = V1 ⊕ . . .⊕ Vt with dual basis e1,0, . . . ,et ,nt

I E = ΛV exterior algebra, ωE = ΛW
I deg xi,j = (δi1, . . . , δin) ∈ Zt and deg ei,j = −deg xi,j

I c = (c1, . . . , ct ) a (multi)-degree, |c| =
∑

i ci denotes the
total degree.
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2. Construction of the Tate resolution

What should be the shape of the Tate resolution?

Example (Künneth case)

I P = Pn1 × Pn2

, F = F1 � F2 := p∗1F1 ⊗ p∗2F2

I T(F) = T(F1)⊗K T(F2) over E ∼= E1 ⊗K E2

For arbitrary F ∈ coh(P) we should have

Td (F) =
∑

0≤i≤n

∑
a∈Zt
|a|=d

H |i|(P,F(a− i))⊗K ωE (i − a)

no longer finitely generated, but free!
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2. Construction of the Tate resolution

An example on P1 × P1

Consider ωE → ωE (−2,0)⊕ ω4
E (−1,−1)⊕ ωE (0,−2) defined by

the matrix

m = (e0e1,e0f0,e1f0,e0f1,e1f1, f0f1)t

where V = V1 ⊕ V2 = 〈e0,e1, f0, f1〉.

L(image m)→ M → 0

is the minimal free resolution of the module of global sections
M =

∑
(a,b)∈Z2 H0(F(a,b)) of a rank 3 vector bundle F with

cohomology as indicated on the next slide.
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2. Construction of the Tate resolution(∑2
i=0 dim H i(P1 × P1,F(a,b)) · hi

)
−3≤a,b≤3

=



28h 18h 8h 2 12 22 32
20h 13h 6h 1 8 15 22
12h 8h 4h 0 4 8 12
4h 3h 2h h 0 1 2
4h2 2h2 0 2h 4h 6h 8h

12h2 7h2 2h2 3h 8h 13h 18h
20h2 12h2 4h2 4h 12h 20h 28h


∈ Z[h]7×7

The injective resolution of P = ker m has total Betti numbers

-5 -4 -3 -2 -1 0
-1: 140 84 45 20 6 .
0: . . . . . 1
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2. Construction of the Tate resolution

High truncations

M finitely gen. Zt -graded module, F = M̃ sheaf on P. Then

∃ b : ∀ c ≥ b

1. M≥c(c) has a linear resolution, i.e.

(0← M≥c(c)←)F0 ← F1 ← · · ·

with Fk = ⊕aSβk,a(−a) satisfies βk ,a 6= 0 only if k = |a|,
2. Mc = H0(P,F(c)) and Hp(P,F(c)) = 0 for p > 0.
3. For πJ : P→ PJ = Pnj1 × · · · × Pnjs a partial projection

3.1 Γ≥0(πJ
∗F(c)) has a linear resolution,

3.2 RpπJ
∗F(c) = 0 for p > 0.

We call such b ∈ Zt sufficiently positive for M.



Tate Resolutions on Products of Projective Spaces

2. Construction of the Tate resolution

High truncations

M finitely gen. Zt -graded module, F = M̃ sheaf on P. Then

∃ b : ∀ c ≥ b
1. M≥c(c) has a linear resolution, i.e.

(0← M≥c(c)←)F0 ← F1 ← · · ·

with Fk = ⊕aSβk,a(−a) satisfies βk ,a 6= 0 only if k = |a|,
2. Mc = H0(P,F(c)) and Hp(P,F(c)) = 0 for p > 0.

3. For πJ : P→ PJ = Pnj1 × · · · × Pnjs a partial projection
3.1 Γ≥0(πJ

∗F(c)) has a linear resolution,

3.2 RpπJ
∗F(c) = 0 for p > 0.

We call such b ∈ Zt sufficiently positive for M.



Tate Resolutions on Products of Projective Spaces

2. Construction of the Tate resolution

High truncations

M finitely gen. Zt -graded module, F = M̃ sheaf on P. Then

∃ b : ∀ c ≥ b
1. M≥c(c) has a linear resolution, i.e.

(0← M≥c(c)←)F0 ← F1 ← · · ·

with Fk = ⊕aSβk,a(−a) satisfies βk ,a 6= 0 only if k = |a|,
2. Mc = H0(P,F(c)) and Hp(P,F(c)) = 0 for p > 0.
3. For πJ : P→ PJ = Pnj1 × · · · × Pnjs a partial projection

3.1 Γ≥0(πJ
∗F(c)) has a linear resolution,

3.2 RpπJ
∗F(c) = 0 for p > 0.

We call such b ∈ Zt sufficiently positive for M.



Tate Resolutions on Products of Projective Spaces

2. Construction of the Tate resolution

High truncations

M finitely gen. Zt -graded module, F = M̃ sheaf on P. Then

∃ b : ∀ c ≥ b
1. M≥c(c) has a linear resolution, i.e.

(0← M≥c(c)←)F0 ← F1 ← · · ·

with Fk = ⊕aSβk,a(−a) satisfies βk ,a 6= 0 only if k = |a|,
2. Mc = H0(P,F(c)) and Hp(P,F(c)) = 0 for p > 0.
3. For πJ : P→ PJ = Pnj1 × · · · × Pnjs a partial projection

3.1 Γ≥0(πJ
∗F(c)) has a linear resolution,

3.2 RpπJ
∗F(c) = 0 for p > 0.

We call such b ∈ Zt sufficiently positive for M.



Tate Resolutions on Products of Projective Spaces

2. Construction of the Tate resolution

BGG and positive quadrants
Reciprocity still works: R and L respect the finer grading.
R(M≥c(c)) gives a part of the Tate resolution in a positive
quadrant.

Say t = 2 and c = (1,1) sufficiently positiveSay t = 2 and c = (−2,−2) sufficiently positive

Theorem
c � 0 then

↑ ↑ ↑

RM(1,3) → RM(2,3) → RM(3,3) →

↑ ↑ ↑

RM(1,2) → RM(2,2) → RM(3,2) →

↑ ↑ ↑

RM(0,1) → RM(1,1) → RM(2,1) → RM(3,1) →

↑ ↗

RM(−2,0) → RM(−1,0) → RM(0,0)

↑ ↑

RM(−1,−1) → RM(0,−1)

↑
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2. Construction of the Tate resolution

Projective dimension of high truncations

Corollary
M a graded module over the Cox ring S. If c � 0 then

pd M≥c = dim S − t .

Proof.

RMc−(1,...,1) −→ RM≥c
↘ ↗

P(c)

Hence LP(c) → M≥c → 0 has length dim S − t .
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2. Construction of the Tate resolution

Construction Step 2
Given M and b, sufficiently positive for M, consider free
resolutions T (c) of P(c),

T (c) −→ RM≥c
↘ ↗

P(c)

for all c ≥ b. We have a directed system {T (c′) → T (c)|c′ ≥ c}.
Define

T ′ = lim
←

T (c)

and finally the Tate resolution of F = M̃ as the subcomplex of
homogeneous elements:

T(F) = {f ∈ T ′|f is homogeneous } ⊂ T ′.
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2. Construction of the Tate resolution

First Main Theorem

Proposition
The Tate resolution T(F) exact. For each multidegree a the
space of homogeneous elements T(F)a of multidegree a is
finite dimensional.

Theorem
The Tate resolution of a coherent sheaf Fon P has terms

T(F)d ∼=
∑
a∈Zt
|a|=d

∑
0≤i≤n

H |i|(F(a− i))⊗K ωE (i − a)
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3. Beilinson Monads

The derived category Db(P)

Uk = ker(H0(Pnk ,O(1))⊗O → O(1))

tautological rank nk subbundle on Pnk . Set

Ua = Λa1U1 � · · ·� Λat Ut

Of course, Ua is nonzero if and only if 0 ≤ a ≤ n.

Theorem (Beilinson, xyz)
{Ua|0 ≤ a ≤ n} forms a full strongly exceptional series for the
derived category Db(P), which is right orthogonal to the
strongly exceptional series {O(a)|0 ≤ a ≤ n} in the sense that

HpRHom(O(c),Ua) = Hp(Ua(−c)) =

{
K if a = c and p = |a|,
0 otherwise.
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3. Beilinson Monads

The U-functor
Consider the additive functor on the category of direct sums of
finitely generated free graded E-modules defined by

U : ωE (a) 7→ Ua

on objects. For the morphism given by the multiplication with
e ∈ Eb−a = ⊗t

k=1Λak−bk Vk we define U by the diagram

ωE (a)

×e
��

7→ Ua

¬e
��

↪→ ⊗t
k=1Λak Wk ⊗K O

¬e
��

ωE (b) 7→ Ub ↪→ ⊗t
k=1Λbk Wk ⊗K O

,

where the right hand maps are given by contraction.
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3. Beilinson Monads

Beilinson Monad

Applying U to the Tate resolution, we obtain a bounded complex

U(F) := U(T(F)).

This is the Beilinson monad for F .

Theorem
U(F) is a monad for the sheaf F in the sense that

Hp(U(F)) ∼=

{
F for p = 0, and
0 for p 6= 0.
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4. Exactness properties of the Tate resolution

Locally finite E-complexes

Definition
A complex T of graded free E-module with terms

T d =
∑
a∈Zt

Bd
a ⊗ ωE (−a)

with vector spaces Bd
a is locally finite, if for each a ∈ Zt the

vector space ∑
d∈Z

Bd
a

is finite dimensional.
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4. Exactness properties of the Tate resolution

Strands, quadrants, regions

T a locally finite complex of graded free E-modules with terms
T d =

∑
a∈Zt Bd

a ⊗ ωE (−a). For c ∈ Zt and disjoint subsets
I, J,K ⊂ {1, . . . , t} we call the subquotient complexes
Tc(I, J,K ) with

Tc(I, J,K )d =
∑
a∈Z

ai<ci for i∈I
ai=ci for i∈J
ai≥ci for i∈K

Bd
a ⊗ ωE (−a)

a proper region complex of T if I ∪ J ∪ K ( {1, . . . , t}
Tc(∅, J, ∅) with J ( {1, . . . , t} a strand and
Tc(I, ∅,K ) with I ∪ K = {1, . . . , t} a quadrant complex.
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4. Exactness properties of the Tate resolution

Corner complex T�c
T≥c = Tc(∅, ∅, {1, . . . , t}) and T<c = Tc({1, . . . , t}, ∅, ∅) denote
the first and last quadrant complex and abbreviate

Tc,k = Tc({1, . . . , k}, ∅, {k + 1, . . . , t})

for some of the intermediate quadrant complexes. The corner
complex T�c is the cone over the map

T<c[−t ]→ T≥c

which we get as composition

T<c[−t ] = Tc,t [−t ]→ . . .→ Tc,k [−k ]→ . . .→ Tc,0 = T≥c

of the maps in T from one quadrant to the next.
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4. Exactness properties of the Tate resolution

Second Main Theorem

Theorem
T be a locally finite complex of free E-modules. TFAE

1. Every strand of T is exact.
2. Every proper region complex of T is exact.
3. Every corner complex T�c is exact.
4. The corner complexes T�c are exact for every sufficiently

large c.
5. The proper region complexes Tc(I, ∅, ∅) are exact for every

sufficiently large c.

T(F) satisfies 5. by construction.
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4. Exactness properties of the Tate resolution

Example on P1 × P1



28h 18h 8h 2 12 22 32
20h 13h 6h 1 8 15 22
12h 8h 4h 0 4 8 12
4h 3h 2h h 0 1 2
4h2 2h2 0 2h 4h 6h 8h

12h2 7h2 2h2 3h 8h 13h 18h
20h2 12h2 4h2 4h 12h 20h 28h


Total Betti numbers of T�0

-5 -4 -3 -2 -1 0 1 2
-1: 140 84 45 20 6 .
0: . . . . . 1
1: . . . . . . . .
2: . . . . . . 4 15
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4. Exactness properties of the Tate resolution

Direct image complexes

F coherent sheaf on P, and T = T(F) it’s Tate resolution. For
each proper subset J = {j1, . . . , js} ⊂ {1, . . . ,n} with
complement J ′ we have the projection

πJ : P→ Pnj1 × · · · × Pnjs = PJ .

Corollary
For c ∈ Zt the strand Tc(∅, J ′, ∅) is exact, and after twist and
shift

Tc(∅, J ′, ∅)(c)[|c|] ∼= TJ ⊗K ωEJ′

is a flat extension of an minimal complex TJ of free EJ -modules
such that

UJ(TJ) ∼= RπJ
∗ (F(c)) ∈ Db(PJ)
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5. Open Problems

Half plane complexes

The Tate resolution T(F) has many exact subquotient
complexes.

Question
What is the geometric meaning of say, the half plane
complexes

Tc(I, ∅,K )

for I ∪ K = {1, . . . ,n} \ {j} ?
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5. Open Problems

Double complexes

For simplicity, assume t = 2, hence P = Pn1 × Pn2 .

F ∼=
⊕

j

Fj � Gj ⇒ T(F) is a double complex.

Question
Is the converse true?
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5. Open Problems

Objects in Db(Pn) as image sheaves ?

In the case of an affine space Spec A, David and I proved that
any bounded complex

0→ Aα0 → . . .→ Aαn → 0

arises as Rπ∗F of a vector bundle F on Spec A× Pn.

Question
Could it be that any object in Db(Pn) arises as Rπ∗F for a
coherent sheaf F on a product P for a suitable projection
π : P→ Pn onto a factor?
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5. Open Problems

Tate resolution of elements in Db(P)

Any object in F ∈ Db(P) can be represent by a bounded
minimal complex

0→ F k → F k+1 → . . .→ F ` → 0

with F j = ⊕iUaij
. So there exist a smallest complex T of free E

module such that U(T ) ∼= F

Question
How to compute the Tate resolution of F , i.e. an exact complex
T ′ of free E-modules such that U(T ′(c)[|c|]) = F (c) for every
c ∈ Zt ?
We have a nice simple Macaulay2 code in case of P = Pn of a
single factor.
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